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Abstract
A receding horizon learning scheme is proposed to transfer the state of a discrete-time dynamical
control system to zero without the need of a system model. Global state convergence to zero
is proved for the class of stabilizable and detectable linear time-invariant systems, assuming that
only input and output data is available and an upper bound of the state dimension is known. The
proposed scheme consists of a receding horizon control scheme and a proximity-based estimation
scheme to estimate and control the closed-loop trajectory.
Keywords: Unknown Systems, Adaptive Control, Receding Horizon Control and Estimation, Lift-
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1. Introduction

Currently, a lot of research effort is centered around the interplay between control, learning, and
optimization. This is driven by extensive research initiatives in artificial intelligence, by the steadily
increasing online computing power, and by the wish to build autonomous and intelligent systems
in all sorts of application domains. From these developments, a renewed interest in the control
of systems where no system model is known, or where the model involves large uncertainties has
emerged under the banner of learning-based or data-based control. Traditionally, this is a subject
of adaptive control. In this vein, we address a classical problem from adaptive control, namely
the stabilization of completely unknown linear time-invariant discrete-time control systems. We
aim for a solution that utilizes online optimization and (past and future) receding horizon data, and
that provides convergence guarantees. To this end, we propose a scheme that involves estimation,
prediction, and feedback control for unknown systems, which we have subsumed under the term
learning in the title of this work.

The literature on the adaptive stabilization of unknown systems is huge. Many different so-
lution approaches exist in the adaptive control literature ranging from model-free approaches to
model-based approaches Benosman (2016); Tao (2014); Goodwin and Sin (2009); Matni et al.
(2019); Recht (2019). The control of unknown systems has also been studied in the area of op-
timal control and receding horizon control for quite some time, see e.g. Feldbaum (1960); Mosca
(1994); Peterka (1984); Bertsekas and Tsitsiklis (1996). Work that is related to our work is for
example Mosca (1994) (Chapter 3) and Bemporad et al. (1994), Bittanti et al. (1990), Terzi et al.
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(2019) (see the extended work Ebenbauer et al. (2020) for more details). A common approach when
controlling completely unknown systems is based on a combination of a control scheme (such as
pole-placement) and an online estimation or identification scheme (such as recursive least-squares).
Hereby, models are estimated and updated in real-time based on the measured input-output data
and these models are utilized in the control scheme. A major challenge when using this so-called
certainty equivalence approach to stabilize unknown (and unstructured) systems is the loss of stabi-
lizability problem, i.e. how to ensure in a computationally efficient way that the estimated models
are, for example, stabilizable so that adaptive pole-placement can be applied. See for example Bit-
tanti and Campi (2006); Hespanha et al. (2003); Morse (1992); Mania et al. (2019); Prandini and
Campi (1998) and references therein on this topic. More recent related research on (partially) un-
known systems and receding horizon control are for example discussed in Nguyen et al. (2020);
Adetola et al. (2009); Tabuada and Fraile (2020); Lucia and Karg (2018); Korda and Mezic (2017);
Münzing (2017); Limon et al. (2017); Beckenbach et al. (2018); Berberich et al. (2020); Hewing
et al. (2020); Schwenkel et al. (2020); Papadimitrious et al. (2020); Mayne (2014); Coulson et al.
(2019), to mention only a few out of the rapidly growing literature.

