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Abstract

In order to certify performance and safety, feedback control requires precise characterization of
sensor errors. In this paper, we provide guarantees on such feedback systems when sensors are
characterized by solving a supervised learning problem. We show a uniform error bound on
nonparametric kernel regression under a dynamically-achievable dense sampling scheme. This
allows for a finite-time convergence rate on the sub-optimality of using the regressor in closed-loop
for waypoint tracking. We demonstrate our results in simulation with simplified unmanned aerial
vehicle and autonomous driving examples.

1. Introduction

Machine learning provides a promising avenue for incorporating rich sensing modalities into au-
tonomous systems. However, our coarse understanding of how ML systems fail limits the adoption
of data-driven techniques in real-world applications. In particular, applications involving feedback
require that errors do not accumulate and lead to instability. In this work, we propose and analyze a
baseline method for incorporating a learning-enabled component into closed-loop control, providing
bounds on the sample complexity of a reference tracking problem.

Much recent work on developing guarantees for learning and control has focused on the case that
dynamics are unknown (Dean et al., 2017; Simchowitz and Foster, 2020; Mania et al., 2020). In this
work, we consider a setting in which the uncertainty comes from the sensor generating observations
about system state. By considering unmodeled, nonlinear, and potentially high dimensional sensors,
we capture phenomena relevant to modern autonomous systems (Codevilla et al., 2018; Lambert
et al., 2018; Tang et al., 2018).

Our analysis combines contemporary techniques from statistical learning theory and robust
control. We consider learning an inverse perception map with noisy measurements as supervision,
and show that it is necessary to quantify the uncertainty pointwise to guarantee robustness. Such
pointwise guarantees are more onerous than typical mean-error generalization bounds, and require
a number of samples scaling exponentially with dimension. However, many interesting problems
in robotics and automation are low dimensional, and we provide a high-probability pointwise error
bound on nonparametric regression for such scenarios. Under a dynamically feasible dense sampling
scheme, we show uniform converge for the learned map. Finally, we analyze the suboptimality of
using the learned component in closed-loop, and demonstrate the utility of our method for reference
tracking. We close with several numerical examples showing that our method is feasible for many
problems of interest in autonomy. Full proofs of the main results, further discussion on controller
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synthesis, illustrative examples, and experimental details are included in the longer version of this
paper (Dean and Recht, 2020).

1.1. Problem Setting

Motivated by situations in which control is difficult due to sensing, we consider the task of waypoint
tracking for a system with known, linear dynamics and complex, nonlinear observations. The setting
is succinctly described by the motivating optimal control problem:
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where x € R" is the system state, u € R is the control input, z € R? is the system observation,
and we use the shorthand z¢.; = (zo,...,z). The linear dynamics are specified by A € R™*",
B € R™™_ and the matrix C' € RP*™ determines the state subspace that affects the observation,
which we will refer to as the measurement subspace. We assume that (A, B) is controllable and
(A, C) is observable. This optimal control problem seeks a causal policy 7 to minimize a robust
waypoint tracking cost. The objective in (1) penalizes the maximum deviation from any reference
trajectory in the class R as well as the maximum control input, with the relative importance of these
terms determined by @) € R™*" and R € R"*™. A common class of reference signal is those with
bounded differences, i.e. ||} — 23 || < A,

As defined by the constraints of this problem, the system has linear dynamics, but nonlinear
observations (2). We suppose that the parameters of the linear dynamics (A, B, C') are known, while
the observation function g : RP — R is unknown. This emulates a natural setting in which the
dynamics of a system are well-specified from physical principles (e.g. vehicle dynamics), while
observations from the system (e.g. camera images) are complex but encode a subset of the state
(e.g. position). We assume that g is continuous and that there is a continuous inverse function
h : R? — RP with h(g(y)) = y. For the example of a dashboard mounted camera, such an inverse
exists whenever each camera pose corresponds to a unique image, which is a reasonable assumption
in sufficiently feature rich environments.

If the inverse function ~ were known, then the optimal control problem is equivalent to a linear
output-feedback control problem. We therefore pose a learning problem focused on the unknown
inverse function h, which we will call a perception map. We suppose that during the training phase,
there is an additional system output,

™ = Cag + 3)

where each 7, is zero mean and has independent entries bounded by o,,. This assumption corresponds
to using a simple but noisy sensor for characterizing the complex sensor. The noisy system output
will both supervise the learning problem and allow for the execution of a sampling scheme where the
system is driven to sample particular parts of the state space. Notice that due to its noisiness, using
this sensor for waypoint tracking would be suboptimal compared using transformed observations.

