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Abstract
The linear-quadratic controller is one of the fundamental problems in control theory. The optimal
solution is a linear controller that requires access to the state of the entire system at any given time.
When considering a network system, this renders the optimal controller a centralized one. The
interconnected nature of a network system often demands a distributed controller, where different
components of the system are controlled based only on local information. Unlike the classical cen-
tralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus,
we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs
are naturally local and have distributed architectures, making them well suited for learning non-
linear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning
problem, we are able to find the best GNN-based distributed controller. We also derive sufficient
conditions for the resulting closed-loop system to be stable. We run extensive simulations to study
the performance of GNN-based distributed controllers and showcase that they are a computation-
ally efficient parametrization with scalability and transferability capabilities.
Keywords: Distributed control, linear-quadratic control, graph neural networks

1. Introduction

Undoubtedly, linear dynamical systems are the cornerstone of countless information processing
algorithms in a wide array of areas, including physics, mathematics, engineering and economics
(Kailath, 1980; Rugh, 1996). Therefore, the ability to optimally control these systems is of paramount
importance (Kwakernaak and Sivan, 1972; Bertsekas, 2005). Of particular interest is the case when
linear systems are coupled with a quadratic cost, giving rise to the well-studied linear-quadratic
control problem (Anderson and Moore, 1989; Makila and Toivonen, 1987; Dean et al., 2020). As it
happens, the optimal linear-quadratic controller is linear and acts on the knowledge of the system
state at a given time to produce the optimal control action for that time instant.

A special class of dynamical systems that has gained widespread attention are network sys-
tems. These systems are comprised of a set of interconnected components, capable of exchanging
information and equipped with the ability to autonomously decide on an action to take. The ob-
jective is to coordinate the individual actions of the components so that they are conducive to the
accomplishment of some global task (Bamieh et al., 2002; Nayyar et al., 2013; Fattahi et al., 2019c).

Linear network systems that seek to minimize a global quadratic cost can be easily controlled if
we allow for a centralized approach. That is, if we assume that all components have instantaneous
access to the state of all other components, they can readily compute the optimal control action.
Furthermore, such an optimal centralized controller is linear. Computing optimal centralized con-
trollers, however, face limitations in terms of scalability and implementation.
∗ This work was supported by grants from ONR, NSF and AFOSR.
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The interconnected nature of network systems naturally imposes a distributed data structure.
While this structure may affect the linear dynamics of the system, or even the objective quadratic
cost, we are predominantly interested in leveraging the data structure to obtain distributed con-
trollers. These are control actions that depend only on local information provided by components
that share a connection and that can be computed separately by each component.

Imposing a distributed constraint on the linear-quadratic control problem renders it intractable
in the most general case (Witsenhausen, 1968; Tsitsiklis and Athans, 1984). While there is a large
class of distributed control problems that admit a convex formulation (Rotkowitz and Lall, 2006),
many of them lead to complex solutions that do not scale with the size of the network (Tanaka and
Parrilo, 2014; Fattahi et al., 2019a). An alternative approach is to adopt a linear parametrization
of the controller and find a surrogate of the original problem that admits a scalable solution. The
resulting controller is thus a sub-optimal linear distributed controller. Suboptimality guarantees
are often obtained, and stability and robustness analysis of the resulting controller are provided
(Fazelnia et al., 2017; Wang et al., 2019; Fattahi et al., 2019b)

However, even in the context of linear network system with a quadratic cost, the optimal dis-
tributed controller may not be linear (Witsenhausen, 1968). In this paper, we thus adopt a nonlinear
parametrization of the controller. More specifically, we focus on the use of graph neural networks
(GNNs) (Bronstein et al., 2017; Gama et al., 2020b). GNNs consist of a cascade of blocks (com-
monly known as layers) each of which applies a bank of graph filters followed by a pointwise
nonlinearity (Bruna et al., 2014; Defferrard et al., 2016; Gama et al., 2019a). GNNs exhibit sev-
eral desirable properties in the context of distributed control. Most importantly, they are naturally
local and distributed, meaning that by adopting a GNN as a mapping between states and actions, a
distributed controller is automatically obtained. Furthermore, they are permutation equivariant and
Lipschitz continuous to changes in the network (Gama et al., 2020a). These two properties allow
them to scale up and transfer to unknown networks (Ruiz et al., 2020).

Distributed controllers leveraging neural network techniques can be found in (Capella et al.,
2003; Huang et al., 2005; Choy et al., 2006; Chen and Lin, 2013; Liu et al., 2015; Yang et al.,
2017; Tolstaya et al., 2019; Li et al., 2020). These controllers typically use a distinct multi-layer
perceptron (MLP) to parametrize the controller at each component (Capella et al., 2003; Huang
et al., 2005; Choy et al., 2006; Chen and Lin, 2013; Liu et al., 2015; Yang et al., 2017), while GNNs
are leveraged in (Tolstaya et al., 2019; Li et al., 2020) in the context of robotics problems.

