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Abstract
We present a control framework that enables safe simultaneous learning and control for systems
subject to uncertainties. The two main constituents are contraction theory-based L1-adaptive (CL1)
control and Bayesian learning in the form of Gaussian process (GP) regression. The CL1 con-
troller ensures that control objectives are met while providing safety certificates. Furthermore, the
controller incorporates any available data into GP models of uncertainties, which improves perfor-
mance and enables the motion planner to achieve optimality safely. This way, the safe operation of
the system is always guaranteed, even during the learning transients.
Keywords: Safe Learning, Planning, Adaptive Control, Gaussian Process Regression

1. Introduction
Machine learning (ML) algorithms are potent tools for producing complex and accurate mod-

els of uncertain systems. The accurate representations help model-based reinforcement learning
(MBRL) algorithms achieve performance and optimality (Recht, 2019). However, model uncertain-
ties can make the system unstable during learning transients, which can have serious consequences,
especially for safety-critical systems (Knight, 2002). Control-theoretic approaches based on Lya-
punov functions and control invariant sets can offer safety certificates (Perkins and Barto, 2002;
Berkenkamp et al., 2017; Chow et al., 2018). For instance, control-theoretic notions like asymptotic
stability (Khalil, 2014, Chapter 3) are useful to guarantee system behavior in the limit. However,
it is equally important to quantify the system’s behavior during the complete operation and not just
in the limit. More importantly, for learning-based control, the question of how to quantify and
guarantee the system’s safety during learning-transients is crucial.
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Figure 1: Illustration of our control framework.

Statement of Contributions: We pro-
pose a learning-based control framework
using robust adaptive control theory for
nonlinear systems that allows improve-
ment of optimality and performance while
simultaneously guaranteeing safety. The
framework is illustrated in Fig. 1. Let the
actual (uncertain) dynamics of the system
be given by ẋ = F (x, u), where x and u
are the system state and input, respectively. Additionally, let ẋ = F̄ (x, u) denote the known (learned
or nominal) model. Given any realizable desired state-input pair (xd, ud) with respect to the known
dynamics, i.e., ẋd = F̄ (xd, ud), we design the input u to ensure that the state x of the actual system
ẋ = F (x, u) follows xd safely and with quantifiable performance.
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Figure 2: Consider a vehicle traversing a race track with some nominal model knowledge. Depend-
ing on the uncertainty and robustness requirements the control framework guarantees the safety
bounds (blue tubes). As the learning improves, so does the performance and optimality.

