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Abstract

In this work, we study the problem of learning partially observed linear dynamical systems from
a single sample trajectory. A major practical challenge in the existing system identification meth-
ods is the undesirable dependency of their required sample size on the system dimension: roughly
speaking, they presume and rely on sample sizes that scale linearly with the system dimension.
Evidently, in high-dimensional regime where the system dimension is large, it may be costly, if not
impossible, to collect as many samples from the unknown system. In this paper, we introduce an
regularized estimator that can accurately estimate the Markov parameters of the system, provided
that the number of samples scale poly-logarithmically with the system dimension. Our result sig-
nificantly improves the sample complexity of learning partially observed linear dynamical systems:
it shows that the Markov parameters of the system can be learned in the high-dimensional setting,
where the number of samples is significantly smaller than the system dimension.

Keywords: Learning, System Identification, High-Dimensional Statistics

1. Introduction

Most of today’s real-world systems are characterized by being large-scale, complex, and safety-
critical. For instance, the nation-wide power grid is comprised of millions of active devices that
interact according to uncertain dynamics and complex laws of physics (Blaabjerg et al., 2006; Amin
and Wollenberg, 2005). As another example, the contemporary transportation systems are moving
towards a spatially distributed, autonomous, and intelligent infrastructure with thousands of hetero-
geneous and dynamic components (Barbaresso et al., 2014; Krechmer et al., 2018). Other examples
include aerospace systems (Kapila et al., 2000), decentralized wireless networks (Kubisch et al.,
2003), and multi-agent robot networks (Nguyen-Tuong and Peters, 2011). A common feature of
these systems is that they are comprised of massive networks of interconnected subsystems with
complex and uncertain dynamics.

The unknown structure of the dynamics on the one hand, and the emergence of machine learning
and reinforcement learning (RL) as powerful tools for solving sequential decision making problems
on the other hand, strongly motivate the use of data-driven methods in the operation of unknown
safety-critical systems. However, the applications of machine learning techniques in the safety-
critical systems remain mostly limited due to fundamental challenges. First, to alleviate the so-
called “curse of dimensionality” in these systems, any practical learning and control method must
be data-, time-, and memory-efficient. Second, rather than being treated as “black-box” models,
these systems must be governed via models that are interpretable by practitioners, and are amenable
to well-established robust/optimal control methods.
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With the goal of addressing the aforementioned challenges, this paper studies the efficient learn-
ing of partially observed linear systems from a single trajectory of input-output measurements. De-
spite a mature body of literature on the statistical learning and control of linear dynamical systems,
their practicality remains limited for large-scale and safety-critical systems. A key challenge lies
in the required sample sizes of these methods and their dependency on the system dimensions: for
a system with dimension n, the best existing system identification techniques require sample sizes
in the order of O(n) to O(n*) to provide certifiable guarantees on their performance (Oymak and
Ozay, 2019; Krauth et al., 2019; Dean et al., 2019a; Simchowitz et al., 2019; Sarkar et al., 2019).
Such dependency may inevitably lead to exceedingly long interactions with the safety-critical sys-
tem, where it is extremely costly or even impossible to collect nearly as many samples without
jeopardizing its safety—consider sampling from a geographically distributed power grid with tens
of millions of parameters, and this increasing difficulty becomes apparent.

Contributions: In this work, we show that the Markov parameters defining the input-output behav-
ior of partially observed linear dynamical systems can be learned with a poly-logarithmic sample
complexity, i.e., from a single sample trajectory whose length scales poly-logarithmically with the
output dimension. Our result relies on the key assumption that the system is inherently stable, or
alternatively, it is equipped with an initial stabilizing controller. We show that the inherent stability
of the system is analogous to the notion of weak sparsity in the corresponding Markov parameters.
We then show that this “prior knowledge” on the weak sparsity of the Markov parameters can be
systematically captured and exploited via the so-called ¢; regularization. Our results imply that the
Markov parameters of a partially observed linear system can be learned with certifiable bounds in
the high-dimensional settings, where the system dimension is significantly larger than the number
of available samples, thereby paving the way towards the efficient learning of massive-scale safety-
critical systems. Within the realm of statistics, the ¢1-regularized estimators have been traditionally
used to promote (exact) sparsity in the unknown parameters. In this work, we show that a similar
¢1-regularized method can be used to estimate the Markov parameters of the system, irrespective of
the true sparsity of the unknown system.

