Proceedings of Machine Learning Research vol 144:1-12, 2021

Accelerating Distributed SGD for Linear Regression
using Iterative Pre-Conditioning

Kushal Chakrabarti KCHAK @ TERPMAIL.UMD.EDU
University of Maryland, College Park, Maryland 20742, U.S.A.

Nirupam Gupta NIRUPAM.GUPTA @EPFL.CH
Ecole polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Nikhil Chopra NCHOPRA @UMD.EDU
University of Maryland, College Park, Maryland 20742, U.S.A.

Abstract

This paper considers the multi-agent distributed linear least-squares problem. The system com-
prises multiple agents, each agent with a locally observed set of data points, and a common server
with whom the agents can interact. The agents’ goal is to compute a linear model that best fits the
collective data points observed by all the agents. In the server-based distributed settings, the server
cannot access the data points held by the agents. The recently proposed Iteratively Pre-conditioned
Gradient-descent (IPG) method Chakrabarti et al. (2020a) has been shown to converge faster than
other existing distributed algorithms that solve this problem. In the IPG algorithm, the server and
the agents perform numerous iterative computations. Each of these iterations relies on the entire
batch of data points observed by the agents for updating the current estimate of the solution. Here,
we extend the idea of iterative pre-conditioning to the sfochastic settings, where the server up-
dates the estimate and the iterative pre-conditioning matrix based on a single randomly selected
data point at every iteration. We show that our proposed Iteratively Pre-conditioned Stochastic
Gradient-descent (IPSG) method converges linearly in expectation to a proximity of the solution.
Importantly, we empirically show that the proposed IPSG method’s convergence rate compares
favorably to prominent stochastic algorithms for solving the linear least-squares problem in server-
based networks.

Keywords: stochastic gradient descent; distributed systems; accelerated methods

1. Introduction

This paper considers solving the distributed linear least-

squares problem using stochastic algorithms. In particu-

lar, as shown in in Fig. 1, we consider a server-based dis- Server
tributed system comprising m agents and a central server.
The agents can only interact with the server, and the over-
all system is assumed synchronous. Each agent i has n
local data points, represented by an input matrix A’ and
an output vector B® of dimensions n x d and n x 1, re- Agent | Agent 2 Agent m
spectively. Thus, for alli € {1,..., m}, A* € R™*4 and (A17Bl) (AQ:BQ) (4™, B")
B' € R™. For each agent 4, we define a local cost function
F; : R® — R such that for a given regression parameter

Figure 1: System architecture.

© 2021 K. Chakrabarti, N. Gupta & N. Chopra.

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

vector z € R?,
i L i)2
Fi(z) = 5 |A'z — B, (1)

where ||-|| denotes the Euclidean norm. The agents’ objective is to compute an optimal parameter
vector z* € RY such that

" € arg min ;F (x). ()
Since each agent knows only a segment of the collective data points, they collaborate with the
server for solving the distributed problem (2). However, the agents do not share their local data
points with the server. An algorithm that enables the agents to jointly solve the above problem in
the architecture of Fig. 1 without sharing their data points is defined as a distributed algorithm.

There are several theoretical and practical reasons for solving the distributed problem (2) us-
ing stochastic methods rather than batched optimization methods, particularly when the number of
data-points is abundant Bottou et al. (2018). The basic prototype of the stochastic optimization
methods that solve (2) is the traditional stochastic gradient (SGD) Bottou et al. (2018). Several
accelerated variants of the stochastic gradient descent algorithm have been proposed in the past
decade Duchi et al. (2011); Kingma and Ba (2014); Zeiler (2012); Tieleman and Hinton (2012);
Reddi et al. (2019); Dozat (2016). A few of such well-known methods are the adaptive gradient
descent (AdaGrad) Duchi et al. (2011), adaptive momentum estimation (Adam) Kingma and Ba
(2014), AMSGrad Reddi et al. (2019). These algorithms are stochastic, wherein the server main-
tains an estimate of a solution defined by (2), which is refined iteratively by the server using the
stochastic gradients computed by a randomly chosen agent.