Safety: We provide a systematic design of the feedback law u = π(x, xd, ud), such that we can
apriori compute a positive scalar ρ to ensure ‖xd(t)− x(t)‖ ≤ ρ, for all t ∈ [0, Tf ], with high-
probability, where Tf ≤ ∞ is the planning horizon. This guarantee implies the existence of a
tube Oxd(ρ) of radius ρ centered around the trajectory xd, in which the actual state of the system
x is guaranteed to lie in. The control design is based on our recent work in Lakshmanan et al.
(2020). We then define the notion of safety as the existence of the apriori quantifiable tubesOxd(ρ).
Any planning algorithm which produces (xd, ud) w.r.t. F̄ by incorporating the additional constraint
Oxd(ρ) /∈ Xobs will thus ensure that the actual state x /∈ Xobs (obstacle set). This minimal re-
quirement enables the framework to be used in conjunction with many popular planning algorithms
like Tassa et al. (2012); Williams et al. (2018); Wagener et al. (2019); LaValle and Kuffner Jr (2001);
Cichella et al. (2017); Howell et al. (2019). Note the communication of ρ from the controller to the
planner in Fig. 1. The safety is guaranteed regardless of the quality of learning. Thus, model
learning can be performed whenever possible, and not at a high-rate (note the ‘intermittent’ and
‘real-time’ distinction in Fig. 1).
Performance: We define performance as the radius ρ of the tube since a smaller radius ρ implies
better tracking performance and vice-versa. To improve performance, we rely on Bayesian learning
(GP regression) to learn the model uncertainties. We use GP learning’s predictive distribution to
compute high-probability error bounds for the estimated uncertainties. These estimates are then
incorporated within the feedback law u = π(x, xd, ud) to handle the uncertainties as represented by
the variance. The planner can thus operate by only incorporating the mean dynamics. The notion of
performance also includes the desired robustness margins of the closed-loop system.
Optimality: The improved performance, as defined above, implies an improvement in optimality.
Using improved performance given guaranteed safety (in the form of reduced radii tubes), an plan-
ner can produce the desired trajectory xd that is optimal in the sense of the total path’s length and
the time taken to traverse the path. We refer to this as performance-dependent optimality. However,
there is an additional notion of optimality w.r.t. to the learned models. MBRL algorithms rely on the
known/learned model F̄ to generate pairs (xd, ud) optimal for F̄ . Therefore, as learning improves,
and thus F̄ → F , the underlying MBRL should produce desired trajectories approaching optimality
w.r.t. the actual dynamics. We refer to this as model-based optimality. Both performance-based and
model-based optimality constitute the overall optimality. It is important to highlight that, as afore-
mentioned, our control framework is planner agnostic: it enables the improvement of optimality
via any planner capable of doing so, rather than guaranteeing it. The proposed framework provides
the planner with improved performance guarantees and learned models; it is up to the planner to
use these to improve optimality. The proposed framework enables the behavior in Fig. 2. Note
that this figure does not show the distinction of the aforementioned optimality types but rather an
improvement in the overall cost of the planned trajectory.
Related Work: Tracking controllers in the form of min-max MPC (Magni et al., 2001; Raimondo
et al., 2009) handle uncertainties using worst-case bounds, rendering them overly conservative.
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Tube-based MPC (Raković et al., 2016; Lopez et al., 2019) addresses this issue by using an ancil-
lary controller to attenuate disturbances. Such methods typically place the limiting assumption on
ancillary controllers’ existence or instead have further assumptions on the dynamics like feedback
linearizability and strict feedback forms. Another class of corrective methods that ensure safety is
based on control barrier functions (CBFs) (Ames et al., 2019, 2016; Xu et al., 2015; Lopez et al.,
2020). CBFs rely on specialized functions that ensure set invariance which prevent the system
states from reaching unsafe regions. However, CBFs do not provide tracking error bounds with
respect to a desired trajectory which is critical in evaluating the robot’s performance. Moreover,
these approaches require discovering a CBF and an ancillary controller which are non-trivial. In our
approach, we provide an explicit design for the feedback controller with stability and performance
guarantees. Learning-based tracking control (Aswani et al., 2013; Wabersich and Zeilinger, 2018;
Soloperto et al., 2018; Rosolia and Borrelli, 2019) reduces conservatism by using measured data
to improve models. However, several frameworks (Beckers et al., 2019; Capone and Hirche, 2019;
Umlauft and Hirche, 2019; Helwa et al., 2019; Greeff and Schoellig, 2020) in this domain also re-
quire similar restrictions on the structure of the dynamics (e.g. strict feedback form, differential
flatness, etc.) to ensure safety in the presence of uncertainties. The authors in Berkenkamp et al.
(2017) use the regularity of the uncertainty and the sufficient statistics of the learned GP models to
safely expand the region of attraction, and improve control performance using Lyapunov functions.
In contrast, our control architecture actively compensates for the model uncertainties allowing the
system states to reach any part of the operating region safely even when the quality of the learned
model is poor. Probabilistic chance constraint methods, which use uncertainty propagation, have
been shown to provide both asymptotic and transient bounds on the tracking performance (Koller
et al., 2018). The implementations that rely on approximate uncertainty propagation offer excellent
empirical performance without theoretical guarantees, shown in Hewing et al. (2019); Ostafew et al.
(2016). However, uncertainty propagation methods sacrifice long-term accuracy for computational
efficiency, for example by linearization, in order to be more tractable for real-time applications. Our
proposed method avoids uncertainty propagation completely when considering nonlinear dynamics.
Instead, we rely on uniform error bounds for GP predictions to apriori guarantee tracking perfor-
mance with respect to the desired trajectory. This controller is capable of incorporating the learned
dynamics while ensuring safety. This incorporation is based on both contraction theory (Manch-
ester and Slotine, 2017; Singh et al., 2017; Lopez and Slotine, 2020) and the L1-adaptive control
theory (Hovakimyan and Cao, 2010). Safe planning and control using L1-adaptive control theory
can be found in Pereida and Schoellig (2018); Pravitra et al. (2020); Lakshmanan et al. (2020).