Paper organization: In Section 2, we provide a literature review on different system identification
techniques, and explain their connection to our work. The problem is formally defined in Section 3,
and the main results are presented in Section 4. We provide an empirical study of our method in
Section 5, and end with conclusions in Section 6. To streamline the presentation, the proofs are
deferred to the extended version of the paper (Fattahi, 2020).

Notation: Upper- and lower-case letters are used to denote matrices and vectors, respectively. For
amatrix M € R"™*" the symbols M.; and M;. indicate the 4™ column and row of M, respectively.
Given a vector v and an index set S, the notation vg refers to a subvector of v whose indices are
restricted to the set S. For a vector v, ||v||, corresponds to its £,-norm. For a matrix M, the
notation || M ||, q is equivalent to || [|| M|, [|M2|lp ... Mpm:] |lq- Moreover, || M]|, refers to
the induced g-norm of the matrix M. The notation || M || is used to denote the Frobenius norm,
defined as || M ||2 2. Furthermore, p(M ) correspond to the spectral radius of M. Given the sequences
f(n) and g(n) indexed by n, the notation f(n) = O(g(n)) or f(n) < g(n) implies that there
exists a universal constant C' < oo, independent of n, that satisfies f(n) < Cg(n). Moreover,
f(n) = O(g(n)) is used to denote f(n) = O(g(n)), modulo logarithmic factors. Similarly, the
notation f(n) =< g(n) implies that there exist constants C; > 0 and Cy < oo, independent of
n, that satisty C1g(n) < f(n) < Cyg(n). Given two scalars a and b, the notation a V b denotes
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their maximum. We use z ~ N (u, X2) to show that x is a multivariate random variable drawn from
a Gaussian distribution with mean p and covariance >.. For two random variables x and y, the
notation x ~ y implies that they have the same distribution. E[z] denotes the expected value of the
random variable z. For an event X', the notation P(X) refers to its probability of occurrence. The
scalar c denotes a universal constant throughout the paper.

2. Related Works

System identification: Estimating system models from repeated experiments has a well-developed
theory dating back to the 1960s, particularly in the case of linear and time-invariant systems. Stan-
dard reference textbooks on the topic include (Astrom and Eykhoff, 1971; Ljung, 1999; Chen and
Guo, 2012; Goodwin and Payne, 1977), all focusing on establishing asymptotic consistency of the
proposed estimators. On the other hand, contemporary results in statistical learning of dynamical
systems seek to characterize finite time and finite data rates. For fully observed systems, (Dean
et al., 2017) shows that a simple least-squares estimator can correctly recover the system matrices
with multiple trajectories whose length scales linearly with the system dimension. This result was
later generalized to fully observed systems with only a single sample trajectory, with sample com-
plexities depending polynomially on the system dimension (Dean et al., 2018; Simchowitz et al.,
2018; Dean et al., 2019a; Sarkar and Rakhlin, 2018). These results were later extended to partially
observed stable (Oymak and Ozay, 2019; Sarkar et al., 2019; Tsiamis and Pappas, 2019; Simchowitz
et al., 2019), and unstable (Zheng and Li, 2020) systems where it is shown that the system matrices
can be learned with similar polynomial sample complexities.

Regularized estimation: To further reduce the sample complexity of the system identification,
a recent line of works has focused on learning dynamical systems with prior information. The
works by Fattahi et al. (2019); Fattahi and Sojoudi (2018a,b,c) employ ¢;- and ¢; /¢~ -regularized
estimators to learn fully observed sparse systems with sample complexities that scale polynomially
with the number nonzero entries in different rows and columns of the system matrices, but only
logarithmically with the system dimension. However, these methods are not applicable to partially
observed systems with hidden states. Another line of works introduces a different regularization
technique, where the nuclear norm of the Hankel matrix is minimized to learn inherently low-order
systems (Sun et al., 2020; Wahlberg and Rojas, 2013; Cai et al., 2016).