We will show that the certainty equivalent controller, i.e. the controller which treats the approxi-
mation ?L(Z) ~ C'z as true, achieves a cost which converges towards optimality.
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Result 1 (Informal) Certainty equivalent control using a perception map learned with T' sampled
data points by our method achieves a suboptimality bounded by

1
~ 0\ pta

c(7) — c(my) < LrySy <T> P @)

Here, c(-) is the cost objective in (1), L describes the continuity of the relationship between system

state and the observations, r, bounds the region of system operation under the optimal control law,

S is the sensitivity to measurement error of the optimal closed-loop, o is proportional to the sensor

noise in (3), and p is the dimension of measurement subspace.

1.2. Related Work

The model we study is inspired by examples of control from pixels, primarily in the domain of
robotics. At one end of the spectrum, calibrated camera characteristics are incorporated directly into
physical models; this type of visual-inertial odometry enables agressive control maneuvers (Tang
et al., 2018). On the other end are policies that map pixels directly to low-level control inputs,
for example via imitation learning (Codevilla et al., 2018). Our model falls between these two
approaches: relying on known system dynamics, but deferring sensor characterization to data.

The observation of a linear system through a static nonlinearity is classically studied as a Weiner
system model (Schoukens and Tiels, 2016). While there are identification results for Weiner systems,
they apply only to single-input-single-output systems, and often require assumptions that do not apply
to the motivation of cameras (Hasiewicz, 1987; Wigren, 1994; Greblicki, 1997; Tiels and Schoukens,
2014). More flexible identification schemes have been proposed (Lacy and Bernstein, 2001; Salhi
and Kamoun, 2016), but they lack theoretical guarantees. Furthermore, these approaches focus on
identifying the full forward model, which may not be necessary for good closed-loop performance.
The variant of Weiner systems that we study is closely related to our recent work, which focused
on robustness in control design (Dean et al., 2019). We now extend these ideas to directly consider
issues of sampling and noise.

There is much related and recent work at the intersection of learning and control. Similar in spirit
is a line of work on the Linear Quadratic Regulator which focuses on issues of system identification
and sub-optimality (Dean et al., 2017, 2018; Abbasi-Yadkori and Szepesvari, 2011). This style of
sample complexity analysis has allowed for illuminating comparisons between model-based and
model-free policy learning approaches (Tu and Recht, 2018; Abbasi-Yadkori et al., 2019). Mania
et al. (2019); Simchowitz and Foster (2020) show that the simple strategy of model-based certainty
equivalent control is efficient, though the argument is specialized to linear dynamics and quadratic
cost. For nonlinear systems, analyses of learning often focus on ensuring safety over identification or
sub-optimality (Taylor et al., 2019; Berkenkamp et al., 2017; Wabersich and Zeilinger, 2018; Cheng
et al., 2019), and rely on underlying smoothness for their guarantees (Liu et al., 2019; Nakka et al.,
2020). An exception is a recent result by Mania et al. (2020) which presents finite sample guarantees
for parametric nonlinear system identification.

While the majority of work on learning for control focuses on settings with full state observation,
output feedback is receiving growing attention for linear systems (Simchowitz et al., 2019, 2020)
and for safety-critical systems (Laine et al., 2020). Recent work in closely related problem settings
includes Mhammedi et al. (2020), who develop sample complexity guarantees for LQR with nonlinear
observations and Misra et al. (2020), who leverage representation learning in Block MDPs; however,
neither address issues of stability due to focusing on finite horizon problems.
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The statistical analysis presented here focuses on nonparametric pointwise error bounds over a
compact set. Distinct from mean-error generalization arguments most common in learning theory,
our analysis is directly related to classical statistical results on uniform convergence (Devroye, 1978;
Liero, 1989; Hansen, 2008). Our motivation is related to conformal regression (Lei and Wasserman,
2014; Barber et al., 2019), which relies on exchangeability assumptions that can be adapted to data
from dynamical systems with mixing arguments (Chernozhukov et al., 2018).

