Proceedings of Machine Learning Research vol 144:1-12, 2021

A unified framework for Hamiltonian deep neural networks

Clara Lucia Galimberti CLARA.GALIMBERTI@EPFL.CH
Liang Xu LIANG.XU@EPFL.CH
Giancarlo Ferrari Trecate GIANCARLO.FERRARITRECATE @EPFL.CH

Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

Abstract

Training deep neural networks (DNNs) can be difficult due to the occurrence of vanishing/explod-
ing gradients during weight optimization. To avoid this problem, we propose a class of DNNs
stemming from the time discretization of Hamiltonian systems. The time-invariant version of the
corresponding Hamiltonian models enjoys marginal stability, a property that, as shown in previ-
ous works and for specific DNNs architectures, can mitigate convergence to zero or divergence
of gradients. In the present paper, we formally study this feature by deriving and analysing the
backward gradient dynamics in continuous time. The proposed Hamiltonian framework, besides
encompassing existing networks inspired by marginally stable ODEs, allows one to derive new
and more expressive architectures. The good performance of the novel DNNs is demonstrated on
benchmark classification problems, including digit recognition using the MNIST dataset.
Keywords: Deep Neural Networks, Dynamical Systems, Hamiltonian Systems, Gradient Dynam-
ics.

1. Introduction

Deep learning has achieved remarkable success in different fields like computer vision, speech
recognition and natural language processing (He et al., 2016; Xiong et al., 2017). There is also a
growing interest in using deep neural networks (DNN5s) for approximating complex controllers (Lu-
cia and Karg, 2018; Zoppoli et al., 2020). In spite of several progresses, the training of DNNs still
presents some difficulties. Most optimization algorithms for DNNSs, such as stochastic gradient de-
scent, involve the computation of gradients that, as observed in Bengio et al. (1994), can explode or
vanish, hence making the learning problem ill-posed.

Recently, it has been shown that these issues are mitigated for specific classes of DNNs which
stem from the time discretization of ordinary differential equations (ODEs) (Haber and Ruthotto,
2017; Haber et al., 2018; Chang et al., 2019; Lu et al., 2018; E, 2017). These results leverage the
stability properties of the underlying ODE for characterizing relevant behaviours of the correspond-
ing DNNs (Haber and Ruthotto, 2017). Specifically, instability of the underlying ODE results in
unstable forward propagation in the DNN model, while convergence to zero of system states can
lead to vanishing gradients during training. This observation suggests using DNN architectures
based on dynamical system models that produce bounded and non-vanishing state trajectories. An
example is provided by ODEs based on skew-symmetric maps, which have been used in Haber and
Ruthotto (2017); Chang et al. (2019) for defining anti-symmetric DNNs. Another example is given
by dynamical systems in the form

y=-VzH(y,z), z=VyH(y,z), ey

© 2021 C.L. Galimberti, L. Xu & G. Ferrari Trecate.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

where H (-,-) is a Hamiltonian function. This class of ODEs has motivated the development of
Hamiltonian-inspired DNNs in Haber and Ruthotto (2017), whose effectiveness has been shown in
several benchmark classification problems (Haber and Ruthotto, 2017; Chang et al., 2019, 2018).

However, all these works consider only restricted classes of skew-symmetric maps or particular
Hamiltonian functions, which, together with the specific structure of the dynamics in (1), limit the
representation power of the resulting DNNs.

In this work, we leverage general models of Hamiltonian systems (van der Schaft, 2017) and
provide a unified framework for defining Hamiltonian DNNs (H-DNNs for short), which, under very
mild assumptions, encompasses anti-symmetric and Hamiltonian-inspired networks. Furthermore,
we define new classes of DNNs, which are more expressive than those in Haber and Ruthotto (2017)
and Chang et al. (2018, 2019), and can achieve comparable performance while using less layers. We
show this feature using several benchmark classification problems, including digit recognition based
on the MNIST dataset.

Hamiltonian dynamics can be marginally stable by construction, independent of the specific
model parameters. We leverage this property and the use of regularized loss functions penalizing
the variation of weights over consecutive layers (Haber and Ruthotto, 2017) for studying the well-
posedness of the training process. To this purpose, we first consider the simplified setting where
DNN weights are constant across layers, which corresponds to letting the regularization parameter
grow to infinity. By analysing the underlying ODE, we prove the marginal stability of the backward
gradient dynamics, which implies the absence of vanishing/exploding gradients during training.
In addition, we present a simulation study showing that this property is also verified when the
regularisation parameter is finite and network parameters can change across layers.