Learning-based control: Complementary to the aforementioned results, a large body of works
study adaptive (Dean et al., 2018; Abbasi-Yadkori and Szepesvari, 2011; Abbasi-Yadkori et al.,
2019; Lale et al., 2020), robust (Dean et al., 2019a,b; Mania et al., 2019), or distributed (Fattahi et al.,
2020; Furieri et al., 2020) control of unknown linear systems. These works, culminated under the
umbrella of model-based RL, indicate that if a learned model is to be integrated into a safety-critical
control loop, then the uncertainty associated with the learned model must be explicitly quantified,
thereby pinpointing the importance of a reliable system identification technique.

3. Problem Statement
Consider the following linear time-invariant (LTT) dynamical system:

Tiy1 = Axy + Bug + wy (D
Yt = Cl‘t + Dut + (o (2)
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where x; € R”, uy € RP, and y, € R™ are the state, input, and output of the system at time ¢.
Moreover, the vectors wy € R™ and v; € R™ are the process (or disturbance) and measurement
noises, respectively. Throughout the paper, we assume that both v; and w; have element-wise
independent sub-Gaussian distributions with parameters o, and o, respectively. Moreover, without
loss of generality, we assume that o = 0'. The parameters A € R"*", B € R"*P, C' € R™*", and
D € R™*P are the unknown system matrices, to be estimated from a single input-output sample
trajectory {(ut, y:)}I.o. Much of the progress on the system identification is devoted to learning
different variants of fully observed systems, where C' = I and v; = 0. While being theoretically
important, the practicality of these results is limited, since the state in realistic dynamical systems
is not directly observed, or it is corrupted with measurement noise.

On the other hand, the lack of “intermediate” states x; in partially observed systems gives rise
to a mapping from uy, to yi that is highly nonlinear in terms of the system parameters:

T-1 T-1
-1 -1 T-1
yr = Duy + g CA" "Buy_r + E CA™  wi_r + vy + CA" " a1y, (3)
=1 T=1
—_—————
Effect of the last 7" inputs Effect of noise Effect of the state at time ¢t — T + 1

where ¢t > T'—1. The first term in (3) captures the effect of the past 7" inputs on y;, while the second
term corresponds to the effect of the unknown disturbance and measurement noises on ;. Finally,
the third term controls the contribution of the unknown state z;_71 on y;, whose effect diminishes
exponentially fast with T, provided that A is stable. A closer look at the first term reveals that the
relationship between y; and {us, u¢—1, ..., u;—74+1} becomes linear in terms of the Markov matrix

G=[D Gy Gy...Gp_3] = [D CB CAB...CAT-2B] e R"™"?, @

whose components are commonly known as Markov parameters of the system. One of the main
goals of this paper is to obtain an accurate estimate of G given a single input-output trajectory. The
Markov parameters can be used to directly estimate the outputs of the system from the past input.
Moreover, as will be shown later, a good estimation of the Markov parameters can be translated into
an accurate estimate of the Hankel matrix, which in turn can be used in the model reduction and H o
methods in control theory (Antoulas, 2005; Zhou and Doyle, 1998). Finally, given the estimated
Markov matrix (G, one can estimate the system matrices. Note that it is only possible to extract
the system parameters up to a nonsingular transformation: given any nonsingular matrix .S, the
system matrices (A4, B,C, D) and (S~'AS,SB,CS~!, D) correspond to the same Markov matrix.
Therefore, a common approach is to first construct the associated Hankel matrix, and then extract a
realization of the system parameters from the Hankel matrix using the Ho-Kalman method (Ho and
Kalmaén, 1966; Ljung, 1999). In fact, it has been recently shown in (Oymak and Ozay, 2019; Sarkar
et al., 2019) that the Ho-Kalman method can robustly obtain a balanced realization of the system
matrices, provided that the estimated Markov matrix enjoys a small estimation error.