The proposed approach in this paper is based on the classical certainty equivalence implemen-
tation. However, in contrast to the existing literature, we provide a fully online optimization-based
solution with provable convergence of the closed-loop for completely unknown linear systems. Sev-
eral results in the above mentioned literature do not address closed-loop stability or assume that the
system is linear and persistently excited in order to identify (directly or indirectly a class of) system
models as advocated in Persis and Tesi (2019). Persistent excitation assumptions simplify the ad-
dressed problem but may excite undesirable dynamics and are not directly applicable to nonlinear
systems (lifting techniques). Hence, in this paper we do not assume that the system is persistently
excited nor that some collected finite data is rich enough to robustly stabilize the class of systems
consistent with the collected data. Further, we do not assume that the state can be measured nor
that the system is stable or controllable. Under these minimal assumptions, satisfaction of state or
input constraints is not feasible and we do therefore not consider constraints as it is usually done
in the receding horizon (predictive control) literature. Nevertheless, the control of unknown linear
systems is an important benchmark problem, and, to the best of our knowledge, a receding horizon
approach that provably ensures state convergence under these assumptions has not been reported
in the literature. In particular, the contributions of this work are as follows. We propose an online
optimization scheme which builds on a receding horizon control scheme and an estimation scheme.
The receding horizon control scheme is based on a novel model-independent terminal state weight-
ing in the sense that the objective function and the terminal cost can be chosen independently of a
(not necessarily controllable) system model.

The estimation scheme is based on a modified proximal minimization algorithm that guaran-
tees convergence of the estimated quantities, and does not require that the closed loop system is
persistently excited. A characteristic feature of the approach is that the estimated quantities do not
correspond to a (or to the ”true”) system model but rather to a signal model (time series or signal pre-
dictor) of the closed loop trajectory. The overall computational online effort of the proposed scheme
is rather low and requires essentially the solution of (least-squares) regression problems. Finally,
the proposed scheme is also applicable to nonlinear systems as demonstrated by simulations. The
work Ebenbauer et al. (2020) includes all proofs, more detailed discussions and simulation results.
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2. Problem Statement

Consider the discrete-time linear time-invariant system

z(k + 1) = Fz(k) +Gv(k)

y(k) = Hz(k)
(1)

with state z(k) ∈ Rn, input v(k) ∈ Rq and output y(k) ∈ Rp at time instant k ∈ N.

Assumption 1 We assume that (F,G) is stabilizable and (F,H) detectable. Furthermore, we
assume F,G,H are unknown, that an upper bound m ≥ n of the state dimension is known, and
that only past input and output data is available.

The goal is to define an efficient algorithmic scheme, which guarantees for any initial state z(0)
that the system state z(k) of (1) converges to zero as time index k goes to infinity. Notice that
Assumption 1 is essential the minimal requirement needed to solve this problem (see Mårtensson
(1985); Mårtensson and Polderman (1993); Helmke et al. (1991)). We develop our scheme in three
steps. In a first step, in Section 3, we develop a stabilizing, model-independent receding horizon
control scheme based on asymptotically accurate predictor maps for the closed loop trajectory. In
a second step, in Section 4, we develop a proximity-based estimation scheme to obtain the asymp-
totically accurate predictor maps in terms of a so-called signal model for predicting the closed-loop
trajectory. Section 3 and 4 are independent of each other and also the contributions therein. In a
third step, in Section 5, the control scheme and the estimation scheme are combined in a proper way
to solve the stated problem. All proofs and simulations can be found in Ebenbauer et al. (2020).

3. A Model-independent Receding Horizon Control Scheme

3.1. Problem Setup

Consider the system

x(k + 1) = Ax(k) +Bu(k) (2)

with x(k) ∈ Rn, u(k) ∈ Rq (n, q do not necessarily coincide with n, q of Section 2). Further,
consider the following optimization problem

V1(x, p1) = min

N−1∑
i=0

x>i Qxi + u>i Rui +
Γ(x)

ε
x>NQNxN

s.t. xi = Pi(k, x0, u0, ..., ui−1), i = 1...N, x0 = x

(3)

with p>1 = [k, ε], N, k ∈ N, ε > 0, Γ : Rn → R nonnegative. The decision variables are
ui ∈ Rq, i = 0...N − 1 and xi ∈ Rn, i = 0...N and we refer to x and p1 as parameters. The map
Pi : N × Rn × Riq → Rn is an i-th step-ahead state (or signal) predictor. We denote the value of
the objective function for some ui, i = 1...N − 1 with V0(x, p0, u0, ..., uN−1) (since the variables
xi are determined by ui’s and x) and an optimal solution is denoted by ui(x, p1), i = 0...N − 1,
xi(x, p1), i = 1...N . If in (3) we choose x to be the state of (2) at time instant k, i.e. x = x(k)
and if we choose p1 = p1(k) at time instant k for a given sequence {p1(k)}k∈N, then we refer to a
mapping
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x(k) 7→ u0(x(k), p1(k)) (4)

as the receding horizon control policy defined by (3) and we call (3) and (2) closed loop, if in (2)
u(k) = u0(x(k), p1(k)). We impose the following assumptions.

