
Proceedings of Machine Learning Research vol 144:1–13, 2021

Safe Bayesian Optimisation for Controller Design by Utilising the
Parameter Space Approach

Lorenz Dörschel* L.DOERSCHEL@IRT.RWTH-AACHEN.DE

David Stenger* D.STENGER@IRT.RWTH-AACHEN.DE

Dirk Abel D.ABEL@IRT.RWTH-AACHEN.DE

Institut für Regelungstechnik, RWTH Aachen University, Germany

Abstract
As control systems become more and more complex, the optimal tuning of control parameters using
Bayesian Optimisation gained an increased interest of research in recent years. Safe Bayesian Opti-
misation, tries to prevent sampling of unsafe parametrizations and therefore allow parameter tuning
in real world experiments. Usually this is achieved by approximating a safe set using probabilis-
tic Gaussian Process Regression predictions. In contrast in this work, analytical knowledge about
robustly stable parameter configurations is gained by the parameter space approach and then incor-
porated within the optimisation as constraint. Simulation results on linear and non-linear systems
with uncertain parameters show a significant performance gain compared to standard approaches.
Keywords: Optimisation of controller parameters, Bayesian Optimisation, parameter space ap-
proach, performance index ITAE

1. Introduction

In the past decades multiple efficient control algorithms have been proposed, which are able to
control complex systems. Nevertheless, controllers are not plug-and-play but have to be tuned
properly to fully exploit their possibilities. Hence, the task of a control engineer has often become to
invest a lot of resources in time consuming tuning of these control parameters. To support engineers
in this regard optimisation techniques have been proposed, which optimise the control parameters
with respect to arbitrarily chosen objective functions using simulation of the closed loop behaviour.

The controller optimisation problem is challenging for several reasons: Firstly, we have a
black-box optimisation problem. A closed analytical form of the objective function is not available
and information can only be obtained through sampling of the experiment or simulation with dif-
ferent parameter combinations. Secondly, simulations and experiments might be time consuming.
Thirdly, the objective function might be corrupted by noise and fourthly, sampling in unsafe areas of
the controller parameter space must be prevented for real world system. These challenges rule out
optimisation algorithms relying on gradients or relaxations. Although they have been used in this
regard, meta-heuristics such as Genetic Algorithms or Particle Swarm Optimisation are considered
to be not sample-efficient since they discard some previously obtained evaluations.

Bayesian Optimisation (BO) is a common method used for sample-efficient noisy optimisa-
tion. It can be attributed to the Micro Data RL branch of Reinforcement Learning, see Chatzilyger-
oudis et al. (2020). Surrogate models of black-box responses are learned by fitting fast-to-evaluate
probabilistic regression models using all data obtained through previous sampling of the black-box
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during optimisation. These surrogate models are used to find the next promising sample point. Re-
cent examples from the control and robotics community include learning gaits under uncertainty in
Calandra et al. (2016), local linear dynamics learning in Bansal et al. (2017), MPC tuning in Stenger
et al. (2020) and tuning for a linear quadratic regulator in Marco et al. (2016).

In Safe Bayesian Optimisation the goal is to prevent the algorithm from sampling in unsafe
controller parameter regions and therefore allow safe experimental parameter tuning. The algorithm
SafeOpt originally proposed by Sui et al. (2015) approximates the safe controller parameter set by
leveraging the probabilistic GPR-predictions. This method was applied by Khosravi et al. (2019) to
a heat pump. Recently, constrained Bayesian Optimisation was compared with SafeOpt for safety
critical real world controller tuning by König et al. (2020). Although, in the paper it was reported
that no unsafe evaluations were conducted, sampling in unsafe regions is still possible for the com-
bination of expected improvement and the probability of feasibility (see, e.g., Stenger et al. (2020)).
It was also shown that with hyperparameter optimisation, SafeOpt resulted in frequent unsafe sam-
ples. This is in agreement, with Berkenkamp et al. (2020) as incorporation of domain knowledge
by manual setting of bounds on the GP-hyperparameters was reported to be necessary.