The reminder of our paper is organized as follows. Related works are discussed in Section 2.
In Section 3, we present H-DNNSs, and analyse the stability properties of the backward gradient
dynamics. Numerical examples are provided in Section 4, which is followed by concluding remarks
in Section 5. Throughout this work, we use the column convention for gradients, i.e. the gradient
V f of a real-valued function f(x) is a column vector.

2. Related works
2.1. DNN induced by ODE discretization

The connection between neural networks and ODEs can be established by starting from the
nonlinear system

y(t) =f(y(®),0(t), y(0)=yo, y(t)eR", 0<t<T, 2)

where 0(t) € R™ is a vector of parameters. For a given N € N, we consider the forward Euler
discretization of (2) with time step h = % > 0, giving

Yj+IZYj+hf(yj70j>7 forj =0,1,...,N — 1. 3)

Equation (3) can be seen as the model of a residual neural network with N layers (He et al., 2016),
where y;,y;+1 € R" are the input and output vectors of layer j, respectively. We highlight that, for
the discretization of (2), one could replace the forward Euler method with different discretization
methods, hence obtaining different DNN architectures (Haber and Ruthotto, 2017). In DNNs, (3)

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

is usually complemented with an output layer yn+1 = fn(yn, On) that depends on the nature of
the learning problem (e.g., regression or classification).

DNN training is performed by computing the network weights that minimize a loss function
E(y}vﬂ, oY N1, 6), where {1,..., s} is the index set of samples used to optimize the network
weights and @ collects all DNN parameters. A remarkable feature of ODE-inspired DNNss is that
their properties can be studied, albeit in an approximate way, in terms of the continuous-time non-
linear system (2), which is often easier to analyse than (3) (Haber and Ruthotto, 2017).

2.2. Vanishing/exploding gradients

An obstacle that is commonly faced when training DNNs using gradient based optimization
methods, is the problem of exploding/vanishing gradients. Gradient descent methods update the
vector 6 as

ot =) — 5. VoL &5

where v > 0 is the optimization step size. In particular, by using the chain rule, the gradient of the
loss function w.r.t. the parameter ¢ of layer j can be obtained as

(&)

0L _Oyjm 0L _ dyjn H 0y141
6014- agm' (9}’]'4_1 89173' =i+ 6yl 8yN

The problem of vanishing/exploding gradients is commonly related to the layer gradient magni-

tudes HM y Il =0,...,N — 1. If these terms are all very small, since HHl]\;;Jlrl aglytl) <
Oyi+1 . oL

l = +1 H Iy, , the gradient 7> Vanlshes and the training stops. Vice versa, if these terms

are very large, ae becomes very sensitive to perturbations in the vectors 68)'9”“ and = y , and

this can make the learmng process unstable or cause overflow issues. Both problems are generally
exacerbated when the number of layers N is large (Goodfellow et al., 2016).

For analysing the phenomenon of exploding/vanishing gradients in the context of recurrent
neural networks, Chang et al. (2019) consider the system (2) and show that the matrix ¢(¢,0) =

g;'((é)) € R™*"™ obeys the linear time-varying dynamics

é(ta 0) = J(t)¢(t> O)a ¢(07 O) =1 (6)

where J (t) = 9 a;((5) In particular, ¢(¢,0) can be seen as the continuous-time counterpart of

the neural network gradient 3 9k , which is similar to the terms appearing in (5). For the sake of

simplicity, let us consider the snnpler case where J (t) = J is time-invariant. The properties that
|p(t,0)||, neither diverges nor vanishes as ¢ — 400 corresponds to the marginal stability of (6),
which is equivalent to requiring that each eigenvalue of J has zero real part and its geometric
and algebraic multiplicity coincide (see, e.g. Khalil (2002)). Under suitable assumptions, similar
conditions can be also reached if J (¢) varies slowly enough in time (Ascher, 2008).