Assumption 2 (A,B) in (2) is stabilizable and the state can be measured.

Assumption 3 The prediction horizon satisfies N ≥ n = dim(x(k)) and Q > 0, R > 0, QN > 0,
Γ : Rn → R positive definite.

Assumption 4 (a) For any k ∈ N, we assume that the state predictor maps Pi, i = 1...N have the
following linear structure

Pi(k, x0, u0, ..., ui) = Ai(k)x0 +

i−1∑
l=0

Bi−1−l(k)ul (5)

where {Ai(k)}k∈N, i = 0...N with A0(k) = I , and {Bi(k)}k∈N, i = 0...N − 1, Ai(k) ∈ Rn×n,
Bi(k) ∈ Rn×q, are convergent matrix sequences, i.e.

lim
k→∞

Ai(k) = Âi, lim
k→∞

Bi(k) = B̂i. (6)

(b) Moreover, for any x(0) ∈ Rn the state predictor maps Pi along the trajectory x(k), k ∈ N,
of the closed loop (3) and (2) with sl := ul(x(k), p1(k)) (or of the closed loop (11) and (2) with
sl := νl(x(k), p3(k))) satisfy for 0 ≤ i+ j ≤ N + 1

Pj(k, Pi(k, x(k), s0, ..., si−1), si, .., si+j−1) = Pi(k, Pj(k, x(k), s0, ..., sj−1), sj , .., si+j−1)

= Pi+j(k, x(k), s0, ..., si+j−1).
(7)

Further, we assume that state predictor maps predict asymptotically accurate with respect to system
(2) in the sense that we have for any k ∈ N, i = 0...N

Ai(k)x(k) +

i−1∑
l=0

Bi−1−l(k)sl = Aix(k) +

i∑
l=0

Ai−1−lBsl + ei(k) (8)

where the following error bounds hold for any i = 0...N : ‖ei(k)‖2 ≤ ω1(k) + ω2(k)‖x(k)‖2 +
ω3(k)

∑i
l=0 ‖sl‖2 with limk→∞ ωj(k) = 0, j = 1, 2, 3.

(c) Finally, for any trajectory x(k), k ∈ N, of the closed loop (3) and (2), there exists functions
µ0(k), ..., µN−1(k) such that

lim
k→∞

‖AN (k)x(k) +

N−1∑
l=0

BN−1−l(k)µl(k)‖ = 0. (9)

Remark 1 Assumption 4 postulates predictor maps for the closed loop trajectory (input and state
sequence) generated by (3) and (2) (or (11) and (2)). In particular, equation (5) and (6) in Assump-
tion 4(a) ensure that we have linear time-varying and converging state predictor maps. Equation
(7) ensures a state property in the sense that the predictor maps commute like flow maps of (time-
invariant) dynamical state-space models do. Equation (8) ensures that the predictor maps are able
to accurately predict x1(x(k), p1(k)), ...., xN (x(k), p1(k)) in (3) along the closed loop trajectory.
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Notice that e(k) converges to zero, if, for example, the state and input stays bounded. Finally, equa-
tion (9) in Assumption 4(c) represents a stabilizability condition of the predictor maps along the
closed loop trajectory. Notice that if the state predictor maps are determined (learned) online, then
Assumption 4 does not imply that the knowledge of such state predictors implies a model (system)
identification in the sense that neither the equation (Âi, B̂l−i) ≈ (Ai, Al−iB) must hold nor that
for every initial data or every input sequence the predictions are (asymptotically) accurate.