In particular, Adam has been demonstrated to compare favorably with other stochastic optimiza-
tion algorithms for a wide range of optimization problems Radford et al. (2015); Peters et al. (2018);
Wu et al. (2016). However, Adam updates the current estimate effectively based on only a window
of the past gradients due to the exponentially decaying term present in its estimate updating equa-
tion, which leads to poor convergence in many problems Reddi et al. (2019). A recently proposed
variant of Adam is the AMSGrad algorithm, which proposes to fix Adam’s convergence issue by
incorporating “long-term memory” of the past gradients.

In this paper, we propose a stochastic iterative pre-conditioning technique for improving the
rate of convergence of the distributed stochastic gradient descent method when solving the linear
least-squares problem (2) in distributed networks. The idea of iterative pre-conditioning in the de-
terministic (batched data) case has been first proposed in Chakrabarti et al. (2020a), wherein the
server updates the estimate using the sum of the agents’ gradient multiplied with a suitable itera-
tive pre-conditioning matrix. Updating the pre-conditioning matrix depends on the entire dataset at
each iteration. The proposed algorithm extends that idea to the stochastic settings, where the server
updates both the estimate and the iterative pre-conditioning matrix based on a randomly chosen
agents’ stochastic gradient at every iteration. Each agent computes its stochastic gradient based on
a single randomly chosen data point from its local set of data points. Using real-world datasets, we
empirically show that the proposed algorithm converges in fewer iterations compared to the afore-
mentioned state-of-the-art distributed methods.

We note that the prior work on the formal convergence of the iteratively pre-conditioned gradient-
descent method only considers the batched data at every iteration Chakrabarti et al. (2020a). There-

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

fore, besides empirical results, we also present a formal analysis of the proposed algorithm’s con-
vergence in stochastic settings.

1.1. Summary of our contributions

1. We present a formal convergence analysis of our proposed algorithm. Our convergence result
can be informally summarized as follows. Suppose the solution of problem (2) is unique,
and the variances of the stochastic gradients computed by the agents are bounded. In that
case, our proposed algorithm, i.e., Algorithm 1, converges linearly in expectation to a prox-
imity of the solution of the problem (2). The approximation error is proportional to the al-
gorithm’s stepsize and the variances of the stochastic gradients. Note that, as shown in prior
work Chakrabarti et al. (2020c), our algorithm converges superlinearly to the exact solution
when the gradient noise is zero.

Formal details are presented in Theorem 1 in Section 3.2.

2. Using real-world datasets, we empirically show that our proposed algorithm’s convergence
rate is superior to that of the state-of-the-art stochastic methods when distributively solving
linear least-squares problems. These datasets comprise

e four benchmark datasets from the SuiteSparse Matrix Collection;

e a subset of the “cleveland” dataset from the UCI Machine Learning Repository, which
contains binary classification data of whether the patient has heart failure or not based
on 13 features;

e a subset of the “MNIST” dataset for classification of handwritten digits one and five.

Please refer to Section 4 for further details.

2. SGD with Iterative Pre-Conditioning

In this section, we present our algorithm. Our algorithm follows the basic prototype of the stochastic
gradient descent method in distributed settings. However, unlike the traditional distributed stochas-
tic gradient descent, the server in our algorithm multiplies the stochastic gradients received from the
agents by a stochastic pre-conditioner matrix. These pre-conditioned stochastic gradients are then
used by the server to update the current estimate. In literature, this technique is commonly referred
as pre-conditioning Nocedal and Wright (2006). It should be noted that unlike the conventional pre-
conditioning techniques Fessler, in our case, the stochastic pre-conditioning matrix itself is updated
over the iterations with help from the agents. Hence, the name iterative pre-conditioning.

In order to present the algorithm, we introduce some notation. The individual data points of the
agents are represented by an input row vector a of dimensions 1 X d and a scalar output b. Thus,
a € R™?and b € R. For each data point (a, b), we define individual cost function f : R® — R
such that for a given x € R?,

1
f(w;a,0) = > (aw —b)*, 3)
and the gradient of the individual cost function f as

g(z;a,b) = Vif(z;a,b) = a’ (az—b). 4)

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

Here, (-)T denotes the transpose.

In each iteration ¢ € {0, 1, ...}, the server maintains an estimate (¢) of a minimum point (2),
and a stochastic pre-conditioner matrix K (t) € R, The initial estimate (0) and the pre-
conditioner matrix K (0) are chosen arbitrarily from R and R%*¢, respectively. For each iteration
t=0,1,..., the algorithm steps are presented below.