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

2.3. Anti-symmetric and Hamiltonian-inspired DNNs

Motivated by the goal of mitigating the problem of vanishing/exploding gradients, as well as
of having a marginally stable forward dynamics (2)!, various DNN architectures have been pro-
posed. They are summarized below, where matrices K and b denote the trainable parameters and
o(-) : R — R is an activation function applied element wise to a vector argument. The network
structures are called MS;-DNN (¢ = 1, 2, 3) and, for each of them, the underlying ODE as well as
the discretization method used are specified.

e MS;{-DNN (Haber and Ruthotto, 2017)
— Layer equation: Zj+1 = Zj — hU(K;OYJ + bjﬁl) and Yi+1 =Y + hO‘(Kj,()ZjJrl + bj)g)

— Underlying ODE: [¥](t) =0 ([4{%@) K%(t)} [¥](t) + [‘;;] (t))

— Discretization method: Verlet
e MS,-DNN (Haber and Ruthotto, 2017; Chang et al., 2019)

- Layer equation: y; 1 =y; + ho(K,y; + b;) where all K; matrices are skew-symmetric
— Underlying ODE: y(t) = o(K(t)y(t) + b(t)) where K(¢) are skew-symmetric V¢ > 0

— Discretization method: forward Euler

e MS3-DNN (Chang et al., 2018)
— Layer equation: Yi+1 = Yj+hK;10'(Kj,1Zj+bj,1) and Zjy1 = Zj_thTQU(Kj,QYj+1 —l—bj,g)

- Underlying ODE: [¥](0) = [_o- |0 ([,]@1zI0 + [32])

— Discretization method: Verlet

It is worth to remark that these networks can achieve very good performance on different classi-
fication problems including benchmark problems in image classification such as MNIST and CIFAR
10 (Haber and Ruthotto, 2017; Chang et al., 2018, 2019). We highlight that models MS; and MS3
have been called Hamiltonian-inspired in view of their similarity with Hamiltonian models (com-
pare, e.g. the underlying ODE of MS;-DNN and (1)). However, Haber and Ruthotto (2017); Chang
et al. (2018) do not provide a precise Hamiltonian function for the corresponding ODEs.

3. Hamiltonian neural networks (H-DNNs)

In this section, we consider a general class of continuous time Hamiltonian system that we
utilize for defining new DNN architectures. We also show that, under weak assumptions, MS;-
DNN models, ¢ = 1,2, 3, can be obtained as special cases of the proposed networks. Finally, by
assuming constant weights, we analyse marginal stability of the backward gradient dynamics, and
provide arguments for supporting the claim that vanishing/exploding gradients are not expected
during training.

1. As shown in Haber and Ruthotto (2017), this property guarantees reduced sensitivity to perturbations and adversarial
attacks on the input features.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

3.1. Hamiltonian dynamics

We consider time-varying Hamiltonian systems (Guo and Cheng, 2006) defined by the ODE

0H(y,1)
v(t) =J(y,t)————— 7
where the interconnection matrix J(y,t) € R™¥" is skew-symmetric i.e. J(y,t) = —J"(y,1)

Vt > 0,and H(y(t),t) € R is the Hamiltonian function. Both J and H are assumed to be smooth
functions of all their arguments.

The more common notion of a time-invariant Hamiltonian system (van der Schaft, 2017) can
be recovered when J and H do not depend upon time. Time-invariant Hamiltonian systems are
marginally stable by construction when H (y) is a positive definite function (Khalil, 2002). There-
fore, as discussed in Section 2.2, they are a good candidate for defining well-posed DNNs. The
same is true for the time-varying model (7), provided that the Hamiltonian changes slowly enough
over time.

In the sequel, we focus on the following energy function

H(y(t).t) = [log(cosh(K(1)y(t) + b(1)))] " 1 (®)
where log(-) and cosh(-) are applied element-wise, and 1 = [1,...,1]T. We obtain
OH(y(t),t) _0(K()y(t) +b(t)) OH(y(t)1)

= T an
oy(ty oy ARy @) + by~ O tanh(E @Oy + b)) ©)

where tanh(-) is applied element-wise. Hence, system (7) becomes
y(t) = I(y,)K" () tanh(K(8)y (t) + b(1)). (10)

3.2. H-DNNs: relations with existing networks and new architectures

We show that the underlying ODEs of the MS;-DNNs (see Section 2.3) are particular instances
of (10) when o(-) = tanh(-) and

0 Kot)

e for MS;-DNN, K(t) = [_KT(t) 0
0

} is invertible ¥¢ > 0 and J(y,)K T (t) = L,
e for MSo-DNN, K(t) = —K T (¢) is invertible V¢ > 0 and J(y, t)K ' (¢) =1,

o for MSy-DNN, K (1) = [0, X5 | and 3(y.1) = [% 4].