The main goal of the next subsection is to show that the state of the closed loop (2), (3) con-
verges to zero under the stated assumptions. A characteristic property of the proposed scheme is that
the objective (and potentially constraints) can be chosen independently from the system model (pre-
dictor maps) in the sense that no terminal cost or terminal constraint needs to be computed online
based on some model information or data. This is a desirable property when controlling unknown
systems.

3.2. Results

We define the following auxiliary problems

V2(x, p2) = min ξ>NQNξN

s.t. ξi+1 = Ai+1(k)ξ0 +
i∑

l=0

Bi−l(k)νl, ξ0 = x, i = 0...N − 1
(10)

V3(x, p3) = min

N−1∑
i=0

ξ>i Qξi + ν>i Rνi

s.t. ξi+1 = Ai+1(k)ξ0 +
i∑

l=0

Bi−l(k)νl, ξ0 = x, i = 0...N − 1, ξN = r

(11)

with p2 = k and p>3 = [k, r>]. A corresponding notation as for (3) is used in (10) and (11).

Lemma 1 Suppose Assumption 3 holds true. a) Let {x(k)}k∈N and {r(k)}k∈N be sequences such
that limk→∞ r(k) = 0 and such that problem (11) is feasible for every time instant k ∈ N with
x = x(k), r = r(k). Then the value V3(x(k), p3(k)) of problem (11) is given by V3(x(k), p3(k)) =
x(k)>S3(k)x(k)+x(k)>S4(k)r(k)+r(k)>S5(k)r(k) ≥ 0 for some matrices S3(k), S4(k), S5(k)
and the unique solution of (11) is linearly parameterized in x(k), r(k) in the sense of ξi(x(k), p3(k))
= K1,i(k)x(k) + K2,i(k)r(k) and νi(x(k), p3(k)) = K3,i(k)x(k) + K4,i(k)r(k), for all i =
0, ..., N . b) Further, the value function V2(x(k), p2(k)) of problem (10) is quadratic and positive
semidefinite in x, i.e. V2(x(k), p2(k)) = x(k)>S6(k)x(k) ≥ 0 for some matrix S6(k), and there ex-
ists a solution {ξi(x(k), p2(k))}Ni=0, {νi(x(k), p2(k))}N−1

i=0 of (11) which is linearly parameterized
in x(k) in the sense of a).

Assumption 5 a) Let {r(k)}k∈N be a sequence which converges to zero. We assume that the
solutions of (11) along the closed loop (11), (2) are uniformly bounded, i.e. ξi(x(k), p3(k)) =
K1,i(k)x(k) + K2,i(k)r(k), νi(x(k), p3(k)) = K3,i(k)x(k) + K4,i(k)r(k) are bounded in the
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sense that there exists a bound M > 0 such that for all i = 0, ..., N , j = 1...4, k ∈ N it holds
‖Kj,i(k)‖ ≤M. b) We assume that the solutions of (3) along the closed loop (3), (2) are uniformly
bounded, i.e. xi(x(k), p1(k)) = K5,i(k)x(k), ui(x(k), p1(k)) = K6,i(k)x(k) are bounded in the
sense that there exists a bound M > 0 such that for all i = 0, ..., N , j = 5, 6, k ∈ N it holds
‖Kj,i(k)‖ ≤M.

The main result of this subsection is Theorem 1, which builds on the following two lemmas.

Lemma 2 Consider the closed loop (11), (2) and suppose problem (11) is feasible for every time
instant k ∈ N. Let Assumption 3 and 4(a)(b) hold true and let {p3(k)}k∈N be a sequence such that
{r(k)}k∈N converges to zero. Then for any initial state x(0), the state x(k) and the input u(k) of the
closed loop converge to zero, i.e. limk→∞ x(k) = 0, limk→∞ u(k) = 0, assuming that Assumption
5 a) holds true.