With this contribution we seek to achieve safe controller tuning by incorporating analytical
safety boundaries obtained from classical control engineering results. For linear control systems, the
area of all stabilising controller parameters can be calculated symbolically, while also uncertain
parameters can be included within the calculation scheme. First approaches can be traced back to
Vyshnegradsky (1876) and nowadays several algorithms are available, which fulfil the same task
but have important differences. Famous criteria like the Routh-Hurwitz criterion lead to expensive
calculations if conducted analytically with multiple unknown parameters, as roots of polynomials
of high order have to be found. This typically occurs if controllers (with parameters of choice)
have to be robustly tuned for a system with parametric uncertainties. More efficient formulations
are delivered by methods based on the classical parameter space approach (PSA) introduced by
Ackermann et al. (2002), which leads to a decomposition of the parameter space into several regions,
such that the number of unstable poles is identical for every point in each single region. The classical
parameter space approach has certain drawbacks, as it is only applicable for a restricted system
class and the use of frequency based techniques often leads to frequency sweeping, which makes a
discretization of the parameter space necessary. The most recent and most efficient formulation is a
parameter space approach based on a stability boundary mapping incorporating Lyapunov stability
formulation introduced by the authors in Schrödel et al. (2015). It has been shown, e.g. in Pyta
et al. (2017), that already for systems with medium complexity this approach outperforms other
formulation with respect to accuracy and computational time.

Within the framework of the parameter space approach, not only stability but also performance
criteria can be incorporated directly. Here, a variety of different methods is available, where the
method of choice depends on the performance criterion to evaluate. Methods reach from frequency
domain requirements in Bünte (2000), Odenthal and Blue (2000) to positioning of the eigenvalues of
the closed loop systems in Siljak (1964). Those methods also have been extended for the Lyapunov
based formulation in Voßwinkel et al. (2019) but still the performance mapping only covers perfor-
mance criteria, which are typical for linear systems. More complex performance requirements like
the ITAE-criterion, which are also used in practice, cannot be addressed by means of any parameter
space technique nowadays.

The main idea of the paper is to design a new safe controller tuning algorithm for uncertain
systems and arbitrary performance criteria by combining Bayesian Optimisation and the parameter
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space approach. Both itself cannot solve this problem: The parameter space approach can find
stable parameter regions and deal with uncertainties but is restricted to certain performance criteria.
Bayesian Optimisation on the other hand can deal with objective functions, which can be noisy
(uncertain) and also highly non-linear. However Bayesian Optimisation cannot reliably achieve
safe sampling if it is not carefully tuned for the respective application. Hence, the structure of the
paper is as follows. First, the fundamentals of Bayesian Optimisation are recapped in Section 2.
The same follows for the parameter space approach techniques in Section 3. Section 4 explains and
presents the new algorithm, whereas the developed algorithm is compared with approaches from the
literature on an exemplary system in Section 5. A conclusion summarises the paper.

2. Fundamentals of Bayesian Optimisation

The aim of this section is to explain the fundamentals of noisy Bayesian Optimisation. For a detailed
introduction to Bayesian Optimisation, we refer to Shahriari et al. (2016). For simplicity here, we
consider a noisy minimisation problem with box constraints:

min
x

E [y(x)] s. t. xmin ≤ x ≤ xmax, x ∈ Rm (1)

The decision variable of the problem is a m-dimensional parameter vector x with box constraints
xmin and xmax. It is assumed that information about the unknown cost function can only be obtained
through noisy sampling of an expensive-to-evaluate black-box simulation or experiment. Each time
the black-box is evaluated with parameters xi, a corresponding noisy sample yi is obtained at iter-
ation i. Algorithm 1 shows the procedure of Bayesian Optimisation. The main idea is to use all
samples obtained so far (Xi = [x1, . . . , xi],Yi = [y1, . . . , yi]) to construct a fast-to-evaluate surro-
gate model of y(x) at each iteration (Line 3) and use that model to search for the next promising
sample point (Line 4). This way the surrogate model is iteratively refined in promising regions.

Algorithm 1 Bayesian Optimisation
1: Initial sampling of X1 and Y1:

2: for i = 1; 2; . . . ; do
3: update probabilistic GPR surrogate models using Xi and Yi
4: select xi by optimising an acquisition function: xi = arg maxx(α(x))

5: query objective function with parameters xi to obtain response yi
6: augment data: Xi+1 = {Xi, xi}, Yi+1 = {Yi, yi}
7: end for

In this work Gaussian Process Regression (GPR) is used as the surrogate model. For a de-
tailed introduction to GPR the reader is referred to Rasmussen and Williams (2006). GPR is a
non-parametric regression and interpolation model which provides a probabilistic prediction of the
objective function for parametrisations which have not been evaluated yet. In this work the model
is defined by a constant mean function, a squared exponential kernel with automated relevance de-
tection and a homoscedastic Gaussian observation model (to account for the noisy samples). In this
case GPR yields normally distributed predictions ỹ with mean ȳ and standard deviation σy:

ỹ(x) ∼ N (ȳ(x|Xi,Yi, θi), σ2y(x|Xi,Yi, θi)) (2)
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Hyperparameters θi are optimised at each iteration by maximising the marginal log-likelihood.
Hyperpriors are placed on the hyperparameters to avoid potential over fitting. Based on the GPR
predictions, an acquisition function α(x) = f(ỹ(x)) is used to balance between exploitation and
exploration when searching for the next sample point (Line 4). Popular acquisition functions are for
example Probability of Improvement, Expected Improvement (EI) and Entropy search. The SafeOpt
algorithm can also be seen as a special acquisition function. After evaluation of the new sample
point (Line 5), the data set is augmented (Line 6).

3. Fundamentals of the Parameter Space Approach

In Bayesian Optimisation for controller tuning, information about stable and unstable configurations
would be helpful to avoid sampling of unstable parameter combinations. An analytical solution of
calculating all stabilising parameter configurations for a linear system is provided by the parameter
space approach, where the formulation from Voßwinkel et al. (2019) will be used in the following.

Consider the linear state space description with constant parameters k and p

ż = A(k, p) z, A ∈ Rn×n, z ∈ Rn, k ∈ Rlk , p ∈ Rlp . (3)

The system (3) may either describe the open control loop with p being unknown or uncertain param-
eters or the closed loop system with the control parameters k or a combination of both. Applying
the well known Lyapunov equation to (3) we get

A∗(k, p)P (k, p) + P (k, p)A(k, p) = −Q, (4)

with A∗(k, p) being the Hermitian transpose of A(k, p). The connection between this equation and
the stability of (3) is given by the fact, that the system is asymptotically stable, if for every positive
definite matrix Q ∈ Rn×n there exists a unique positive definite Hermitian matrix P (k, p), which
fulfills (4). Thus, the set of all stabilizing parameters is given by those parameters k and p, for which
(4) can be solved with such P . Equation (4) can be rearranged in vector form(

I ⊗A∗(k, p) +AT (k, p)⊗ I
)

vec(P (k, p)) = − vec(Q), (5)

with I being the n × n identity matrix and ⊗ is representing the Kronecker product. The operator
vec(·) transforms matrices into column vectors by rearranging column-wise. The matrix P in (5)
can be computed with the linear set of equations vec(P (k, p)) = −M−1 vec(Q), with

M(k, p) = I ⊗A∗(k, p) +AT (k, p)⊗ I ∈ Rn2×n2
. (6)

Thus the following theorem holds (Schrödel et al., 2015):

Theorem 1 Let M(k, p) = I ⊗ A∗(k, p) + AT (k, p) ⊗ I . If the matrix A(k, p) is at its stability
boundary, then the determinant of M(k, p) equals 0 or∞.

Note, that this condition is necessary but not sufficient. Also pairs of eigenvalues of A which are
point reflective about the origin (e. g. 5 and −5) cause the determinant of M(k, p) to become
zero. Nevertheless, this does not limit the applicability of Theorem 1, as those boundaries clearly
will lie outside of stable regions. Thus, no conservatism is introduced within this method and
the final obtained set is necessary and sufficient for system stability. For improving calculation
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times, the computation can be simplified by removing doubled elements in M using elimination
and duplication matrices from Magnus and Neudecker (1980), such that the dimension of M(k, p)
can be reduced from n2 × n2 to (n(n + 1)/2) × (n(n + 1)/2). The parameter space approach
only gives exact results for linear systems. Nevertheless necessary conditions can be given for non-
linear system by investigating the linearization of these systems. Further note, that only parametric
uncertainties can be incorporated within this framework.

4. Safe Bayesian Optimisation with the Parameter Space Approach (BO-PSA)

We now seek to optimise controller parameters k w.r.t. some arbitrary non-linear performance
metric y(k, p) of the closed loop behaviour of the system described in (3). The systems unknown
parameters p are assumed to be distributed according to some unknown distribution with known
bounded support: Pr(pmax < p) = Pr(p < pmin) = 0. Whenever the closed-loop evaluation of
parameter k is performed some realisation of the parameter p is drawn at random from the unknown
distribution. The expectation of the performance metric considering the distribution of unknown
parameters (approximated by the GPs Gaussian likelihood model) is minimised:

min
k

Ep [y(k, p)] s. t. kmin ≤ k ≤ kmax, k ∈ Rlk (7)

It should be noted that the problem in (7) is closely related to robust and contextual BO. How-
ever, unlike in Toscano-Palmerin and Frazier (2018), Groot et al. (2010) and Fröhlich et al. (2020)
here we assume the analytical form of p(x) to be unknown. Additionally, we assume the realisation
of p to be unknown before the experiment unlike in e.g. Krause and Ong (2011).