A necessary condition for the skew-symmetric 7 x n matrix K(¢) to be invertible is that the size
n of input features is even?. If n is odd, however, one can perform input-feature augmentation by
adding an extra state initialized at zero to satisfy the previous condition (Dupont et al., 2019).

Next, we introduce two new architectures (called H;-DNN, ¢ = 1, 2) stemming from (10) when
J(y,t) is constant and forward Euler discretization with step h > 0 is applied. The resulting layer
equations are

2. For an x n skew-symmetric matrix A we have, det(A) = det(AT) = det(A™') = (—=1)" det(A). If n is odd,
then det(A) = — det(A) = 0. Thus, A is not invertible.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

0o 1 .1
-1 0 ... 1

where we set J(y,t) = [% §] for H-DNN, and J(y,t) = || for Hy-DNN.
S1-1.00
In spite of the specific choices of J, both DNNs contain more trainable parameters in each layer
than MSS;-DNN, ¢ = 1, 2, 3. In this sense, they are more expressive than MS; architectures and, as
shown later in Section 4.1, one can use less layers while obtaining similar prediction accuracy.

Remark 1 Although it is not guaranteed that Euler discretization preserves marginal stability of
the continuous-time dynamics, it leads to simpler layer equations compared to more sophisticated
discretization approaches, and can achieve good performance on benchmark examples (see Section
4.1). Moreover the discretization accuracy can be controlled through T and h. These features may
be attractive to practitioners.

3.3. Training algorithm

For all DNN architectures introduced in Section 3.2, we consider multicategory classification
problems where M is the number of classes, and the input features and their corresponding true
labels are (ylg,),k =1,...,5c" € {0,...,M — 1}. The networks are trained by solving the
optimization problem

. 1L
min 5 Z L(En(yh),c™) +acRy(On) + @ R(Ko. _N—1,bo._.N—1)
k=1

sty =y +hI;(yMK] tanh(Kjyh + b)), j=0,1,...,N—1 (12)

where Ry (+) is the Lo regularization term of the output layer® and R(-) is the regularization term

of layers 0, ..., N — 1. The output layer is problem dependent, e.g. for a two class classification
problem, it is usually given by fn(yn,O0n) = 0c(Wyy + 1) where W € RY>*" 1 € R, Oy =
(W, u) and o.(z) = 7 é_x is the logistic function. The minimization is done over 6, i.e., all the

trainable parameters that define the network {Ko . n—1,bo_. n—1, W, u}.
Following the work in Haber and Ruthotto (2017) and Chang et al. (2018), we define the regu-
larization term for the H-DNNs as R = Ri (Ko, n—1) + Rp(bo,...N—1), where

h N—-1 h N—-1
2 2
Rk (Ko, ,N-1) = 5 E 1 IK; — Kj-1l|z and Rp(bo,. .n-1) = 5 E 1 [b; —bj—1]|” (13)
J= J=

so as to favour weights that vary smoothly between adjacent layers. The coefficients o« > 0 and
. > 0% are hyperparameters that represent the trade-off between fitting and regularization.
3.4. Stability of the backward gradient dynamics

As discussed in Section 2.2, to avoid vanishing/exploding gradients, we would like to ensure
that the following terms are not vanishing nor exploding

N-1 9 9
I1 gl“ :aYN forj =N —2,...,0. (14)
I=j+1 Y1 Yj+1
3. For a two class classification problem, it is given by Rx(-) = ||[W/||* + x. For multicategory problems, we refer

the reader to Haber and Ruthotto (2017).
4. o is usually called weight decay.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

This analysis can also be tackled from the continuous-time perspective by considering (2) and noting

that (14) corresponds to %, where t = h(j + 1), T = h(N — 1) and h is the step size.