Lemma 3 Consider (3) and suppose Assumption 4(a) holds true. Further, suppose Γ : Rn →
R is a function such that for all x ∈ Rn, all k ∈ N and all ε > 0 it holds that Γ(x) ≥
c(
∑N−1

i=0 ‖ξi(x, p2)‖2 + ‖νi(x, p2)‖2) for some c > 0, where {νi(x, p2)}N−1
i=0 , {ξi(x, p2)}N−1

i=0

is some solution of (10) and p2 = k. Then there exists a ρ > 0 such that solution xN (x, p1),
p>1 = [k, ε], of (3) satisfies for all x ∈ Rn, all k ∈ N and all ε > 0

xN (x, p1)>QNxN (x, p1) ≤ V2(x, p2) + ερ. (12)

Theorem 1 Consider the closed loop (3) and (2), where Γ(x) = αx>x for some α > 0 and
suppose Assumption 2, 3 and 4(a)-(c) hold true. Let further {p1(k)}k∈N be a sequence such that
{ε(k)}k∈N, ε(k) > 0, converges to zero. Then for any initial state x(0), the state x(k) of the closed
loop converges to zero as k goes to infinity, assuming that Assumption 5 b) holds true.

Assumption 5 is our main technical assumption that we impose in the proposed scheme. For
example, if the predictor maps PN are controllable in the sense that rank[B0(k), ..., BN−1(k)] = n
for all k ∈ N and also the limiting predictor has the same property, i.e. rank[B̂0, ..., B̂N−1] = n,
then Assumption 5 holds true (as discussed in the proof of Lemma 1). However, we admit that this
assumption is in general difficult to verify.

4. A Proximity-based Estimation Scheme

4.1. Problem Setup

Consider an output sequence (or some observed signal) and an input sequence

{y(k)}k∈N, {v(k)}k∈N (13)

with y(k) ∈ Rp̄y , v(k) ∈ Rq̄v . Let

x(k) = φy(y(k), ..., y(k − N̄y + 1)) ∈ Rn̄, u(k) = φv(v(k), ..., v(k − N̄v + 1)) ∈ Rq̄ (14)

and φy : Rp̄yN̄y → Rn̄, φv : Rq̄vN̄v → Rq̄ be some given basis (lifting) functions, e.g. φy(y1(k), y2(k),
y1(k−1), y2(k−1)) = [y1(k), y2(k), y1(k−1), y2(k−1), y1(k)y2(k), y1(k)2, y2(k)2]T , p̄ = 2, n̄ =
6, N̄y = 2. Notice that in principle one could also consider cross-terms between input and output
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data, like u(k)y(k)3, but such terms are not considered here for the sake of simplicity. Consider,
further, at time instant k the optimization problem

θ∗(k) =arg min c(e, k) +D(θ, θ̃(k − 1))

s.t. s(k)−R(k)θ = e

θ̃(k) =(1− λk)θ∗(k) + λkθ̃(k − 1)

(15)

with λk ∈ [0, λmax), λmax ∈ (0, 1), where N̄ ∈ N, c : Rn̄N̄ × N → R and D(x, y) = g(x) −
g(y) − (x − y)>∇yg(y) defines the Bregman distance induced by a function g : Rn̄N̄ → R. The
vector s(k) is defined as

s(k) =
[
x(k)> . . . x(k − N̄ + 1)>

]> (16)

and the matrix R(k) is defined as

R(k) =

 x(k − 1)T ⊗ I u(k − 1)T ⊗ I
...

...
x(k − N̄)T ⊗ I u(k − N̄)T ⊗ I

 . (17)

Decision variables are the parameter vector θ ∈ Rn̄(n̄+q̄) and e. We refer to θ when using
arg min since the (slack) variables e can be eliminated and have been introduced just for the nota-
tional convenience. Also we define in the following y(k) = 0, v(k) = 0, vk = 0 etc. whenever
k < 0. We impose now the following assumptions.