2. Problem Statement and Preliminaries
We consider the following uncertain control-affine nonlinear dynamics of the form

ẋ(t) =f(x(t)) +B(x(t))(u(t) + h(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, for t ∈ R≥0, represent the system state and control input, respec-
tively. The functions f(x) ∈ Rn and B(x) ∈ Rn×m are the known components of the dynamics,
whereas, h(x) ∈ Rm denotes the model uncertainties. The control-affine systems presented in (1)
cover a wide range of physical control systems including, for e.g., nonlinear aircraft models (Gar-
rard and Jordan, 1977), and quadrotor models (Singh et al., 2019; Mokhtari et al., 2006). Note that
in (1), for the clarity of exposition, we place the assumption that the uncertainties are matched, i.e.,
g(x) = B(x)h(x) ∈ span{B}. The proposed method can be extended for uncertainties /∈ span{B}
following the work laid out in Singh et al. (2019) and Manchester and Slotine (2018), with the ex-
pectation that the unmatched uncertainties cannot be fully compensated but instead only attenuated.

Definition 1 We define the known and uncertain model parameter sets as M̄ = {f,B} and
M̂ = {h}, respectively. These sets induce the vector fields F (M̄;x, u) = f(x) + B(x)u and
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F (M;x, u) = f(x) + B(x)(u + h), where M = M̄ ∪ M̂, which define the known and actual
(uncertain) dynamics respectively as1

ẋ = F (M̄;x, u) = f(x) +B(x)u, ẋ = F (M;x, u) = f(x) +B(x)(u+ h(x)). (2)

The following definition is placed for planning.

Definition 2 Over a planning horizon [0, Tf ], 0 < Tf ≤ ∞, (xd(t), ud(t)) is a desired state-input
pair if ẋd(t) = F (M̄;xd(t), ud(t)) and xd(t) ∈ X , for all t ∈ [0, Tf ], where X ⊂ Rn is any
compact convex set. Given any ρ > 0, we define

Ω(ρ, xd(t)) := {y ∈ Rn | ‖y − xd(t)‖ ≤ ρ}, Oxd(ρ) = ∪t∈[0,Tf ]Ω(ρ, xd(t)). (3)

We refer to Oxd(ρ) as the tube. Here ‖·‖ denotes the Euclidean norm.

Since F (M̄;x, u) is known, any model-based planner can generate the desired pair (xd(t), ud(t))
satisfying the state-constraints. The following ensures the generation of safe desired trajectories.

Assumption 1 Given any tube width ρ > 0 and planning horizon [0, Tf ], 0 < Tf ≤ ∞, the
planner produces a state-input pair (xd(t), ud(t)) (as in Def. 2) such that the induced tube Oxd(ρ)
satisfies Oxd(ρ) ∈ X/Xobs, for all t ∈ [0, Tf ], where Xobs represents the obstacles. The desired
control input ud(t) satisfies ‖ud(t)‖ ≤ ∆ud , for all t ∈ [0, Tf ], with the upper bound known.

Problem Statement: Given the learned probabilistic estimates of the uncertainty h(x), any de-
sired state-input pair (xd(t), ud(t)), t ∈ [0, Tf ], designed by a planner using the known dynamics
F (M̄;x, u) (Defs. 1 and 2), and the desired robustness margins, the goal is to design the control
input u(t) that guarantees the existence of an apriori computable tube-width ρ so that the state of
the uncertain dynamics in (1) (F (M;x, u) in Def. 1) satisfies x(t) ∈ Ω(ρ, xd(t)) ⊂ Oxd(ρ) with
high probability, for all t ≥ 0, from all initial conditions x0 ∈ X , while satisfying the robustness re-
quirements. Importantly, the existence of the pre-computable tubes should not depend on the quality
of the learned estimates, thus ensuring that safety remains decoupled from learning. The learning
should only affect the performance bounds and the optimality of the planned trajectory. We now
place the following assumptions on the known and uncertain model parameters.