2.1. Steps in each iteration ¢

Before initiating the iterations, the server chooses a positive scalar real-valued parameter 3 and
broadcast it to all the agents. We number the agents in order from 1 to m. In each iteration ¢, the
proposed algorithm comprises of four steps described below. These steps are executed collabora-
tively by the server and the agents, without requiring any agent to share its local data points. For
each iteration ¢, the server also chooses two positive scalar real-valued parameters « and 9.

e Step 1: The server sends the estimate =(t) and the pre-conditioner matrix K (¢) to each agent
ie{l,...,m}.

e Step 2: Each agenti € {1,...,m} chooses a data point (a’, b’*) uniformly at random from
its local data points (A, B). Note that, a’* and b’ are respectively a row in the input matrix
A" and the output vector B’ of agent i. Each data point is independently and identically
distributed (i.i.d.). Based on the selected data point (a’,b’), each agent i then computes a
stochastic gradient, denoted by g’ (¢), which is defined as

g" (1) = gla(t);a™, b").)
In the same step, each agent i € {1,..., m} computes a set of vectors {h;f t)y:j=1,..., d}:
R () = hy(k;(t); @™, b"), (6)

where the function h; : RY — R? is defined below. Let I denote the (d x d)-dimensional
identity matrix. Let e; and k;(¢) denote the j-th columns of matrices I and K (t), respectively.
For each column j € {1,...,d} of K(t) and each individual data point (a, b), we define

hj(kjia,b) = (ala+ BI) kj — e;. (7)

e Step 3: Bach agenti € {1,...,m} sends the stochastic gradient g (¢) and the set of stochas-

tic vectors {h;f t),j=1,..., d} to the server.

o Step 4: The server draws an i.i.d. sample (; uniformly at random from the set of agents
{1,...,m} and updates the matrix K (¢) to K (¢ + 1) such that, for each j € {1,...,d},

kit + 1) = kj(t) — ahS" (b). (8)
Finally, the server updates the estimate z(t) to (¢ 4+ 1) such that
z(t+1) = 2(t) — OK (t + 1) g% (¢).)
Parameter ¢ is a non-negative real value, commonly referred as the stepsize.

These steps of our algorithm are summarized in Algorithm 1.
4

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

Algorithm 1 Iteratively Pre-Conditioned Stochastic Gradient-descent (IPSG).

1: The server initializes #(0) € R%, K(0) € R¥9, 3 > 0 and chooses {a > 0,6 > 0: ¢ =
0,1,...}

2: Steps in each iteration ¢ € {0, 1, 2,...}:

3: The server sends x(¢) and K (t) to all the agents.

4: Bach agenti € {1,..., m} uniformly selects an i.i.d. data point (a’,b%) from its local data
points (A%, BY).

5: Bach agenti € {1,..., m} sends to the server a stochastic gradient g% (t), defined in (5), and
d stochastic vectors % (t), ..., hﬁf (t), defined in (6).

6: The server uniformly draws an i.i.d. sample (; from the set of agents {1, ..., m}.

7: The server updates K (t) to K (¢t + 1) as defined by (8).

8: The server updates the estimate x(t) to (¢ + 1) as defined by (9).

3. Convergence Analysis

In this section, we present the formal convergence guarantees of Algorithm 1. We begin by intro-
ducing some notation and our main assumptions.

3.1. Notation and assumptions

Table 1: Additional Notation.

A=[@)T,..., (aM)T]" Ks=(£ATA+ 1)

C1 = max; (ai)Tai—%ATA p:%Zi]\il I—a<(ai)Tai+BI>
$1 > ... > sq > 0: eigenvalues of the positive semi-definite matrix A* A

A; and \;: the largest and the smallest | L = 3 + max;—1,.. v A;

eigenvalue of (ai)T at

u:(l_QOﬁd(l—aL)) o :]HELX’dNZH< ai+ﬁI)Kﬁej—ejH?
Cs = 4% Cr=%¥N, (ai)T i~ LATA| | K|

0= |7~ a(FATA+5D)| Cs(t) = 201 B3 (115651 + [[K(0)] o))

Colt) = 245 — 23 [|K)] 01 | Cr9) = 2008 (I1Ks) + [K (0)] o)

2
1

Ci(t) = (Vo + 1) A0 + [Kol + 203 | Kol Shg o + | RO+
2| K5l | K (0)| 1) + 0.5
2(t) = x(t) — a* | Ri(t) =1+ 6°Cs(t) + adCs(t) — 0Cs(t)
Ro(t) = PViN(dCs + | K> + 20 | K| Sl o/ + | KO+
2| Kll | K ()| o) + a2Cr(t)?