2. Uniform Convergence of Perception

In this section, we introduce a sampling scheme and nonparametric regression strategy for learning
the predictor h and show that the resulting errors are uniformly bounded. While it is typical in the
machine learning community to consider mean-error generalization bounds, robust control objectives
require that uncertainty be quantified pointwise to guarantee. It is easy to construct examples in
which errors within sets of vanishingly small measure cause systems to exit bounded regions of
well-characterized perception and lead to instability (e.g. Dean and Recht (2020)).

Therefore, we begin by introducing a method for nonparametric regression and present a data-
dependent pointwise error bound. Then, we propose a dense sampling scheme and show a uniform
error bound over the sampled region of the measurement subspace.

2.1. Nonparametric Regression

Since uniform error bounds are necessary for robust guarantees, we now introduce a method to
learn perception maps with such bounds. For simplicity of analysis and exposition, we focus on
Nadarya-Watson estimators. We expect that our insights will generalize to more complex techniques,
and we demonstrate similarities with additional regressors in simulation experiments presented in
Section 4.

The Nadarya-Watson regression estimators with training data {(z, yi™")}]_, bandwidth y €
R, and metric p : R? x R? — R have the form

T

T
Ry = 3 D e ) =3k (2)s o) = (222) )
t=0

= o1(?)

with /};(z) = 0 when sp(z) = 0 and k : Ry — [0, 1] is a kernel function. We assume that the

kernel function is Lipschitz with parameter L, and that x(u) = 0 for v > 1, and define the quantity

Vi = Jgr £ ([|yllo) dy. Thus, predictions are made by computing a weighted average over the labels
+

Y™ of training datapoints whose corresponding observations 2 are close to the current observation,

as measured by the metric p. We assume the functions ¢ and A are Lipschitz continuous with respect
to p, i.e. for some Ly and L,

p(9(),9") < Lglly — ' lloo,  11(2) = h(2)|loo < Lnp(2,2) . (6)

While our final sub-optimality results depend on L, and Ly, the perception map and synthesized
controller do not need direct knowledge of these parameters.
For an arbitrary z with sp(z) # 0, the prediction error can be decomposed as

> — ris (21, 2) — hiy (21, 2)
[3(=) = h(:) o < | >y (O ca)|_+| ;Wntum. ™



CERTAINTY EQUIVALENT PERCEPTION-BASED CONTROL

The first term is the approximation error due to finite sampling, even in the absence of noisy labels.
This term can be bounded using the continuity of the true perception map h. The second term is the
error due to measurement noise. We use this decomposition to state a pointwise error bound, which
can be used to provide tight data-dependent estimates on error.

Lemma 1 For a learned perception map of the form (5) with training data as in (3) collected during
closed-loop operation of a system satisfying (6), we have with probability at least 1 — 0 that for a
fixed z with s7(z) # 0,

1h(2) = h(2)lloc <ALy +

\/:;’%\/log (»?/51(2)/0) . ®)

The expression illustrates that there is a tension between having a small bandwidth + and ensuring
that the coverage term s7(2) is large. Notice that most of the quantities in this upper bound can be
readily computed from the training data; only L, which quantifies the continuity of the map from
observation to state, is difficult to measure. We remark that while useful for building intuition, the
result in Lemma 1 is only directly applicable for bounding error at a finite number of points. Since
our main results handle stability over infinite horizons, they rely on a modified bound introduced in
the full version of this paper (Dean and Recht, 2020) which is closely tied to continuity properties of
the estimated perception map T and the sampling scheme we propose in the next section.

2.2. Dense Sampling

We now propose a method for collecting training data and show a uniform, sample-independent
bound on perception errors under the proposed scheme. This strategy relies on the structure imposed
by the continuous and bijective map g, which ensures that driving the system along a dense trajectory
in the measurement subspace corresponds to collecting dense samples from the space of observations.
In what follows, we provide a method for driving the system along such a trajectory.