Proposition 1 (Oymak and Ozay (2019), informal) Suppose that the true system is controllable
and observable. Given an estimate G of G, the Ho-Kalman method outputs system matrices (A B

1. Our results can be readily extended to scenarios where x¢ is randomly drawn from a sub-Gaussian distribution.



LEARNING PARTIALLY OBSERVED LINEAR SYSTEMS FROM LOGARITHMIC NUMBER OF SAMPLES

C, D) that satisfy

|B~UB|r S VT|G~Cllr )
IC = Cu'|lr SVT|G - Gllr (©)
1A = UAUT ||p < T)|Gl|IG - Gl r )

for some unitary matrix U, provided that G is sufficiently close to G.

Therefore, without loss of generality, our focus will be devoted to obtaining accurate estimates of
the Markov and Hankel matrices. To streamline the presentation, the concatenated input and process
noise vectors are defined as:

= [T T T T Tp = _ [T T T T T
= [u, u_y ... oulpy] eRPw=[w wl, ... wlp,] €eRT®)

Moreover, the following concatenated matrix will be used throughout the paper:
F=[0 C CA ... CAT? ermIn 9)

Based on the above definitions, the input-output relation (3) can be written compactly as y; =
Gy + Fwy; + e; + vy where ey = CAT " x;_7,1. To estimate the Markov matrix G, the work
by Oymak and Ozay (2019) proposes the following least-squares estimator:

N+T—-2

G= argn%}n tzT:l s — Xie||3 (10)

Define ¢ = p + n + m as the system dimension, and o2 as the effective variance of e, as in
1y Tl sl
=d(A)||lcATY| [ —=20 11
Oe ( )” || 1—p(A)2T (11)

A7)
D(A) = su
) =sup @

where

o0
, Too=) 0 AN(AT) + 02 A'BBT(ATY (12)
i=0
Oymak and Ozay (2019) characterizes the non-asymptotic behavior of this least-squares estimator.
Theorem 2 (Oymak and Ozay (2019)) Suppose that uy ~ N(0,021) for every t = 0,...,T +

N — 2, and N > Tqlog?(Tq)log?(Nq). Then, with overwhelming probability, the following
inequalities hold:

IG~ G2 <

0+ 00+ Tull Fll quogQ(Tq) log?(N o) 03

Ou N ’

|G~ Gl S (14)

(00 + 0e)vm + 0u||Fl2 [Tqlog®(Tq)log*(Nq)
ou N

where 02, 02, 02,

noise, respectively.

are the variances of the random input, disturbance noise, and the measurement
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The above theorem shows that the spectral norm of the estimation error for the Markov param-
eters via least-squares method is in the order of O (\/ T(n+m+p)/N ), provided that N =

O(T(n + m + p)). Moreover, Oymak and Ozay (2019) shows that the number of samples N can
be reduced to @(T 'p) (without improving the spectral norm error). Such dependency on the system
dimension is unavoidable if one does not exploit any prior information on the structure of GG. In
particular, it is easy to see that the Markov parameter GG has T'mp unknown parameters, and hence,
one needs to collect at least T'p outputs (each with size m) to obtain a well-defined least-squares
estimator. Evidently, such dependency on the system dimension may be prohibitive for large-scale
and safety-critical systems, where it is expensive to collect as many output samples. Motivated by
this shortcoming of the existing methods, we aim to address the following open question:

Question: Can partially observed linear systems be learned with a sublinear sample complexity?

4. Main Results

In this section, we provide an affirmative answer to the aforementioned question. At a high-level,
we will use the fact that, due to the stability of A, the Markov parameters decay exponentially fast,
which in turn implies that the rows of the extended matrix G exhibit a bounded ¢;-norm (also known
as weak sparsity (Wainwright, 2019)). This observation strongly motivates the use of the following
regularized estimator:

N+T-2

G = argmin <2N t_%:l llye — XutHg) + X

1,1 5)

Due to the stability of A, there exist scalars Csys > 1 and p < 1 such that ||A7||; < Csysp”. Without
loss of generality and to simplify the notation, we assume that max{||B||1, ||C||1, | D]1} < Csys.
2

. . . . . _ C .
Finally, define the effective variance of the disturbance noise as 7, = ( 1?;) 0. The main result

of the paper is the following theorem.