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

The collective input matrix A, and the collective output vector B are defined to be

T T
A= (AN, ..., AmT]", B=[(BY,...,(B™]". (10)
Define N = mn. Note that, A € RV*? and B € RV,
For each iteration t > 0 we define the following.
e Let E¢, [-] and for each agent ¢ € {1,...,m} E;, [-] denote the conditional expectation of a

function the random variables (; and i;, respectively, given the current estimate x(¢) and the
current pre-conditioner K (t).

o Letly ={is, i=1,.... m}U{G}and Ey, [] = Ei, _m,c, ().

e Let [E; [-] denote the total expectation of a function of the random variables {1y, . . ., I;} given
the initial estimate x(0) and initial pre-conditioner matrix K (0). Specifically,

E¢[] =Efy,.r,(), t >0. an

e Define the conditional variance of the stochastic gradient g’ (), which is a function of the
random variable i, given the current estimate z(¢) and the current pre-conditioner K (t) as

Vi, [6" ()] = Ei, |19 @) — Ei, [g" O] [°] = . [llg" O] - [E: [g" @] 12)

Additional notation are listed in Table 1. Among these notation, K is an approximation of the
inverse Hessian matrix, to which the sequence of the pre-conditioner matrices converges in expec-
tation. R;(t) and Ra(t) characterize the estimation error after ¢ iterations. The other notation in
Table 1 are required to define R;(¢) and Ra(t).

We make the following assumption on the rank of the matrix A7 A.

Assumption 1 Assume that the matrix A™ A is full rank.

Note that Assumption 1 holds true if and only if the matrix AT A is positive definite with sq > 0.
As the Hessian of the aggregate cost function) ;" Fi(z) is equal to AT A for all x (see (1), under
Assumption 1, the aggregate cost function has a unique minimum point. Equivalently, the solution
of the distributed least squares problem defined by (2) is unique.

We also assume, as formally stated in Assumption 2 below, that the variance of the stochastic
gradient for each agent is bounded. This is a standard assumption for the analysis of stochastic
algorithms Bottou et al. (2018).

Assumption 2 Assume that there exist two non-negative real scalar values V, and V5 such that,
for each iterationt = 0,1,. .. and each agenti € {1,...,m},

Vi, [0 ()] < Vi + Vo |0, VFi(a(t)/m]|”.

Next, we present our key result on the convergence of Algorithm 1. The proof of Theorem 1
can be found in Chakrabarti et al. (2020b).

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

3.2. Main Theorem

Theorem 1 Consider Algorithm 1 with parameters 3 > 0, a < min {g, %, W} and d > 0.

If Assumptions 1 and 2 are satisfied, then there exist two non-negative real scalar values F/y >
VVIN and Eo > /VaN such that the following statements hold true.

1. Ifthe stepsize ¢ is sufficiently small, then there exists a non-negative integer T' < oo such that
for any iteration t > T, Ry(t) is positive and less than 1.

2. For an arbitrary time step t > 0, given the estimate x(t) and the matrix K (t),

B It + DIF] < Ba@) 1201 + Ra(t).

3. Given arbitrary choices of the initial estimate x(0) € R? and the pre-conditioner matrix
K(0) € RIx4,

203 || Kg|

Jim B [late-+ 117 < PN (#1651 + 2

> + 20 (C1Ey || K5))?