We assume that during training, the system state can be reset according to a distribution Dy
which has has support bounded by oy. We do not assume that these states are observed. Between
resets, an affine control law drives the system to evenly sample the measurement subspace with a
combination of a stabilizing output feedback controller and reference tracking inputs:

t
up =Y Ky + i ©)
k=0

The stabilizing feedback controller prevents the accumulation of errors resulting from the unobserved
reset state. The closed-loop trajectories resulting from this controller are

t
2= Ou(t)zo + Y Pou(k)us™y + Pun (k)i (10)
k=1

where the system response variables { P (k), Py (k), Pyn (k) } >0 arise from the interaction of the
stabilizing control law with the linear dynamics; we revisit this fact in detail in Section 3.1. As
long as the feedback control law { K },>0 is chosen such that the closed-loop system is stable, the
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Input: System variables C, stabilizing controller {K}}}!_, and system response {®..(k)}}_;,
sampling radius 7, target dataset size 7.
for( e {1,...,T} do
reset 29 ¢ ~ Dy and sample yF ~ Unif({y | [|y/loc < 7})

design inputs [(uffg)T, e (uﬁffw)T]T = [C<I>m(1) C@xu(n)]Tyff
drive the system to states w1 ¢ with uy o = Z?:o ij;’f‘}c’f‘t + u’;fg fork=0,...,n—1
end
Output: Uniformly sampled training data {(zn,¢, 5™y =: {(z0, yi™™) }Z,
Algorithm 1: Uniform Sampling with Resets

system response variables decay. Designing such a stabilizing controller is possible since (A, B) is
controllable and (A, C') is observable. We therefore assume that for all £ > 0

max {[|CPq (k) ||oo, [|CPan (k) e} < Mp", (11

forsome M > 1and 0 < p < 1.

The reference inputs u,@ef are chosen to ensure even sampling. Since the pair (A, B) is control-
lable, these reference inputs can drive the system to any state within n steps. Algorithm 1 leverages
this fact to construct control sequences which drive the system to points uniformly sampled from the
measurement subspace. Its use of system resets ensures independent samples; we note that since the
closed-loop system is stable, such a “reset” can approximately be achieved by waiting long enough
with zero control input.

As a result of the unobserved reset states and the noisy sensor, the states visited while executing
Algorithm 1 do not exactly follow the desired uniform distribution. They can be decomposed into
two terms:

Crny = Z C@mu(k)ufﬁk! + (C@x(”)wo,t + Z CCI)xn(k‘)’r]n_k,Z) =y} + wy
k=1 k=1

where y°f is uniformly sampled from {y | ||y||oc < 7}, and the noise variable w; is bounded:

M max{og, oy}
1—p ’

lwelloo < 10D (m)llsolzolloc + Y 1CPan (D)oo lttn—elloo <
(=1

The following Lemma shows that uniform samples corrupted with independent and bounded noise
ensure dense sampling of the measurement subspace by providing a high probability lower bound on
the coverage s7(2).

Lemma 2 Suppose that training data {zt}tT:l is collected with a stabilizing controller satisfying (11)
M max{og,0n}
1-p

z observed from a state x satisfying ||Cz||c < T,

according to Algorithm [ withv > r + + ng from a system satisfying (6). Then for all

%
Y
> ['V _
sr(2) 2 2 " (rLg)

with probability at least 1 — § as long as T > 8V, ! log(l/(s)(FLth)p’y_p.

—_
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We use this coverage property of the training data and the error decomposition presented in
Section 2.1 to show our main uniform convergence result.

Theorem 1 [f training data satisfying (3) is collected with a stabilizing controller satisfying (11) by
the sampling scheme in Algorithm 1 with radius 7 = \/2r from a system satisfying (6), then as long
as the system remains within the set {z | |Cz||s < r}, the Nadarya-Watson regressor (5) will have
bounded perception error for every observation z:

p
= Lgv2r\*
1)~ bl <3n+ 2 (BY20) " (plog77m) +1) (12)
T1 v
with probability at least 1 — § as long as v < Ly((v/2 — 1)r — M max{og, 0, }(1 — p)~1) and

1
3

2 ma {8985 (VILALE) (r/2) You(T%/0), Vi * ALWLi) L] (/)5 |

3. Closed-Loop Guarantees

The previous section shows that nonparametric regression can be successful for learning the percep-
tion map within a bounded region of the state space. But how do these bounded errors translate into
closed-loop performance guarantees, and how can we ensure that states remain within the bounded
region? To answer this question, we recall the waypoint tracking problem in (1).