Theorem 3 Suppose that u; ~ N (0, Ugl) foreveryt = 0,...,T + N — 2. Moreover, suppose
that N and T satisfy the following inequalities:

loglog(Nn + T'p) + log (%y;) +log(oy +0y) +log (¢)

N 2 log*(Tp), T2Ty= :
—p

(16)
for an arbitrary € > 0. Finally, assume that \ is chosen such that
log(T'
A= 0y (Gy + 0y) M+e 17
N
Then, with overwhelming probability, the following inequalities hold:
IG = Gllace SEVE, |G -GClr < vVm(& V&) (18)
where

&= Cds 0w + 0y (log(Tpn) v + £ &y = ngys log(Tp) v (19)
1—p oy N ) A

6
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The above theorem can be used to provide estimation error bounds on the higher order Markov
parameters and Hankel matrices (which can be used to recover a realization of the system parameters
(A, B,C, D), as delineated in Proposition 1). Similar to Oymak and Ozay (2019), define the true
and estimated K™ order (where K > T) Markov parameters as

G® =[D CB CAB ... CAK2B] er™fr G = [@ O (16—7yp| € RTEP
(20)

Moreover, define the true and estimated K" order Hankel matrices as

[ D CB ... CAK—B
B AB ... CAK-1B
aw | ¢ ¢ , ¢ € RFm>KP, @1
|CAK—2B CAK-1B ... CA*73B
I /Z:j @0 e gT—B @T—Q Omxn v Omxn_
CT10 Gl B GT—Q 0m><n Omxn o Omxn
(K A ' KmxK
H( )= GT—Z Omxn -+ Omxn Omxn Omxn - Omxn € REMAEP (22)
Omxn Omxn -+ Omxn Omxn Omxn .. Omxn
LOmxn Omxn -+ Omxn Omxn Omxn .. Opmxnl

Our next corollary provides estimation error bounds for the K" order Markov and Hankel matrices.

Corollary 4 Suppose that u; ~ N(0,021) foreveryt =0, ..., T+N—2, and N and X satisfy (16)
and (17), respectively. Moreover, assume that T 2, Ty V (log(]|C||ec) + log (1/€)) /(1 — p) for an
arbitrary € > 0. Then, for any K > T (including K = o0), the following inequalities hold with
overwhelming probability:

savée+e [N -GWpsvmEvE+E @3

~

<& VE+e |HBF —HB)|p<VTmEVE+E  (24)

~

HG(K) _ @(K)Hz,oo
||H(K) _ ]?[(K)”ZOO

Next, we will explain the implications of Theorem 3 and Corollary 4.

Sample complexity: According to Theorem 3 and Corollary 4, the required number of samples N
for estimating the Markov parameters and the Hankel matrix scales poly-logarithmically with the
system dimension, making it particularly well-suited to massive-scale dynamical systems, where
the system dimension surpasses the number of available input-output samples. In contrast, the
existing methods for learning partially observed linear systems do not provide any guarantee on the
estimation error under such “high-dimension/low-sampling” regime. Moreover, the imposed lower
bound on 7' scales double-logarithmically with respect to the system dimension?, which can be
treated as a constant number for all practical purposes.’

2. The imposed lower bound on 7T is to simplify the derived bounds, and hence, can be relaxed at the expense of less
intuitive estimation bounds.
3. Itis easy to verify that loglog(s) < 5 for any s < 10%°!
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Estimation error: The estimation error bounds in Theorem 3 and Corollary 4 are in terms of the
row-wise ¢ and Frobenius norms. In contrast, most of the existing methods provide upper bounds
on the spectral norm of the estimation error. An important benefit of the provided row-wise bound
is that it provides a finer control over the element-wise estimation error, which in turn can be used in
the recovery of the special sparsity patterns in the Hankel matrices (Jin and Ye, 2017). We note that
although the provided bound on the Frobenius norm of the estimation error can be readily applied
to its spectral norm, we believe that it can be strengthened. Moreover, the provided estimation error
bound reduces at the rate N /4, which is slower than the rate N ~1/2 for the simple least-squares
estimator (see Theorem 2). However, a more careful scrutiny of (18) and (14) reveals that our
proposed estimator outperforms the least-squares even in a high-sampling regime where