Additionally, we require that stability is maintained for the combination of all evaluated con-
troller parametrizations k and possible realizations of p. With the parameter space approach, we can
obtain analytical expressions, which are zero, if the system is on its stability boundary.

det(M(k, p)) = ±
∏
j

cj(k, p) = 0 (8)

Here, cj(k, p) are polynomials in k and p. No non-polynomial parts arise in M(k, p) as the closed
loop system A(k, p) has the form A(k, p) = Â(p)–B(p) ·K(k) with the open loop system Â(p). If
Â(p) is non-polynomial in p, one can define surrogate parameters p̂, such that it becomes polynomial
in p̂. Furthermore the sign of each cj(k, p) can be defined such, that cj(k, p) > 0 has to hold
for stability. These calculations are exact if conducted symbolically and the arising expressions
cj(k, p) can be evaluated fast in general. The idea is now, to include these conditions cj(k, p) in a
straight forward manner to Bayesian Optimisation by treating them as constraints in the acquisition
function optimisation step of BO. Since the realisation of the parameters p are unknown before
the experiment, they have to be included in a worst-case fashion. Thus, instead of maximising the
acquisition function over the complete domain (cf. Step 4 of Algorithm 1), the PSA constraint is
included as follows in the acquisition function maximisation:

ki = arg max
k

α(k) (9a)

s. t. kmin ≤ k ≤ kmax, k ∈ Rlk (9b)

minp,j(cj(k, p)) > 0 (9c)
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Here (9c) ensures stability as for each parametrization p, each of the polynomials j needs to be
larger than zero, which corresponds to the necessary (and for linear system also sufficient) condi-
tions of PSA. If infeasibility occurs, it is not possible to robustly stabilize the system. We further use
the RI (cf. Forrester et al. (2006)) and EI (cf. Jones et al. (1998)) criterion for noisy and determin-
istic objective functions respectively.1 However, the approach is not limited to any specific type of
acquisition function. Therefore extensions to BO such as contextual BO or multi-objective BO can
be included naturally. The acquisition function (9a) is non-convex. Therefore in this contribution,
the optimisation problem (9) is solved using a hybrid approach of random search and MATLAB’s
fmincon. The starting point of the locally searching fmincon is taken as the best performing fea-
sible random sampling point. For higher dimensional problems, meta-heuristics such as genetic
algorithms can be used. Note that the set of parameters fulfilling (9c) is identical over all iterations
and could therefore be calculated once at the start of the optimisation for a finite set of candidates.

5. Example

5.1. Problem description

To illustrate the presented methodology, the following linear system is investigated:

G(s) =
(s+ 1)2(−s+ 1)(s+ p)

(s+ 5)2(s+ 0.1)2
(10)

Here p is a single unknown parameter, which influences the position of the systems zero and the
steady state gain as well. This system shall be controlled with a classical PI-controller K(s) =
KP + KI

s , where k =
[
KP KI

]
are parameters of choice with kmin =

[
−2 0

]
and kmax =[

1.5 10
]
. As performance criterion, the logarithm of the famous ITAE-criterion

y(k, p) = log (ITAE(k, p)) with ITAE(k, p) =

∫ ∞
0

t · ‖e(t, k, p)‖ dt (11)

with control error e and time t shall be minimised. Our approach is general and other performance
metrics can be used with the algorithm. Because in practice, we cannot assume to perfectly know the
system dynamics in advance, we assume the parameter p to be distributed according to a truncated
normal distribution with the mean p = 0.6, variance σp = 1/15 as well as support pmin = 0.4 and
pmax = 0.8. Note, that no analytical solutions for minimising the ITAE-criterion are unknown in
literature. The ITAE of a given controller parametrization and randomly drawn system parameter is
evaluated using the ode45 solver of MATLAB of a single reference step simulated for 100 sec.