3.1. Linear Control for Waypoint Tracking

Consider a linear control law for waypoint tracking u; = > 5 _y K ,gy)yt_k +30 WK ,ir):nie_fk which

depends on some output signal y; = C'xp+ng. Similar in form to the controller used for sampling (9),
this linear waypoint tracking controller can be viewed as computing uief based on waypoints xfff. As
first discussed in our sampling analysis (10), the closed-loop behavior of a linear system in feedback
with a linear controller can be described as a linear function of noise variables.

To facilitate our discussion of the general system response, we will introduce boldface notation
for infinite horizon signals and convolutional operators. Under this notation, we can write u; =
Z',;:O Kz, equivalently as u = Kx. We introduce the signal and linear operator norms

[xlloc = suplzilloc, @l = sup_[|@wlloc -

Wlleo<1

These signals and operators can be concretely represented in terms of semi-infinite block-lower-
triangular Toeplitz matrices acting on semi-infinite vectors or in the z-domain withx = )7, T
Using this representation, a linear controller (K, K, ) induces the system responses

&, = (2 — (A+ BK,C))™* ®yn = & BK, &, = &,BK, (13)

which are well defined as long as the interconnection is stable. Under this definition, the state signal
can be written as x = ®,,x™ + &, ,n + P.xo. The responses @y, and Py, can be similarly
defined, since u is linear in x and x"f.
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The robust waypoint tracking cost from (1) can be cast as an £ norm on system response
variables. For the purposes of our main result, it is only necessary to view system response variables
as objects that arise from linear controllers. However, system response variables can also be used
to synthesize linear controllers. This is a key insight of the System Level Synthesis framework, first
introduced by Wang et al. (2016). We include further discussion in the full version of this paper (Dean
and Recht, 2020).

3.2. Suboptimality of Certainty-Equivalence

Suppose that we apply a linear controller to our perception estimates,
u = 7(z,x"*") = K, h(z) + K,x** =: K(h(z), x™). (14)

This is the certainty equivalent controller, which treats the learned perception map as if it is true. We
will compare this controller with 7, = K(h(+), -), the result of perfect perception. The suboptimality
depends on the following quantity, which bounds ||Cx||~ under the optimal control law

Tmax(®) =  sup HC@erref + C®xxolz, -
xref cR
llzollco<o0
The magnitude of this value depends on properties of the considered reference signal class. In the
extended version of this paper (Dean and Recht, 2020), we present the specific form of this quantity
for reference signals that are bounded and have bounded differences.

Proposition 1 Let {®x,, Pxn, Pur, Pun} denote the system responses induced by the controller
K as in (13), and let ¢(m,) denote the cost associated with the policy , = K(h(+),-). Then for a
perception component with error bounded by e, within the set {x | ||Cz||co < 1}, the sub-optimality
of the certainty-equivalent controller (14) is bounded by

Q2 ®yn
|:R1/2@un:|

as long as the sampled region is large enough and the errors are small enough, cj, <

o(m) —c(me) < ep

Ly
r—7rmax (P)
C®xnllc, -
Thus, the optimal closed-loop system’s sensitivity to measurement noise is closely related to the
sub-optimality. It is possible to use this insight to augment the cost of the waypoint tracking problem
in (1) to make it more robust to perception errors (Dean and Recht, 2020).
We now state our main result.

Corollary 3 Suppose that training data satisfying (3) is collected is collected with a stabilizing
controller satisfying (11) according in Algorithm 1 with 7 = 27y (®) > max{1, M%ﬁ’oo”}}
from a system satisfying (6), and that the Nadarya-Watson regressor (5) uses bandwidth ~y chosen
to minimize the upper bound in (12). Then the overall suboptimality of the certainty equivalent

controller (14) is bounded by

log(T2/4) (15)

1
4Ap2g4\ P 1/2
c(7) — e(my) < ALgLpTmax(®) <pT0n> [Q @xn}

Rl/Q(I)un

L1

+4
with probability greater than 1—4 for large enough T > 4p20f; (IOLth |C®xnllz, / log(TQ/(S))p

8
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4. Simulated Experiments

To illustrate our results and to probe their limits, we perform experiments in two simulated envi-
ronments. Our first environment mimics a simplified unmanned aerial vehicle (UAV) scenario, in
which observations are recorded from a downward pointing camera. Images are generated using the
CARLA simulator (Dosovitskiy et al., 2017), and Figure 1b shows example observations. We fix the
elevation and orientation, and define system dynamics using a hovercraft model, where positions
along east-west and north-south axes evolve independently according to double integrator dynamics.
We construct a training trajectory by applying a static reference tracking controller to follow a
periodic reference tracing circles of varying radius. Figure 1c plots the positions from which training
observations and measurements are collected.