N _ ¢*log'(Tq)log"(Ng)
T2~ log(T'pn)

In fact, a stronger statement can be made on the ratio between the estimation errors:

=0 ((n+m+p)? (25)

Corollary 5 Denote the right hand sides of (14) and (18) as € ﬁs and 8?, respectively. Suppose
that oy, N 0y V 0y V %yps VO(A) V| Bll2VI|Clla = 0(1), and T 2 Ty + log(n + m + p). Then,

21

. & . . . N log(T'
we have limy, 1, p—so00 SFTFS = 0 provided that T and N satisfy limy, 1, p— o0 Tz(%m =0
Method Sample Complexity Error Bound (|| - || 7) Additional Notes
/4
proposed method O(log?(Tp)) o (\/m (W) ) Single trajectory
~ N /3
Oymak and Ozay (2019) O(Tq) Ovm (%) > Single trajectory
~ ~ Single trajectory,
Sarkar et al. (2019) O(n?) @ Suitable for systems with

unknown order

Zheng and Li (2020) Multiple trajectories,

Stable and unstable systems

~ 1/2 . . .
Sun et al. (2020) O(pR) <(RNM)> ) Mli\l/?lglgt(rzie:olr;es’
Tu et al. (2017) O(r) 0] ((%) 1/2) Dg}léﬁé’l(;tfj:m:ﬁff’

Table 1: Sample complexity and error bounds on the estimated Markov parameters for different methods. The parame-
ters R < n and r are respectively the order of the system and the length of the FIR impulse response; see Sun
et al. (2020) and Tu et al. (2017) for more information.

The above proposition implies that in the regime where N is not significantly larger than the
system dimension, the derived upper bound on the estimation error of the regularized estimator be-
comes arbitrarily smaller than that of the least-squares method. Our numerical analysis also reveals
the superior performance of the proposed estimator, even when N > T'p. Finally, we point out
that similar error bounds have been derived for the classical linear regression with weakly sparse
structures. In particular, Negahban et al. (2012) considers a “simpler” linear model where the sam-
ples/outputs are assumed to be independent, and shows that a ¢;-regularized estimator achieves an
error bound in the order of O ((log(d)/N) 1/ 1), where d is the dimension of the unknown regression
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vector. Theorem 3 reveals that the same rate can be achieved in the context of system identifica-
tion with a single input-output trajectory, despite the fact that the samples are correlated. Table 1
compares the performance of the proposed estimator with other state-of-the-art methods.

Role of signal-to-noise ratio: Intuitively, the estimation error should improve with an increasing
signal-to-noise (SNR) ratio (in our problem, the SNR ratio is defined as o3 / (o, +07,)); this behavior
is also observed in the related works (Oymak and Ozay, 2019; Sun et al., 2020; Tu et al., 2017).
In contrast, our provided bound is the maximum of two terms, one of which is independent of the
SNR ratio. In other words, an increasing SNR ratio can only shrink the estimation error down to
a certain positive threshold. The reason behind this behavior lies in the statistical behavior of the
random input matrix U, which is explained as follows. For two different vectors ¢ and ¢, the quantity
U(¢— (N ) measures how distinguishable these vectors are under the considered linear model. For the
cases where N 2 T'p, itis easy to see that these two vectors are easily distinguishable, since ||U (¢ —

O)|I3 > ko2 ||¢ — €||3 holds with high probability, for some strictly positive & (see, e.g., Oymak and
Ozay (2019)). However, in the high-dimensional setting, the matrix U will inevitably have zero
singular values, and ||U (¢ — O)||2 > ko2||¢ — ¢||3 may no longer hold for specific choices of ¢ and
¢. Under such circumstances, we show that the relaxed inequality ||U (¢ — ¢)||3 > ko2||¢ — |2 —

o2 f (C— ¢) holds for any ¢ and ¢, where f(-) is a function defined in (Fattahi, 2020). Upon replacing
¢ — ¢ with G;. — G;. for some row index ¢, it is easy to see that this lower bound becomes nontrivial
only if ||G;. — @ZH% > f(Gi. — @i;)//@, which is independent of the SNR ratio. This intuition is
formalized in the extended version of the paper (Fattahi, 2020). In particular, it is shown that: (1)
the threshold f(G;. — @Z)//@ is small, i.e., it is upper bounded by £2; (2) whenever |G}, — @l 12 is
larger than £2, it can be upper bounded by £2.