Assumption 2 The functions f(x), B(x), h(x) are continuous, bounded, and Lipschitz, for all
x ∈ D ⊂ Rn, where D is any compact set which can be arbitrarily large. Moreover, the matrix
B(x) has full column rank for all x ∈ D, thus guaranteeing the existence of the Moore-Penrose
inverse B†(x) =

(
B>(x)B(x)

)−1
B>(x).

We now discuss the constituent components of the proposed framework.

2.1. Control Contraction Metric Theory
Contraction theory analyzes the stability of trajectories of nonlinear system by considering the dy-
namics on the tangent space of the underlying manifold (Lohmiller and Slotine, 1998). This helps
establish the notion of incremental exponential stability between any pair of trajectories. Analo-
gous to a control Lyapunov function (CLF), controller synthesis based on contraction theory uses a
control contraction metric (CCM) (Manchester and Slotine, 2017). In particular, a smooth function
M(x) is defined to be a CCM for the known dynamics ẋ = F (M̄;x, u) in (2), if it satisfies the fol-
lowing conditions for all (x, δx) ∈ TX (the tangent bundle of X ) (Manchester and Slotine, 2017):

1. We suppress the temporal dependencies for brevity.
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αIn �M(x) � ᾱIn, ∂[b]·,jM(x) +

[
M(x)

∂[b]·,j(x)

∂x

]
S

= 0, j ∈ {1, . . . ,m}, (4a)

δ>xM(x)B(x) = 0⇒ δ>x

(
∂fM(x) +

[
M(x)

∂f(x)

∂x

]
S

+ 2λM(x)

)
δx ≤ 0, (4b)

for some scalars λ > 0, 0 < α < ᾱ < ∞. Here [b]·,j denotes the jth column of B(x), In is
the identity matrix of dimension n, and ∂fM(x) denotes the directional derivative of M(x) with
respect to f(x). The same holds for ∂[b]·,jM(x). Moreover, [A]S denotes the symmetric part of the
matrix A. Further details are presented in Manchester and Slotine (2017) and Lakshmanan et al.
(2020). Crucially, note that the synthesis of the CCM M(x) depends only on the known vector field
F (M̄;x, u) and can be computed offline.

Assumption 3 The known vector field F (M̄;x, u) in (2) admits a CCM M(x), for all x ∈ X , and
for some positive constants λ, α, and ᾱ as in (4).

Under this assumption, one can construct a feedback law uc, which renders the known dynamics
ẋ = F (M̄;x, uc) incrementally exponential stable, see Singh et al. (2019) for details.

2.2. Bayesian Learning
The probabilistic estimates of the uncertainty h(x) in (1) are learned using GP regression.

Assumption 4 We assume that each of the elements [h]i(x), i ∈ {1, . . . ,m}, are independent.
Moreover, we assume that each element is a sample from a GP [h]i(x) ∼ GP(0,Ki(x, x

′)), where
the kernel functions Ki : Rn×n → R are known. Moreover, the kernels are twice-continuously
differentiable with known constants LKi ,∇xLKi , such that LKi = maxx,x′∈X ‖∇xKi(x, x

′)‖, and
∇xLKi = maxx,x′∈X

∥∥∇2
xKi(x, x

′)
∥∥, for i ∈ {1, . . . ,m}.

The assumption is less conservative than requiring the uncertainty to be a member of the repro-
ducing kernel Hilbert space (RKHS) associated with the kernel. For example, sample functions
of GPs with squared-exponential (SE) kernels correspond to continuous functions, whereas the
associated RKHS space contains only analytic functions (Van Der Vaart and Van Zanten, 2011).
Moreover, the constants assumed to exist in Assumption 4 are easily computable, for example,
for the squared-exponential (SE) kernel. However, it is important to note that the element-wise
independence assumption on the uncertainty might be restrictive in certain scenarios and we are
investigating relaxing this condition in future work.