We call the evolution of ¢(T, T —t) = af,%l}r{)t) the backward gradient dynamics because T —t
decreases from T to zero as t increases. This term is different from the one considered in (6) which
captures the sensitivity to input features and not the evolution across layers of gradients appearing
in backpropagation.

Our next goal is to obtain the dynamics of ¢(T', T — t) for the Hamiltonian model (10). We start
from the simple case where the parameters of (10) are constant, i.e. J(y(¢),t) = J, K(¢) = K,
b(t) = b, and call the corresponding networks time-invariant H-DNNs. The following Lemma,

whose proof can be found in Appendix A of Galimberti et al. (2021), provides the desired model.

Lemma 2 Given the time-invariant ODE y(t) = f(y(t)), the time evolution of ¢(T,T — t) is

given by
d of
—o(T, T —t)= —
GOT 1) = o=

y(T-)

Since in our case f(y(t)) = JK tanh(Ky(t) + b), we have

o 0 [- _ .
5 = By <K tanh(Ky +b)) 37 = 5, (tanh(Ky + b)) KJ

= K 'diag (tanh’/(Ky + b)) KJ' = K 'D(y)KJ (16)

where D(y) = diag (tanh’(Ky + b)) and tanh’(-) computes element-wise the derivative of tanh(-).
The next two lemmas, proved in Appendix A of Galimberti et al. (2021), show that the Jacobian
matrix (16) satisfies the conditions for marginal stability.

Lemma 3 The eigenvalues of % are purely imaginary.

Lemma 4 The algebraic and geometric multiplicity of each eigenvalue of g—; do coincide.

As shown in the corresponding proofs, Lemma 3 hinges on results available in Chang et al.
(2019). However, the multiplicity of the eigenvalues of (‘% (Lemma 4) has not been analysed in
previous publications.

If D(y(t)) is constant, Lemmas 3 and 4 imply that ¢»(7, T" — t), neither diverges nor converges
to zero, irrespectively of the weights J, K and b and the final time 7". This property, however, can
be compromised by the time-varying nature of D(y(¢)) and the weights (K(¢) and b(t)) as well
as the time discretization process underlying (14). Nevertheless, Lemmas 3 and 4 suggest that if
D(y(t)), K(t) and b(t) change slowly enough and is sufficiently small, the growth or decrease

of the terms gﬂ can be kept under control.
Yi+1 2

While we do not provide a complete theoretical analysis when D(y(¢)), K(¢) and b(¢) are time
varying, we simply highlight that changes in the parameters K; and b; across the layers of H;-DNN,
1 = 1,2, can be controlled by suitably choosing the regularization parameter « in (12). Moreover,
in Section 4.3, we provide a simulation study of the backward gradient dynamics confirming the
absence of vanishing/exploding gradients when K; and b; are not constant.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

Table 1: Classification accuracies over test sets for different examples using different network struc-
tures with 4 neurons (nf) each layer. The first three columns represent the existing struc-
tures while in the two last columns we present the results for the new H-DNNs. The first
two best accuracies in each row are in bold. Last row presents the number of parameters
per layer of each network.

MS;-DNN | MS2-DNN | MS3-DNN || H;-DNN | H2-DNN
Swiss 4 layers 77.1% 79.7% 90.1% 93.6% 98.9 %
roll 8 layers 91.5 % 90.7% 87.0% 99.0% 99.4%
16 layers 97.7% 99.7% 97.1% 99.8% 99.8%
32 layers 100% 100% 98.4% 99.8% 99.2%
64 layers 100% 100% 100% 99.8% 100%
Double 1 layer 92.5% 91.3% 97.6% 100% 99.9 %
moons 2 layers 98.2% 94.9% 99.8% 100% 100%
4 layers 99.5% 100% 100% 100 % 100%
#mmmmmﬁmw %+ﬂ ﬁﬁf %+ﬂ‘hﬁ+ﬂ nf2 + nf

4. Numerical examples
4.1. Binary classification examples

We test MS- and H-DNNs introduced in Section 3 on two benchmark examples (the “Swiss
roll” and the “double moons” datasets in Figures 1(a) and 1(b)) concerning binary classification
with features in R?.