Assumption 6 The objective function c in (15) is continuously differentiable and strictly convex in
the first argument and it satisfies for all k and e 6= 0: c(e, k) > c(0, k). Further, the function g,
which defines the Bregman distance D, is continuously differentiable and strictly convex.

Assumption 7 For the given sequences in (13) and given x(k) = φy(y(k), ..., y(k− N̄y + 1)) and
u(k) = φv(v(k), ..., v(k − N̄v + 1)) in (14), there exist matrices A,B and x0 ∈ Rn̄ that satisfy

x(k + 1) = Ax(k) +Bu(k), x(0) = x0. (18)

Remark 2 a) Notice that s(k) = R(k)θ with θ> = [vec(A)>, vec(B)>], where vec(A) corre-
sponds to the (column-wise) vectorization of a matrix A, is the linear system of equations x(j) =
Ax(j−1) +Bu(j−1), j = k...k− N̄ + 1. b) If c(e, k) = ‖e‖2, g(x) = ‖x‖2, then (17) reduces to
a least squares parameter estimation problem, where a closed form solution to it is known. The mo-
tivation for a general convex cost is its flexibility in tuning the estimator. Similarly as in a recently
proposed state estimation scheme based on proximal minimization Gharbi et al. (2020), specifying
different c,D allows to take into account various aspects like outliers in the data, sparsity in the
parameters or cost-biased objectives Bittanti and Campi (2006).

Remark 3 Assumption 7 imposes that the given (lifted) signal {x(k)}k∈N can be reproduced by
some linear time-invariant system that is driven by the given (lifted) input sequence {u(k)}k∈N.
Notice that reproducing a given signal by (18) does not imply that the signal x(k) itself originates
from (18) nor by a linear time-invariant system at all. For example, a given (single) trajectory of a
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nonlinear system or even all trajectories of a large class of nonlinear systems can be reproduced by
or embedded into high dimensional linear (not necessarily controllable) systems using for example
Carleman or Koopman lifting techniques. Hence, (18) represents a signal model of the actual
closed-loop trajectory, rather than a system model of all possible trajectories of the plant. Similarly
to adaptive filter theory, our signal model is therefore a parsimonious modeling approach in the
sense that it aims to predict nothing more than the closed-loop trajectory.

The main goal of the next subsection is to show that the (parameter) estimates θ̃(k) (θ∗(k))
obtained from (15) converge and that the estimates can be used to define ith step-ahead signal
predictor maps vi = Pi(k, v0, u0, ..., ui−1) which have the properties as described in Assumption 4
for the signal model (18) and for the given data (14). The convex combination in (15) is introduced
to deal with the loss of stabilizability problem (see next subsection).

4.2. Results

Lemma 4 Let f : Rn × N → R be convex and continuous differentiable in the first argument.
Suppose the set of minimizers Xk = {x∗k ∈ Rn : f(x, k) ≥ f(x∗k, k) := 0 ∀x ∈ Rn} of f at any
time instant k is nonempty and also their intersections

X =

∞⋂
k=0

Xk 6= ∅, (19)

i.e. there exists a common (time-invariant) minimizer x∗ ∈ X which minimizes f for any k with a
common minimum value zero. Let further g : Rn → R be strictly convex, continuous differentiable,
λmax ∈ [0, 1), and let D denotes the Bregman distance induced by g. Assume that D is convex in
the second argument, then the proximal minimization iterations x∗k, x̃k given by

x∗k+1 = arg min
x
f(x, k) +D(x, x̃k)

x̃k+1 = (1− λk+1)x∗k+1 + λk+1x̃k
(20)

with λk+1 ∈ [0, λmax], converge to a point in X , i.e. limk→∞ x
∗
k = limk→∞ x̃k = x̃0 ∈ X .