Assume that we have N measurements of the form yk = h(xk) + κ = B†(xk) (ẋk − f(xk))−
uk + κ ∈ Rm, k ∈ {1, . . . , N}, where κ ∼ N (0m, σ

2Im) is the measurement noise and 0m ∈ Rm
is a vector of zeros. We set up the data as D = {Y,X}, Y =

[
y1 · · · yN

]
∈ Rm×N ,

X =
[
x1 · · · xN

]
∈ Rn×N . Thus, for each of the constituent functions [h]i, i ∈ {1, . . . ,m}, we

have the data as Di = {[Y]i,·,X}, where [Y]i,· denotes the ith row of Y. Conditioning the prior in
Assumption 4 on the measured data D, we obtain the posterior distribution at any test point x? ∈ X
as (Williams and Rasmussen, 2006)

R 3 [h]i(x
?) ∼ N

(
νi,N (x?), σ2

i,N (x?)
)
, i ∈ {1, . . . ,m}, (5)

with mean νi,N (x?) = Ki(x
?,X)>

[
Ki(X,X) + σ2IN

]−1
([Y]i,·)

>, and variance σ2
i,N (x?) =

Ki(x
?, x?)−Ki(x

?,X)>
[
Ki(X,X) + σ2IN

]−1
Ki(x

?,X). Using the linearity of the differential
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operator, we also compute the posterior distributions of the partial derivatives of h(x) as

(∇x[h]i(x
?))> ∼N

(
∇xνi,N (x?)>,∇xσ2

i,N (x?)
)
, (6)

with mean ∇xνi,N (x?)> = (∇xKi(x
?,X))>

[
Ki(X,X) + σ2IN

]−1
([Y]i,·)

> ∈ Rn and variance
∇xσ2

i,N (x?) = ∇2
x,x′Ki(x

?, x?)− (∇xKi(x
?,X))>

[
Ki(X,X) + σ2IN

]−1∇xKi(x
?,X) ∈ Sn.

3. CL1 Control with Gaussian Process Learning
We now present our control framework which brings together contraction theory-based L1-

adaptive (CL1) control with Bayesian learning (GP regression). The detailed description of the
framework is illustrated in Fig. 3. Given the posterior distribution of the uncertainty in (5), we
may update the known and uncertain model parameter sets in (2), as M̄ = {f + BνN , B}, M̂ =

{h − νN}, M = M̄ ∪ M̂ which induce the learned representations of the known and actual
dynamics as

ẋ =F (M̄;x, u) = f(x) +B(x)νN (x) +B(x)u, (7a)
ẋ =F (M;x, u) = f(x) +B(x)νN (x) +B(x)(u+ h(x)− νN (x)). (7b)

Note that this step simply entails adding and subtracting the mean νN in the control channel.
The control design is driven by the philosophy that the input u compensates for the uncertainty
h(x) − νN (x) as quantified by the variance of the posterior distribution in (5). The uncertainty
is compensated so that the actual system ẋ = F (M;x, u) behaves like the known/learned ẋ =
F (M̄;x, u) within guaranteed tube bounds presented in Definition 2. Then, any underlying plan-
ner can generate the desired pair (xd.ud) satisfying the deterministic and uncertainty-free dynam-
ics ẋd = F (M̄;xd, ud) safe in the knowledge that the state x of the actual uncertain system
ẋ = F (M;x, u) will remain in the tubeOxd(ρ) centered on xd. Therefore the following sequential
tasks need to be performed: i) quantification of the uncertainty h− νN , and ii) design of the input u
to compensate the quantified uncertainty.

CL1 controller

Planner Contraction
Feedback

Uncertain System

C(s) State Predictor

Bayesian Learner

Adaptation Law

xd, ud

uc
u

ua

+

+
x̂

x̃

−

x

νN (x)

µ̂

Figure 3: The control framework.

To quantify the uncertainty, we use
the posterior distributions in (5) and (6)
to show that there exist bounds ∆Ξu , such
that for all x ∈ X , with high probability,

‖Ξu(x)‖ ≤ ∆Ξu , (8)

where Ξu =
{
h− νN , ∂h−νN∂x

}
. The

bounds are presented in the following the-
orem, which is presented in a highly con-
densed form due to space considerations.
The expanded version of the theorem and
its proof can be found in the extended ver-
sion at Gahlawat et al. (2020a, Thm. 3.1).