5.2. Parameter Space Approach

Application of the parameter space approach to the system with respect to the parameters k =[
KP KI

]
and p delivers analytically stability conditions for (k, p), which have to be fulfilled. In

the present case, these are lengthy polynomials of order 4, which are easy to evaluate but not given
here explicitly. The arising stable regions within the parameter space are shown in Fig. 1. For
better comprehensibility in a two-dimensional visualisation, the results are shown for equidistant

1. Note that the applicability of EI to the noisy case is limited. Therefore RI is used in the noisy case.
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discretized p ∈ [0.2, 1] with red lines, p in black and the robustly stabilising area in green. As
clearly visible in Fig. 1, the region of stability is rather complicated and splits into two separated
regions if p is high enough. This is especially challenging for the SafeOpt algorithm (Berkenkamp
et al. (2016)), since it can only expand the safe set locally. Furthermore one can notice, that the
region of stability shrinks with increased value of p, as an higher open loop gain and a shift of the
phase gain through the systems zero towards higher frequency makes the system harder to stabilise.
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Figure 1: Stability boundaries for discretized p
in red, p = 0.6 in black and the ro-
bustly stabilizing area in green
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Figure 2: Mean and 1-sigma bound of the best
observed performance as a function of
the number of evaluations.

5.3. Benchmark Optimisation Algorithms

In order to assess the performance of the algorithm proposed in Section 4, it is compared with other
approaches from the literature which have previously been used for optimisation-based PI controller
tuning. In addition to standard BO without safety constraints, we use the SafeOpt algorithm pro-
posed by Berkenkamp et al. (2016) and Particle Swarm Optimisation (PSO) without the incorpora-
tion of safety constraints. The later was used by Injeti and Divyavathi (2019) for optimisation of the
ITAE-criterion. Note that BO and BO-PSA use identical settings for the GPR2 model. The lower
bounds on the kernel length scales are set such, that on a distance of 0.01 in controller parameter
space the respective entry in the covariance matrix is at least 0.1. This resembles the introduction
of minor prior knowledge. Additionally, the GP’s prior mean is fixed to the mean of the observa-
tions. When using SafeOpt, we cannot directly use stability as a safety constraint. Therefore the
safety boundary i.e. the maximum safe log-ITAE is set to log(0.5 · 1002), which corresponds to
the log of the open loop ITAE. The safety margin is set to bw = 3. Preliminary results with a GP-
parametrization identical to BO and BO-PSA let to frequent unsafe evaluations. Therefore the upper
bounds of the length scales are fixed such that on a distance of 0.5 in controller parameter space,
the respective entry in the covariance matrix is at maximum 0.1. The constant GP mean function is
set to be equal to the safety bound. With these choices prior domain knowledge is brought in the

2. The GPML Toolbox (Rasmussen and Nickisch (2010)) is used to construct the GPR models.
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optimisation although it may not be available in the general case. The choice of the mean function
means that unless we obtained a stable sample close by, we expect the parametrization to be unsafe
with probability of 50%. We limit the extrapolation capabilities of the GP by setting an upper bound
for the length scale resulting in a rather conservative setup of the algorithm. In contrast to standard
BO a discretization of the parameter space is needed. Here we use a discretization of 0.005 for
KP and KI , respectively. For PSO, the swarm size is set to 10 and all other parameters are kept
to MATLAB 2017b default values. It should be noted, that PSO may achieve better results, if its
hyperparameters are tuned more carefully, however this is not feasible for real world experiments.

5.4. Optimisation on nominal model

First, the algorithms are applied to two specific realisations of the uncertain parameter: p = 0.4
and p = 0.6. Each of the algorithm is ran 10 times for 100 evaluations. All BO-based algorithms
use four initial random samples with the initial samples for BO-PSA and SafeOpt being identically
and taken at random from the stable region of the controller parameter space. Figures 2 shows the
convergence behaviour of the presented algorithms whereas Table 1 summarises the quantitative
performance criteria. Figure 4 show the optimal parametrizations obtained with BO-PSA for both
cases. It can be seen that BO-PSA outperforms the benchmark algorithms in convergence speed,
final performance and number of unsafe parameter evaluations. Even in the case where unsafe eval-
uations are not problematic for example during optimisation on simulations only, standard BO as
well as PSO are unable to produce competitive parametrisations after 100 evaluations. In compari-
son to BO-PSA, SafeOpt converges slower and less consistently. Secondly, although prior domain
knowledge is introduced in SafeOpt, it consistently results in a few unsafe evaluations. The results
are statistically significant according to the Wilcoxon Rank Sum Test.