We first train a series of perception maps and evaluate their errors in the UAV setting. We
consider four types of regressors: Nadarya-Watson estimators (5) with Euclidean distance on raw
pixels (NW), kernel ridge regression with radial basis functions (KRR), a visual odometry method
(VO), and a simultaneous localization and mapping method (SLAM). We choose these additional
methods to compare the performance with a classical nonparametric approach, a classical computer
vision approach, and a non-static state-of-the-art approach.

We evaluate the four learned perception maps on a grid, and the resulting errors are displayed
in Figure 2a. For the three static regressors, the error heatmaps are relatively similar, with small
errors within the training data coverage, and larger errors outside of it. Though VO has very small
errors at many points, its heat map looks much noisier. The large errors come from failures of
feature matching within a database of key frames from the training data; in contrast, NW and KRR
predictions are closely related to /o distance between pixels, which is much smoother. Because
SLAM performs mapping online, it can leverage the unlabelled evaluation data to build out good
perception away from training samples, and has high errors only due to a tall building obstructing the
camera view (visible in Figure 1b) and violating the invertibility assumption. Figure 2b summarizes
the evaluations by plotting the median and 99th percentile errors in the inner region of training
coverage compared with the outer region.

Our second environment mimics an autonomous driving example with a dashboard mounted
camera (Figure 1b). We use CARLA and the hovercraft dynamics model, with the elevation fixed at
ground level. For this driving scenario, observations are determined as a function of vehicle pose,
and thus additionally depend on the heading angle, which is determined by the ratio of velocity states.

g
=1
g
z
Q
>
e *po, ’ 20 N
X position (m) 3 Sltiog N
(a) UAV sampling (b) Example observations (c) Car sampling

Figure 1: Coverage of training data for (a) UAV and (c) autonomous driving settings. In (b), example
observations taken from positions indicated by yellow stars.
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(a) Perception errors over region
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Figure 2: In (a), heatmaps illustrate perception errors. In (b), median and 99th percentile errors
within the inner (37-42m radius) and outer (25-55m radius, excluding inner) regions of training data.

Despite this difference, we collect training data in the same manner, resulting in a more sparsely
sampled measurement subspace (Figure 1c). We use this example to illustrate potential failure modes
that arise when training data is not dense. We consider NW and SLAM perception maps as virtual
sensors for a static reference tracking controller. Figure 3 displays the trajectories. For NW, errors
cause the system to deviate from the reference, and eventually the system exits the region covered by
training data, losing stability due to the perception failure.

5. Conclusion and Future Work

We have presented a sample complexity guarantee for the task of using a complex and unmodelled
sensor for waypoint tracking. Our method makes use of noisy measurements from an additional sensor
to both learn an inverse perception map and collect training data. We show that evenly sampling
the measurement subspace is sufficient for ensuring the success of nonparametric regression, and
furthermore that using this learned component in closed-loop has bounded sub-optimality. Unlike
related work that focuses on learning unknown dynamics, the task we consider incorporates both a
lack of direct state observation and nonlinearity, making it relevant to modern robotic systems.

We hope that future work will continue to probe this problem setting to rigorously explore relevant
trade-offs. One direction for future work is to contend with the sampling burden by collecting data in
a more goal-oriented manner, perhaps with respect to a target task or the continuity of the observation
map. It is also of interest to consider extensions which do not rely on the supervision of a noisy
sensor or make clearer use of the structure induced by the dynamics on the observations. Making
closer connections with modern computer vision methods like SLAM could lead to insights about
unsupervised and semi-supervised learning, particularly when data has known structure.

0 i Seo-

=

.2 g

= —== reference * * x % =]

g 07 Z

a. * SLAM 3 X

> % * NW y
T T T T 50 T T T T T T
75 50 25 25 0 10 20 30 40 50

X position timesteps

Figure 3: Success and failure of reference tracking. Left, reference and actual trajectories for NW
and SLAM. Right, predicted (solid) and actual (dashed) positions for NW.
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