Theorem 3 Let Assumptions 2 and 4
hold. Consider the posterior distributions in (5) and (6) and any scalars δ ∈ (0, 1), τ >
0. Then there exist computable functions ∆h(x, τ) and ∇x∆h(x, τ), so that with ∆h−νN =
supx∈X ∆h(x, τ) and ∆ ∂h−νN

∂x

= supx∈X ∇x∆h(x, τ), and the bounds in Eqn. (8) hold with prob-

ability at least 1− δ.
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With the bounds on the learned representation of the uncertainty h(x)−νN (x) established in Theo-
rem 3, we proceed with the control design. To reiterate, for any (xd, ud) satisfying the deterministic
learned dynamics ẋd = F (M̄;xd, ud) in (7a), we design the input u so that the state of the actual
dynamics ẋ = F (M;x, u) in (7b) satisfies ‖x− xd‖ ≤ ρ ⇒ x ∈ Oxd(ρ) uniformly in time, for
some tube-width ρ > 0. The control input, as in Fig. 3, is computed as

u(t) = uc(M̄; t) + ua(M̄; t), (9)

where uc(M̄; t) is the contraction-theory based input and ua(M̄; t) is the L1 -adaptive input.
By Assumption 3 in Sec. 2.1, there exists a CCM M(x) for the original known dynamics ẋ =
F (M̄;x, u) (Eqn. (2)). More importantly, by Lopez and Slotine (2020, Lemma 1), M(x) is a CCM
for both the learned representations of the known and actual (uncertain) dynamics in (7). This allows
us to seamlessly incorporate the learned mean νN and straightforwardly design the input uc(M̄, t)
for the learned representation in (7a) using the CCM M(x) as in Singh et al. (2019, Sec. 5.1). The
design of the L1 -adaptive controller consists of a state-predictor, adaptation-law, and a low-pass
filter C(s) as illustrated in Fig. 3. Jointly, the L1 input ua(M̄; t) can be represented as

˙̂x = F (M̄;x, u+ µ̂)+Amx̃, ˙̂µ = ΓProjĤ
(
µ̂,−B>(x)Px̃

)
, ua(M̄; s) = −C(s)µ̂(s), (10)

with x̂(0) = x0, µ̂(0) ∈ Ĥ, and s represents the Laplace variable. Here, x̂ is the state of the
predictor, x̃ = x̂−x, and Am ∈ Rn×n is an arbitrary Hurwitz matrix. The uncertainty estimate µ̂ is
generated by the adaptation law for adaptation rate Γ > 0, with the projection operator ProjĤ(·, ·),
which ensures that µ̂ ∈ Ĥ, Ĥ = {y ∈ Rm | ‖y‖ ≤ ∆h−νN }, and Sn 3 P � 0, which is the solution
to the Lyapunov equation A>mP + PAm = −Q, for any Sn 3 Q � 0. Finally, the low-pass filter
C(s) has a bandwidth ω and satisfies C(0) = Im. The high-level design idea is that the input ua
compensates for the uncertainty h− νN via the estimate µ̂ and within the bandwidth of C(s).

Next, we analyze the uncertain system ẋ = F (M;x, u) in (7b) driven by the input (9). The
complete details of the analysis can be found in the extended version of the manuscript in Gahlawat
et al. (2020a). Given a desired trajectory xd and arbitrarily chosen positive scalars ρa and ε, define

ρr =

√
ᾱ

α
‖xd(0)− x0‖+ ε, ρ = ρr + ρa, (11)

where ᾱ, α are defined in (4a). Under Assumptions 1-3, we obtain conditions on the magnitude
of the rate of adaptation Γ and the bandwidth ω of the low-pass filter C(s) in (10) so that we
are guaranteed stability and can quantify the performance. Once again, for clarity we choose not
to present the complete definitions of the conditions and the reader is directed to Gahlawat et al.
(2020a) for details. It is important to note that there always exists an adaptation rate Γ and a
bandwidth ω that satisfy these conditions, see Lakshmanan et al. (2020) for further discussions.
The following theorem establishes the performance of the closed-loop system and its proof can be
found in the extended version at Gahlawat et al. (2020a, Thm. 3.2).