As in Haber and Ruthotto (2017), we consider MS- and H-DNNs with augmented input fea-
tures (Dupont et al., 2019) so as to increase the modelling power. More specifically, input feature
vectors are given by [(y5)T 0 O]T € R* where ylg € R% k =1,...,s are the input datapoints (see
Figures 1(a) and 1(b)). We complement the DNNs with an output layer yn1+1 = fn(yn, On) (see
Section 3.3). The optimization problem is solved using the Adam algorithm with minibatches (see
Appendix B of Galimberti et al. (2021) for details), and standard cross-entropy (Goodfellow et al.,
2016) as the loss function £ in (12).

In Table 1, we present the classification accuracies over test sets for the network structures in
Section 3 with different number of layers. It can be seen, for a fixed number of layers, that the per-
formances of H;-DNN and Ho-DNN are similar or better compared to the other networks. This can
be motivated by the fact that, as discussed in Section 3.2, the new architectures are more expressive
than MS;-DNNs. We indicate in the last row of Table 1, the number of parameters per layer of each
network. Note that networks with same number of parameters have similar performance.

The coloured regions in Figure 1 show the predictive power of an example network (H;-DNN).
It can be noticed that the datapoints do not lie close to the decision boundary, hence confirming the
robustness of classification against perturbation of input features.

4.2. Experiments with the MNIST dataset

We evaluate our methods on a standard image classification benchmark: MNIST?.

5.http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

T:0.80 - 64 layers - Results over test set T: 0.80 - 4 layers - Results over test set

Figure 1: Results for the H;-DNN architecture with (a) 64 and (b) 4 layers. Labelled datapoints for
(a) “Swiss roll” and (b) “double moons”. Coloured regions representing the predictions
of the trained DNNss.

Table 2: Classification accuracies over train and test sets for MNIST example using MS;-DNN and

H>-DNN.
Number of MS;-DNN H2-DNN
layers Train Test Train Test
0 93.730% 92.47% | 93.828% 92.41%
2 99.570% 97.72% | 99.815% 97.83%
4 99.970% 98.03% | 99.789% 98.02%
8 99.982% 98.05% | 99.707% 98.22%
16 100% 98.14% | 99.503% 98.21%

The dataset consists of 28 x 28 digital images in gray scale of hand-written digits from O to 9
with their corresponding labels. It contains 60,000 train examples and 10,000 test examples.

Following Haber and Ruthotto (2017), the network architecture consists of a convolutional layer
followed by a Hamiltonian DNN and an output layer. The convolutional layer is a linear transforma-
tion that expands the data from 1 to 8 channels, and the output layer uses all the output values (i.e.,
no pooling is performed) for a linear transformation plus a softmax activation function to obtain a
vector in R'? that represents the probabilities of the data to belong to each of the 10 classes.

For the Hamiltonian DNN, we use MS;-DNNs and H,-DNNs® with 2, 4, 8 and 16 layers. We set
h = 0.4 for MS;{-DNNs and A = 0.05 for H,-DNNs. Moreover, we include as a baseline, the results
obtained when omitting the Hamiltonian DNN block, i.e., when considering only a convolutional
layer followed by the output layer. The implementation details can be found in the Appendix B of
Galimberti et al. (2021).

Table 2, summarizing the train and test accuracies of these networks, shows that both network
structures achieve similar performance. Note that, while the training errors are almost zero, the test
errors are reduced when incrementing the number of layers. Moreover, these results are in line with
test accuracies obtained when using standard convolutional layers instead of Hamiltonian DNNSs.

6. Similar results can be obtained using other MS or H-DNNss.

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

w
&

Layer =11 Layer =11
— Layer/=21 — Layert=21

w
&

— Layer/=31
— Layerf=41

— Layert=31

‘ — layeri=1 — layeri=1

ot
S

.4
s
norm: ||ayw/oy:l|
N
&

Gradient norm: ||ayw/ay||
't norm
[P
& 3

G
s

N a2 o

Figure 2: Evolution of the 2-norm of ‘?’sz, ¢ =1,11,21,31,41,51,61, during the training (960
iterations) of a 64-layer (a) H;-DNN and (b) time-invariant H;-DNN.