The implications of Theorem 1 are as follows.

e According to Part (1) and (2) of Theorem 1, for small enough values of the parameters o and
stepsize 0, as Ri(t) € (0,1) after some finite iterations, Algorithm 1 converges linearly in
expectation to a neighborhood of the minimum point z* of the least-squares problem (2).

e According to Part (3) of Theorem 1, the neighborhood of z*, to which the estimates of Al-
gorithm 1 converges in expectation, is O(V}). In other words, the sequence of expected
“distance” between the minima x* of (2) and the final estimated value of Algorithm 1 is
proportional to the variance of the stochastic gradients at the minimum point.

4. Experimental Results

In this section, we present our experimental results validating the convergence of our proposed
algorithm on real-world problems and its comparison with related methods.

30| T 40
—IPSG | —IPSG
—SGD 2| 1 30+ —SGD
20 |—AdaGrad 1 1 1 = —AdaGrad
X AMSGrad L v Ay ghy 120\ AMSGrad
% Adam T A= Adam
=10 4 X ‘ \
— 10{ - ——
0 b piiinde sadlbe e 0 H i 1 l
0 1 2 3 4 5 0 2 4 6 8 10
iteration t x10* iteration t x10%
(@) (b)

Figure 2: Estimation error ||z(¢) — x*|| of different algorithms for (a) “MNIST” and (b) “illc1850”. For all the algo-
rithms, (a): z(0) = [10,...,10]7; (b)-(): 2(0) = [0,...,0]". Additionally, for IPSG, K(0) = Ogxa. The other
parameters are enlisted in Table 2.

Table 2: The parameters used in different algorithms.

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

Dataset IPSG SGD Bot- | AdaGrad AMSGrad Reddi| Adam Kingma
tou et al. | Duchi et al. | etal. (2019) and Ba (2014)
(2018) (2011)

cleveland || o = |« =la=1e=|la = 005 |a = 0.05
0.0031, | 0.0031 1077 i = 09,/ = 009,
§ = 0.5, By = 0.999, | B = 0.999,

B =30 e=10"" e=10""
abtahal o = |« =la=1¢=|a = %, b1 = | oy = 0%;,
0.0052, | 0.0052 1077 09,65, =099, | 51 = 0.9,
by = 2 e=10"" By = 0.999,

B=5 e=10"7
abtaha2 o = |« =la=lLe=|a =10 =| o Li‘,
0.0033, | 0.0033 1077 09,6 =099, | By = 0.9,
5 = 2 e=10"" By = 0.999,

p= e=10""
MNIST o = | « =la=1¢ =]« = 1, | « = 0.1,
0.0003, | 0.0003 1077 B = 09,6 = 009,
§ = 0.1, Ba = 0.999, | B = 0.999,

=1 e=10"" e=10""
ge33 a=12[a=196 |a=Le=|a = % la = 2
§ = 2.5, 1077 B = 09,08 = 009,
B=05 Bo = 0.999, | B = 0.999,

e=10"" e=10""
illc1850 || a =|a =la=1¢e=]| o 0-?, = = 07§
0.4436, | 0.4436 107 09,8, =099, | B1 = 009,
i = 2 e=10"" By = 0.999,

p=1 e=10""

We conduct experiments for different collective data points (A, B). Four of these datasets are
from the the benchmark datasets available in SuiteSparse Matrix Collection Davis and Hu (2011).
Particularly these four datasets are “abtahal”, “abtaha2”, “gre_343”, and “illc1850”. The fifth
dataset, “cleveland”, is from the UCI Machine Learning Repository Dua and Graff (2017). The
sixth and final dataset is the “MNIST” MNI dataset.

In the case of the first four aforementioned datasets, the problem is set up as follows. Consider
a particular dataset “abtahal”. Here, the matrix A has 14596 rows and d = 209 columns. The
collective output vector B is such that B = Ax* where x* is a 209 dimensional vector, all of whose
entries are unity. The data points represented by the rows of the matrix A and the corresponding
observations represented by the elements of the vector B are divided amongst m = 4 agents num-
bered from 1 to 4. Since the matrix A for this particular dataset has 14596 rows and 209 columns,
each of the four agents 1, ..., 4 has a data matrix A’ of dimension 3649 x 209 and a observation
vector B of dimension 3649. The data points for the other three datasets, “abtahal”, “gre_343”,
and “illc18507”, are similarly distributed among m = 4, m = 7 and m = 10 agents, respectively.