Table 1: Performance characteristics of all approaches for p = 0.6 (p = 0.4)

Approach: BO-PSA SafeOpt BO PSO

Final log(ITAE) 1.660±0.020
(1.380± 0.029)

1.691±0.045
(1.391± 0.017)

1.790±0.152
(1.447± 0.037)

1.848±0.117
(1.483± 0.058)

% unstable evals. 0± 0
(0± 0)

4± 2
( 3.1± 1.3)

53.1±12.8
(39.7± 3.9)

13.5± 0.9
(66.5± 3.72)

Calc. time in sec 236.7± 28.7
(221.8± 25.3)

473.0± 10.5
(465.1± 33.6)

222.7± 50.0
(124.0± 2.9)

241.0± 87.0
(14.8± 3.9)

Figure 3 showcases the problems of using standard BO and SafeOpt in combination with the
ITAE-criterion. We can see, that the ITAE-criterion has a discontinuity at the stability limit at
Kp = 1, whereas at the stability limit for small KP the slope remains moderate. In Figure 3 (left)
we see the effect of two samples being evaluated at either side of the discontinuity. The discontinuity
contradicts the smoothness assumptions imposed by the squared exponential kernel. Therefore the
hyper-parameter optimisation of the GP leads towards extremely small length scales resulting in
poor extrapolation capabilities. Figure 3 - middle shows the GP-prediction, if no upper bound on
the length scale is set. It can be observed that the estimated safe set is substantially larger than the
actual safe set. If an upper bound is imposed on the length scale (cf. Figure 3 - right) as described in
Section 5.3, the estimated safe set is much more conservative. However naturally the discontinuity
at KP = 1 still cannot be predicted from the ITAE criterion alone.
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Figure 3: Left: Standard BO Center: SafeOpt Right: SafeOpt with an upper bound on the Kernel
length scale. The ground truth (blue), evaluated samples (x), GPR-Predictions with mean
(black) and confidence interval (grey), the safety boundary (red) as well as the actual safe
set (green) and the estimated safe set (blue) are shown for Ki = 8 and p = 0.6.

5.5. Optimisation on noisy model

Often times in real world experiments, the system behaviour might differ from one evaluation to an
other due to changing operating conditions. Here, we show that the proposed algorithm can also be
used in this noisy setting (see Section 5.1). In Figure 5, the validation performance evaluated on 50
draws of p is shown. We can observe that BO-PSA out performs SafeOpt as well as standard BO,
with the difference between SafeOpt and BO-PSA being larger than in the nominal case (cf. Fig. 2).
The red line in Fig. 5 shows the validation performance of the parametrizations obtained through
optimising on the nominal model. Optimising on the nominal model is not sufficient. This can
be explained by the optimum parametrizations for the nominal model (p = 0.6) not being located
within the robustly stable region (cf. Fig. 4), where the optimal parameters are marked with stars,
the stability boundaries for the specific value for p as lines in the same colour and the robustly stable
area in green. It can be seen, that many of the nominal optimal values are not robustly stable.
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Figure 5: Validation performance evaluated
on 50 random draws of p
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5.6. Performance in the non-linear case

Sufficient conditions for stability for the non-linear case are not available in general and may depend
on the initial position. However, the stability of the linearised system around the target operating
point is a necessary condition for the stability of the non-linear system. As a result BO-PSA ap-
proach can reduce the parameter search space even in the non-linear case by including that necessary
condition. This is demonstrated on a standard cart-Pole system (c.f. Fig. 6). The feedback gains of
a state feedback controller are optimised with BO-PSA with the control objectives of balancing the
pole and track a cart reference trajectory. Fig. 7 shows the convergence of standard BO, Safe-Opt
and BO-PSA3. The percentage of parameter combinations leading to an angle greater than 90◦ were
20.6%, 6.7% and 4.6%, respectively. The number of unsafe samples with BO-PSA can be further
reduced to 0.5% by introducing uncertainty in the pole length.

M

Φ

m

lX

Y

F

Br

Bt

Figure 6: Schematic of the non-linear cart-
pole system with friction.

Figure 7: Best observed performance for the
non-linear cart-pole example.

6. Conclusion

In this paper a novel algorithm for safe Bayesian Optimisation for tuning controller parameters
of uncertain dynamical systems has been presented. Stability criteria from the parameter space ap-
proach were included to noisy Bayesian Optimisation. The approach was compared with approaches
from the literature on linear and non-linear systems. While in the linear case, the SafeOpt algorithm
was not able to prevent sampling in the unstable controller parameter region the BO-PSA approach
guaranteed only stable sampling, while achieving faster convergence and better final results. Sim-
ilar was observed for a non-linear example. Hence, the paper is an example on how incorporating
control engineering domain knowledge in data driven techniques can be beneficial.
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