4.3. Gradient analysis

In order to provide evidence of good numerical results during training, we analyse the evolution
of the terms (14) for deep networks. At each optimization step, the gradient of the loss function
with respect to each of the parameters is calculated (backward propagation). In this analysis, we
study the Jacobian matrices % in (14), and we plot in Figure 2 their norms for some layers and
for each of the 960 iterations composing the training process when using H-DNNss.

Using “Double moons” example, we train a 64-layer H;-DNN, a variant of the same network
where we impose the parameters of all layers to coincide, i.e. a time-invariant network with K (t) =
K and b(t) = b, and a fully-connected neural network (FCNN) with 32 layers’.

For the H-DNNSs case, it can be seen that the norms of the terms 66%_1’1 for j = 0,10,...,60 are
J

bounded in the intervals [1, 17] and [1, 37] during the whole training. Results are similar when using
deeper networks. Although it is not shown, we highlight that the gradients % do converge to zero
in approximately 500 and 300 iterations respectively, showing that the optimization algorithm has
achieved a (possible local) minimum. When using FCNN, however, it can be shown that gradient
norms quickly tends to zero once the network is deep enough. For instance, for the 32-layer FCNN,

the training stops in approximately 200 iterations and the final test accuracy is only 50%.

5. Conclusions

We present a unified framework for DNNs based on Hamiltonian systems which encompasses
existing classes of marginally stable networks. We define two new DNN structures, which are more
flexible than existing ones, while having similar of better performance. We present the analysis
of the backward gradient dynamics for time-invariant DNNs and show a simulation study for the
time-varying case.

Our work is a first step towards the design of new families of H-DNNs since different Hamil-
tonian energy functions originate new architectures. Future research will also focus on the use of
different discretization schemes for defining alternative layer equations.

7. See Appendix B of Galimberti et al. (2021) for implementation details.

10

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

References

Uri M. Ascher. Numerical Methods for Evolutionary Differential Equations. Society for Industrial
and Applied Mathematics, USA, 2008. ISBN 0898716527.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In AAAI Conference on Artificial
Intelligence, 2018.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. In International Conference on Learning Representations,
2019.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 3140-3150. Curran Associates, Inc., 2019.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathemat-
ics and Statistics, 5:1-11, Feb 2017.

Clara L. Galimberti, Liang Xu, and Giancarlo Ferrari Trecate. A unified framework for Hamlitonian
deep neural networks. arXiv preprint arXiv:2104.13166, 2021.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge,
MA, USA, 2016.

Yugian Guo and Daizhan Cheng. Stabilization of time-varying Hamiltonian systems. IEEE Trans-
actions on Control Systems Technology, 14(5):871-880, 2006.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, Dec 2017.

Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across scales—
multiscale methods for convolution neural networks. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, 3rd edition, 2002.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In 6¢h International Conference
on Learning Representations, ICLR 2018, Jan 2018.

Sergio Lucia and Benjamin Karg. A deep learning-based approach to robust nonlinear model pre-
dictive control. /FAC-PapersOnLine, 51(20):511-516, 2018. ISSN 2405-8963.

11

A UNIFIED FRAMEWORK FOR HAMILTONIAN DEEP NEURAL NETWORKS

Arjan van der Schaft. Ly-Gain and Passivity Techniques in Nonlinear Control. Springer, 2017.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Michael L. Seltzer, Andreas Stolcke,
Dong Yu, and Geoffrey Zweig. The microsoft 2016 conversational speech recognition system.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5255-5259, Mar 2017.

Riccardo Zoppoli, Marcello Sanguineti, Giorgio Gnecco, and Thomas Parisini. Neural Approxima-
tions for optimal control and decision. Springer, 2020.

Acknowledgments

Research supported by the Swiss National Science Foundation under the NCCR Automation
(grant agreement SINF40_180545).

12

	Introduction
	Related works
	DNN induced by ODE discretization
	Vanishing/exploding gradients
	Anti-symmetric and Hamiltonian-inspired DNNs

	Hamiltonian neural networks (H-DNNs)
	Hamiltonian dynamics
	H-DNNs: relations with existing networks and new architectures
	Training algorithm
	Stability of the backward gradient dynamics

	Numerical examples
	Binary classification examples
	Experiments with the MNIST dataset
	Gradient analysis

	Conclusions