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

For the fifth dataset, 212 arbitrary instances from the “cleveland” dataset have been selected.
This dataset has 13 numeric attributes, each corresponding to a column in the matrix A, and a target
class (whether the patient has heart disease or not), which corresponds to the output vector B. Since
the attributes in the matrix A has different units, its each column is shifted by the mean value of the
corresponding column and then divided by the standard deviation of that column. Finally, a 212-
dimensional column vector of unity is appended to this pre-processed matrix. This is our final input
matrix A of dimension (212 x 14). The collective data points (A, B) are then distributed among
m = 4 agents, in the manner described earlier.

From the training examples of the “MNIST” dataset, we select 1500 arbitrary instances labeled
as either the digit one or the digit five. For each instance, we calculate two quantities, namely the
average intensity of an image and the average symmetry of an image Abu-Mostafa et al. (2012). Let
the column vectors a; and a9 respectively denote the average intensity and the average symmetry
of those 1500. Then, our input matrix before pre-processing is [al as ai.? ai.*as ag.ﬂ.
Here, (.*) represents element-wise multiplication and (.2) represents element-wise squares. This
raw input matrix is then pre-processed as described earlier for the “cleveland” dataset. Finally, a
1500-dimensional column vector of unity is appended to this pre-processed matrix. This is our final
input matrix A of dimension (1500 x 6). The collective data points (A, B) are then distributed
among m = 10 agents, in the manner already described for the other datasets.

As the matrix AT A is positive definite in each of these cases, the optimization problem (2) has
a unique solution x* for all of these datasets.

We compare the performance of our proposed IPSG method (Algorithm 1) on the aforemen-
tioned datasets, with the other stochastic algorithms mentioned in Section 1. Specifically, these
algorithms are stochastic gradient descent (SGD) Bottou et al. (2018), adaptive gradient descent
(AdaGrad) Duchi et al. (2011), adaptive momentum estimation (Adam) Kingma and Ba (2014), and
AMSGrad Reddi et al. (2019) in the distributed network architecture of Fig. 1. These algorithms are
implemented with different combinations of the respective algorithm parameters on the individual
datasets. The parameter combinations are described below.

IPSG: The optimal (smallest) convergence rate of the deterministic version of the proposed
IPSG method is obtained when o = SliSd Chakrabarti et al. (2020c). For each of the six datasets,
we find that the IPSG method converges fastest when the parameter « is set similarly as o = SIiSd .
The stepsize parameter § of the IPSG algorithm is chosen from the set {0.1,0.5,1,2,2.5}. The
parameter 3 is chosen from the set {0.1,0.5, 1,5, 10, 30, 50}.

SGD: The SGD algorithm has only one parameter: the stepsize, denoted as o Bottou et al.
(2018). The deterministic version of the SGD method is the gradient-descent method, which has the
optimal rate of convergence when o = SlJQFSd . We find that the SGD method converges fastest when
the stepsize parameter is similarly set as o = leQrsd' s1 and sy depends on the collective data matrix
A, and their values may not be known to the server. When the actual values or estimates of s1 and sq
are not known, the parameter « in both the IPSG and the SGD algorithm can be experimentally set
by trying several values of different orders, as done for the parameters § and /3 in the IPSG method.

AdaGrad: The stepsize parameter o of the AdaGrad algorithm Duchi et al. (2011) is selected
from the set {1,0.1, %} The parameter € is set at its usual value of 1077,

Adam and AMSGrad: The stepsize « Kingma and Ba (2014); Reddi et al. (2019) is selected
from the set {c, %} where c is from the set {1,0.5,0.1,0.2,0.05,0.01}. The parameter (3; is set at

its usual value of 0.9. The parameter (2 is selected from their usual values of {0.99,0.999}. The

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

parameter e is set at 1077, The best parameter combinations from above, for which the respective
algorithms converge in a fewer number of iterations, are reported for each dataset in Table 2.

The initial estimate =(0) for all of these algorithms is chosen as the d-dimensional zero vector
for each dataset except the “cleveland” dataset. For “cleveland” dataset, x(0) is chosen as the
d-dimensional vector whose each entry is 10. The initial pre-conditioner matrix K (0) for the IPSG
algorithm is the zero matrix of dimension (d x d).