Theorem 4 Let Assumptions 1-4 hold and let the bounds in Theorem 3 be computed for some
δ ∈ (0, 1) and τ > 0. Suppose the control input in (9) is designed so that the conditions on the rate
of adaptation and filter bandwidth as given in Gahlawat et al. (2020a) are satisfied. Then, given any
desired pair (xd, ud) satisfying the deterministic known dynamics ẋd = F (M̄;xd, ud) in (7a), the
state x of the actual (uncertain) dynamics ẋ = F (M;x, u) in (7b) driven by the input u from (9)
satisfies with probability at least 1− δ

x(t) ∈ Ω(ρ, xd(t)) ⊂ Oxd(ρ), ∀t ≥ 0, (12)

7
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where ρ is defined in (11). Furthermore, the actual state x is uniformly ultimately bounded, with
probability at least 1− δ, as

x(t) ⊂ Ω(δ̂(ω, T ), xd(t)) ⊂ Oxd(ρ), ∀t ≥ T > 0, (13)

where the uniform ultimate bound (UUB) is defined as δ̂(ω, T ) = µ(ω, T ) + ρa with µ(ω, T ) =√
e−2λTE(xd,0, x0)/α+ ζ1

(
Ξ{u,k,c}, ω

)
.

Discussion: As the learning improves, the variance of the predictive Gaussian distribution collapses,
and thus the constants in (8) decrease. Therefore, without changing the filter bandwidth ω and
adaptation rate Γ, the UUB in Theorem 4 decreases. The decrease in the UUB, and the lack of a
requirement for the re-tuning of the control parameters, is due to the monotonic dependence of the
constants ζi on ∆Ξu in (8). Furthermore, as aforementioned, the CCM M(x) does not need to be
re-synthesized as the model is updated using learning. Thus, without re-tuning the parameters of the
control input (M , Γ, and ω), with the control designed using only Assumption 2, the performance
improves as a function of learning. Of course the learning is not guaranteed to improve always, in
which case, it will be reflected in the bounds ∆Ξu . In this scenario, we are in no compulsion to
incorporate the learned estimates, since the controller guarantees safety with the previously learned,
or no, estimates. This is the exact reason that the proposed method does not require a high-rate,
or any fixed rate, of model updates. Whenever it is provided with an improved model, it will be
incorporated. The uniform bound in (12) is lower-bounded by the initialization error in (11). The
size of the terms ε and ρa depends on the value of the adaptation rate Γ and filter-bandwidth ω.
Thus, while in theory we can achieve the lowest-possible tube width, the size of Γ is limited by the
available computation, and ω is limited by the desired robustness margins. Alternatively, instead of
the uniform tube, a planner can use the UUB in (13), which induces tubes that exponentially collapse
to a fixed radius dependent on ζ1, a term that decreases as the learning improves. Compared to our
initial work in Gahlawat et al. (2020b), the presented work is much more applicable to real-world
problems. In particular, in Gahlawat et al. (2020b) we could only consider linear known systems
and did not provide any theoretical guarantees. In the presented work, we are able to explicitly
consider nonlinear systems because of bringing contraction theory withinL1 control with theoretical
guarantees. This further enables the use of learning for performance and optimality improvement
with persistent safety as presented. Also note that since the adaptive control directly compensates
for the uncertainty as quantified by the variance of the posterior distribution, any underlying planner
need only incorporate the deterministic mean and not perform any uncertainty propagation, which
is both approximate and computationally expensive. Finally, note the semi-global nature of the
L1 augmentation. For a given CCM controller uc that renders the known dynamics incrementally
stable, the L1 augmentation can make any tube, no matter how large, forward invariant for the actual
(uncertain) dynamics. The semi-global nature comes from the fact that, as is evident in this section,
the control design explicitly depends on the size of the set/tube.