--- T=1005) | - T=1005) | --- T=1005)
-=- T=20(L5) | -=- T=20(L5) | -=- T=20(L5)
—-- T=3005) \ - T=3005) | —-- T=3005)
— T=10(LASSO) \ — T=10(LASSO) \ — T=10(LASSO)
— T=20(LASS0) \ — T=20(LASS0) 4 — T=20(LASS0)
— T=30(LASSO) | — T=30(LASSO) } — =30 (LASSO)

G = Gllz,o0

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

N N N
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— T=20
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— T=30
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— T=30

|G — Grassollr

|G - Grassollz

IG = Gursllr
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500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
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Figure 1: The estimation error of the Markov parameters for LASSO (denoted as G rAsso) and LS (denoted as G LS)
with respect to the sample size, with 02 = o2 = 0.1 and varying T. When N < T'p, LASSO achieves
small estimation error, while LS is not well-defined. Moreover, LASSO significantly outperforms LS when
N > T'p. The y-axis in all figures are clipped to better illustrate the differences in the curves.
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5. Simulations

In this section, we showcase the performance of the proposed regularized estimator. In particular,
we will provide an empirical comparison between our method and the least-squares approach intro-
duced by Oymak and Ozay (2019).# In all of our simulations, we set n = 200, m = p = 50, and
D = 0. A is chosen as a banded matrix, with the bandwidth equal to 5. Moreover, each nonzero
entry of A is selected uniformly from [—0.5,0.5]. To ensure the stability of the system, A is nor-
malized to ensure that p(A) = 0.8. The (4, 7)™ entry of B is set to 1 if i = 45, and it is set to 0
otherwise, for every (i,5) € {1,...,n} x {1,...,p}. Finally, C is chosen as a Gaussian matrix,
with entries selected from N (0, 1/m). Note that, despite the sparse nature of A and B, the Markov
parameters of the system are fully dense, due to the dense nature of C. Throughout our simulations,
oy 1s set of 1, and the values of o, and o, are changed to examine the effect of SNR ratio on the
quality of our estimates. Moreover, in all of our simulations, we set the regularization parameter to

log(T'pn)

N 002 x 0.87 (26)

A=0.2(oy + 0y)
Note that the above choice of the regularization parameter does not require any further fine-tuning,
and it is in line with Theorem 3, after replacing e with 0.02 x 0.8” in (17). The exponential decay in
€ correctly captures the diminishing effect of the unknown initial state x;_71 on the output y; with
T (see (3)). We point out that a better choice of A may be possible via cross-validation (Shao, 1993).
Figure 1 shows the estimation error of the proposed method compared to the least-squares estimator
(referred to as LASSO and LS, respectively) for 02, = o2 = 0.1 (averaged over 10 independent
trials). It can be seen that LASSO significantly outperforms LS for all values of N and 7. In the
high-dimensional setting, where N < T'p, LS is not well-defined, while LASSO results in small
estimation errors. Moreover, when N > T'p, the incurred estimation error of LASSO is 1.2 to 1077
times smaller than that of LS. Although the main strength of LASSO is in the high-dimensional
regime, it still outperforms LS when N > T'p.

6. Conclusions

In this paper, we propose a method for learning partially observed linear systems from a single
sample trajectory in high-dimensional settings, i.e., when the number of samples is less than the
system dimension. Most of the existing inference methods presume and rely on the availability of
prohibitively large number of samples collected from the unknown system. In this work, we address
this issue by reducing the sample complexity of estimating the Markov parameters of partially
observed systems via an ¢;-regularized estimator. We show that, when the system is inherently
stable, the required number of samples for a reliable estimation of the Markov parameters scales
poly-logarithmically with the dimension of the system.
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4. It has been recently verified in Sun et al. (2020) that the method proposed by Oymak and Ozay Oymak and Ozay
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