Table 3: Comparisons between the number of iterations required by different algorithms to attain

the specified values for the relative estimation errors €y = ||x(t) — z*|| / ||z (0) — *||.
| Dataset | K(ATA) [e [IPSG | SGD | AdaGrad | AMSGrad | Adam
cleveland | 7.34 1.5 x || 411 x | 471 x |6.04 x |363x10° | 4.11 x
1073 103 103 103 103
abtahal | 1.5 x 10% | 1073 735 x| >10° 9.75 x| >10° > 10°
104 104
abtaha2 | 1.5 x 102 [2x 1073 [9.86 x | > 10° > 10° 7.6 x 10* | > 10°
10*
MNIST [259 x |26 x |34l x| >5x10%|>5x10% | >5x10% | 441 x
103 1073 104 104
gre 343 [125 x [4x107° [3.88 x | 443 x| >10° > 10° > 10°
104 10% 10°
illc1850 | 1.93 x | 0.2 806 x 331 x |28 x|>5x10°]163 x
106 104 10° 10° 10°

We compare the number of iterations needed by these algorithms to reach a relative estimation
error defined as ¢, = W. Each iterative algorithm is run (ref. Fig. 2) until its relative esti-
mation error does not exceed ¢;,; over a period of 10 consecutive iterations, and the smallest such
iteration is reported in Table 3. The specific values of the algorithm parameters are tabulated in
Table 2 for all six datasets. The second column of Table 3 indicates the condition number (A% A)
for each dataset. From Table 3, we see that the IPSG algorithm converges fastest among the algo-
rithms on four out of the six datasets, except for “cleveland” and “abtaha2”. Note that these two
datasets have small condition number of order 10 and 102. Even for these two datasets, only the
AMSGrad algorithm requires fewer iterations than IPSG. Moreover, from the datasets “MNIST”,
“gre_343”, and “illc1850”, we observe that the differences between the proposed IPSG method and
the other methods are significant when the condition number of the matrix A” A is of order 10% or
more. Thus, our claim on improvements over the prominent stochastic algorithms for solving the
distributed least-squares problem (2) is corroborated by the above experimental results.

Acknowledgments

This work is being carried out as a part of the Pipeline System Integrity Management Project,
which is supported by the Petroleum Institute, Khalifa University of Science and Technology, Abu
Dhabi, UAE. Nirupam Gupta was sponsored by the Army Research Laboratory under Cooperative
Agreement W911NF-17-2-0196.

10

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

References

MNIST in CSV. https://www.kaggle.com/oddrationale/mnist-in-csv. Ac-
cessed: 19-September-2020.

Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data, volume 4.
AMLBook New York, NY, USA:, 2012.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223-311, 2018.

Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Iterative pre-conditioning to expedite
the gradient-descent method. In 2020 American Control Conference (ACC), pages 3977-3982,
2020a.

Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Accelerating distributed SGD for linear
least-squares problem. arXiv preprint arXiv:2011.07595, 2020b.

Kushal Chakrabarti, Nirupam Gupta, and Nikhil Chopra. Iterative pre-conditioning for expedit-
ing the gradient-descent method: The distributed linear least-squares problem. arXiv preprint
arXiv:2008.02856, 2020c.

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1):1-25, 2011.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Dheeru Dua and Casey Graff. UCI machine learning repository. https://archive.ics.
uci.edu/ml/datasets/Heart+Disease, 2017. University of California, Irvine, School
of Information and Computer Sciences.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Jeffrey A Fessler. Image reconstruction: Algorithms and analysis. http://web.eecs.umich.
edu/~fessler/book/c—opt.pdf. [Online book draft; accessed 11-November-2020].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

11

https://www.kaggle.com/oddrationale/mnist-in-csv
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://web.eecs.umich.edu/~fessler/book/c-opt.pdf
http://web.eecs.umich.edu/~fessler/book/c-opt.pdf

ACCELERATING DISTRIBUTED SGD FOR LINEAR REGRESSION USING ITERATIVE PRE-CONDITIONING

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26—
31, 2012.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

12

	Introduction
	Summary of our contributions

	SGD with Iterative Pre-Conditioning
	Steps in each iteration t

	Convergence Analysis
	Notation and assumptions
	Main Theorem

	Experimental Results