Notice that the Bregman distance is in general not convex in the second argument, but there
are important cases, such as g(x) = xTQx, Q > 0, where this holds Bauschke and Borwein
(2001). Notice further that in a classical proximal minimization scheme x̃k+1 = x∗k+1 (λk+1 = 0).
Here, we pick x̃k+1 = (1− λk+1)x∗k+1 + λk+1x̃k instead of x∗k+1 as the next iterate, because with
appropriately chosen λk+1’s, the loss of stabilizability problem in the estimation scheme (15) can
be avoided and it can be guaranteed that every estimated signal model is controllable, if the initial
model is controllable, as shown next.

Lemma 5 Consider Ac, Au ∈ Rn×n, Bc, Bu ∈ Rn×q, q ≤ n, and let (Ac, Bc) be controllable
and (Au, Bu) be not controllable. Then for any λmax ∈ (0, 1), there exists a λ ∈ (0, λmax) such
that (A(λ), B(λ)) with A(λ) = (1 − λ)Au + λAc, B(λ) = (1 − λ)Bu + λBc) is controllable.
In particular, take some λj’s with 0 < λ1 < ... < λ2n2+1 < λmax, then there exists an i ∈
{1, ..., 2n2 + 1} such that (A(λi), B(λi)) is controllable.

The next theorem is the main result of this subsection.
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Theorem 2 Consider the sequences (13) with some given basis functions (14) and consider the
optimization problem (15). Suppose Assumption 6 and 7 hold true and assume that D is convex in
the second argument. Then the following statements hold true.

(i) The solution sequence {θ̃(k)}k∈N converges, i.e. limk→∞ θ̃(k) = θ∗.
(ii) If one defines θ̃(k)> = [vec(A(k))>, vec(B(k))>] and predictor maps (5) according to

Ai(k) = A(k)i, Bi(k) = A(k)iB(k), (21)

i = 0...N̄ , then the predictor fulfills the properties (6), (7) and (8) in Assumption 4(a)(b) with
respect to the signal model (18) and the sequences (14).

(iii) In addition, if the initialization (A(0), B(0)), θ̃(0)> = [vec(A(0))>, vec(B(0))>], of (15)
is controllable, then there exists a sequence {λk}k∈N, λmax ∈ (0, 1), (constructed for example
according to Lemma 5) such that for any k ∈ N the pair (A(k), B(k)) is controllable and hence
also Assumption 4(c) is fullfilled.

5. The Overall Scheme

In Section 3, Theorem 1, we have established a control scheme which drives the state of the linear
system (2) to zero assuming that the system is stabilizable and that state measurements as well as
asymptotically accurate predictor maps are available. In Section 4, Theorem 2, we have established
an estimation scheme which delivers asymptotically accurate predictor maps for any lifted signals
(14) assuming that these signals can be embedded in a linear signal model of the form (18). Utilizing
the estimation scheme (15) in the control scheme (3) means now that the signal model (18) replaces
the system model (2) and the predictor maps in (21) are used to define the predictor (5). However,
it needs to be clarified how the output and input sequence {y(k)}k∈N, {v(k)}k∈N of (1) under
Assumption 1 can be related to a signal model of the form (18) such that (A,B) is stabilizable and
such that the (observable part of the) state x(k) is available. This issue is addressed in the next
lemma.

Lemma 6 Consider an arbitrary output and input sequence {y(k)}k∈N, {v(k)}k∈N of system (1)
and suppose Assumption 1 holds true. Let

x(k) = φy(y(k), ..., y(k −m+ 1)) =
[
y(k)>, ..., y(k −m+ 1)>

]>
,

u(k) = φv(v(k), ..., v(k −m+ 1)) =
[
v(k)>, ..., v(k −m+ 1)>

]> (22)

with m ≥ n. Then the sequences {u(k)}k∈N, {x(k)}k∈N satisfy Assumption 7 with a stabilizable
pair of matrices (A,B). In addition, if the sequences {u(k)}k∈N, {x(k)}k∈N converge to zero when
k goes to infinity, then so do the sequences {v(k)}k∈N, {y(k)}k∈N.