4. Simulation Results
We demonstrate our approach using two illustrative simulations. In the first example, we con-

sider a modified Dubin’s car system from Sun et al. (2020) and show how our control framework is
used to ensure safety guarantees during the learning process, while outperforming a purely CCM-
based approach. In the second example, we consider a planar quadrotor model from Singh et al.
(2019) and show the usefulness of our control framework in feedback motion planning applications.
The CCMs were discovered using DNNs from Sun et al. (2020) in the first example, and using the
sum-of-square programming approach from Manchester and Slotine (2017) in the second example.
In both scenarios, the dataset is generated by randomly sampling the state space, but one could also
use more sophisticated exploration techniques to safely gather data based on our framework.
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Dubin’s Car: The vehicle dynamics are described by (px, py, θ, v), where px and py are positions,
θ is the heading angle, and v is the velocity. The system has two control inputs that act on (θ̇, v̇).
The vehicle is tasked with traversing an obstacle forest from positions (0, 0) to (12, 0), and a desired
trajectory is planned using the ALTRO solver presented in Howell et al. (2019) while minimizing
an LQR objective. Let the system be randomly initialized around the origin and experience an
unknown parasitic drag force given by 0.1v2. In Fig. 4a, a CCM-based feedback strategy is applied
without concern for the uncertainty affecting the system. Out of the ten random initial conditions
only two trajectories successfully reach the goal position, whereas in the majority of the simulations
the vehicle collides with one of the obstacles before completing the task. With a conservative
knowledge of the bounds on the uncertainty and its growth, a CL1 control is designed so that the
system trajectories can be guaranteed to remain inside of a tube computed using the UUB in (13),
as shown in Fig. 4b. As the uncertainty is learned following our approach, the bounds on the
remainder uncertainty collapse with high probability as given in Theorem 3, Fig. 4c shows improved
performance certificates in the form of the tightened tubes. Furthermore, the learned estimates
are incorporated into the planner and CL1 architecture through the learned dynamics as (7). This
example shows the clear improvement in the performance-dependent optimality and enables model-
based optimality by incorporating F̄ into the planner, while ensuring safety.

(a)

(b) (c)

Figure 4: A Dubin’s car traversing an obstacle forest using (a) CCM-based feedback (b) CL1 control,
and (c) Our framework. The system trajectories are denoted in blue, the obstacles in gray, the
planned trajectory in dashed black, and the tubes are shown as shaded orange regions. Any collisions
with an obstacle terminate the trajectory immediately and are indicated as red diamonds.

Planar Quadrotor: The vehicle dynamics are described by (px, py, vx, vy, θ, θ̇), where px and py
are positions, vx and vy are velocities, and θ and θ̇ are the pitch angle and rate respectively. The
system has two control inputs: the thrust and pitch moment commands that act on (v̇y, θ̇). The
vehicle starts in a room at position (0, 0) and is tasked with planning a trajectory that takes it to
(2, 0) safely. For such problems, complete or probabilistically complete planners are the algorithms
of choice, since other methods typically get stuck at a local minimum and never reach the goal. We
use the popular sampling-based planner BIT* (Gammell et al., 2015), where the two-point bound-
ary value problem is solved using ALTRO. Similar to the previous example, consider that system

9
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experiences an unknown parasitic drag force given by−0.1(v2
x+v2

y) and a constant unknown offset
in the thrust command. Planning without taking into account these uncertainties might generate tra-
jectories that drive the system into regions that are unsafe. However in our framework, the uniform
performance guarantees (12), provided by CL1 control, ensure that BIT* only samples states that
lead to provably safe trajectories, Fig. 5a. Figures 5b and 5c show the tightening of the tubes as the
uncertainty is learned batch-wise following our approach. This allows BIT* to construct a graph of
safe trajectories with improved performance guarantees.

(a) (b) (c)

Figure 5: A planar quadrotor escaping a bug trap using (a) only a deterministic knowledge of the
uncertainty, (b) model learned with N = 25 dataset, (c) model learned with N = 100 dataset. The
blue lines indicate the edges of the random geometric graph constructed by BIT*. The dashed-black
line indicates the lowest cost trajectory found by BIT*.

5. Conclusion
In this work, we presented a control framework, which enables safe simultaneous learning and

control. The safety of the method is certified by the tracking error bounds produced by the ancillary
contractionL1 controller. The learning is performed using Gaussian process regression. The learned
Gaussian process model can be used to generate high probability uniform error bounds, which are
incorporated into the controller to improve the tracking error bounds. Future work will extend the
architecture to leverage the tracking error bounds in the path planning phase. The bounds are used
to ensure safety, but can also be extended to provide worst case estimates for both the uncertainty
reduction and cost associated with a desired trajectory. Finally, the guarantees will be extended
to a larger class of nonlinear systems, explored in output feedback formulation, and other possible
generalizations.
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