Remark 4 Notice that the lifted input vector u(k) in (22) contain past values of the actual input
vector v(k). In order to obtain a state space model with input v(k), one can just add state variables
to the signal model. In more detail, define an integrator chain dynamics of the form ζ1(k + 1) =
ζ2(k), ..., ζm−2(k + 1) = ζm(k), ζm−1(k + 1) = v(k), hence ζ1(k) corresponds to v(k −m) etc.
This augmentation does not effect the stabilizability property, since the states of the integrator chain
converge to zero, if v(k) converges to zero. This state augmentation in the signal model leads to
matrices with at least the size A ∈ Rmp+(m−1)q×mp+(m−1)q, B ∈ Rmp+(m−1)q×q and needs to be
taken into account when implementing the receding horizon scheme.
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We are now ready to close the loop. By Lemma 6, we known that the output and input sequences
{y(k)}k∈N, {v(k)}k∈N of system (1) satisfy Assumption 7 and Assumption 2 w.r.t. the signal model
(18). Assumption 3 and Assumption 6 can be satisfied by setting up the optimization problem
accordingly. By Theorem 2, Assumption 4 holds. Hence all assumptions are satisfied and thus
the receding horizon scheme guarantees, by Theorem 1 with Γ(x) = αxTx, α > 0, a sequence
ε(k)→ 0, and Assumption 5 b), together with Lemma 6 that the state and the input of (1) converges
to zero. These arguments lead to the next theorem.

Theorem 3 Consider the closed loop system consisting of the system (1), the receding horizon
control scheme (3) and the proximity-based estimation scheme (15). Define x(k), u(k) (φy, φv)
according to equation (22) and set up the predictor scheme (15) according to Assumption 6. Further,
set up the receding horizon scheme (3) according to Assumption 3 with n = m, α > 0,Γ(x) =
αxTx and a sequence {ε(k)}k∈N, ε(k) > 0 that converges to zero. Then, under Assumption 1 and
Assumption 5 b), for any initial state z(0), the state z(k) of the closed loop and the input v(k) of
the closed loop converges to zero as k goes to infinity.

Notice that if we postulate that the limiting signal model Â, B̂ is controllable/stabilizable, then
we can drop Assumption 5 b) in Theorem 3. This could be enforced by a persistent excitation of the
system.

6. Conclusion and Outlook

Motivation of this research was to develop a basic online optimization-based approach that guar-
antees convergence for a prototypical problem from adaptive control and that may serve as a basis
for other online optimization-based (model-free) learning schemes. To this end, a receding horizon
learning scheme consisting of a receding horizon control scheme and an proximity-based estimation
scheme was proposed. Since the proposed approach relies on predictor maps, it can be considered
as an indirect adaptive optimal control method and thus stands in contrast to direct adaptive optimal
control methods such as reinforcement learning. From a conceptual point of view, the main ideas
of this work are a time-varying terminal state weighting in a model-independent receding horizon
control scheme (Section 3), a proximal estimation scheme with guaranteed convergence and the use
of signal models and lifting techniques for predicting the closed loop trajectory (Section 4) as well
as a proper combination of the control and estimation scheme to achieve guaranteed zero state con-
vergence for completely unknown linear system under suitable assumptions (Section 5). The pro-
posed overall scheme can be extended into several directions by addressing for example constraints,
robustness, a priori knowledge about the system model, the peaking phenomena, a Bayesian view,
real-time issues or dual (kernel) formulation of the regression problems Scherer and Holicki (2018);
Feller and Ebenbauer (2017); Anderson and Dehghani (2007); Mayne et al. (2005), see Ebenbauer
et al. (2020) for a detailed discussion on potential extensions. One open technical question is to
investigate how Assumption 5 b) can be avoided without invoking a persistency of excitation con-
dition and without significantly increasing the computational complexity. This question is related
to the issue whether or not the limiting estimates correctly identify the excited controllable modes
of the unknown system and how fast ε(k) converges to zero relative to the uncontrollable modes of
the unknown system.
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