The main contributions of this work are: (i) the use of graph neural networks (Section 3) as a
practically useful nonlinear parametrization of the distributed controller for a linear-quadratic prob-
lem (Section 2), (ii) casting the linear-quadratic problem as a self-supervised learning problem that
can be solved by traditional machine learning techniques [cf. (12)], (iii) a sufficient condition for
the resulting GNN-based controller to stabilize the system (Proposition 1), and (iv) a comprehen-
sive numerical simulation investigating the performance of GNN-based distributed controllers and
its dependence on design hyperparameters, as well as its scalability and transferability (Section 4).

2. Distributed Linear-Quadratic Controllers

Consider a system of N components, each one described at time t ∈ {0, 1, 2, . . . , T} by a state
vector xi(t) ∈ RF for i = 1, . . . , N . These components are also equipped with the ability to take
an action ui(t) ∈ RG that can influence future values of its own state, as well as the states of other
components in the system, as determined by some given dynamic model . The state and the control
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actions can be compactly described by matrices X(t) ∈ RN×F , U(t) ∈ RN×G, respectively, with

X(t) =

x1(t)
T

...
xN (t)T

 (1)

and analogously for U(t), i.e. the ith row of U(t) is the action ui(t) ∈ RG taken by component i at
time t. We are particularly interested in linear system dynamics, modeled as (Kailath, 1980, Ch. 6)

X(t+ 1) = AX(t) + BU(t)B̄ (2)

with the given matrix A ∈ RN×N known as the system matrix, and the matrices B ∈ RN×N and
B̄ ∈ RG×F known as the control matrices. We note that F is the dimension of the state vector at
each component and G is the dimension of the control action executed by each component. In this
context, the matrix B̄ acts as a linear map between the G values of each individual control action
ui(t) and the F values of each individual state xi(t).

A linear-quadratic regulator (LQR) is a controller that minimizes a quadratic cost on the states
and the control actions (Bertsekas, 2005, Sec. 4.1):

J
(
{X(t)}Tt=0, {U(t)}T−1t=0 ; Q,R

)
=
∥∥Q1/2X(T )

∥∥2 +
T−1∑
t=0

(∥∥Q1/2X(t)
∥∥2 +

∥∥R1/2U(t)
∥∥2) (3)

for some given positive semidefinite matrices Q,R ∈ RN×N and for some given matrix norm
‖ · ‖. We note that if we set F = G = 1, then the state and control actions become vectors
x(t),u(t) ∈ RN , respectively, and by choosing the Euclidean norm, the quadratic cost (3) results in
the well-known cost of the traditional LQR problem (Anderson and Moore, 1989). In this case, the
optimal control actions that solve the LQR problem can be computed directly by means of a linear
map of the state value, i.e. u?(t) = K?

tx(t), with K?
t ∈ RN×N having a closed-form solution in

terms of A,B,Q,R (Bertsekas, 2005, Ch. 4). In summary, the objective of the LQR problem is to
find a sequence of control actions {U(t)} such that (3) is minimized, subject to the dynamics in (2).

In what follows, we focus on the case where the system is distributed in nature. This means that
the components of the system can only interact with those other components to which they have
a direct connection. To describe this connectivity pattern, we model the system as a graph G =
{V, E}, where V = {v1, . . . , vN} is the set of nodes with node vi representing the ith component
in the system and where E ⊆ V × V is the set of edges with (vi, vj) ∈ E if and only if the ith

component is connected to the jth one. The distributed nature of the system typically has an impact
on the structure of the system matrix A and the control matrix B [cf. (2)], usually respecting the
topology of the graph (i.e. the sparsity of the adjacency matrix). More generally, we assume that the
matrices A and B share the sparsity of some k-hop shortest path between neighbors, i.e. that the
(i, j) entry of the matrix may be nonzero if and only if there is a k-hop path between vi and vj for
some (unknown) value of k. We note that this may lead to non-sparse matrices, but that still exhibit
a strong structure related to the underlying connectivity of the system. Examples include, both
discrete-time (Gama and Ribeiro, 2019) and continuous-time (Olfati-Saber et al., 2007) diffusion
models, as well as heat processes (Thanou et al., 2017), among others (Gama et al., 2019b).

Another fundamental aspect where the distributed nature of the system has a key impact is on
the controller. More specifically, we concentrate on finding controllers that minimize the quadratic
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cost (3) and whose action can be computed by means of operations that respect the connectivity
of the system. We consider that the computational operations required to obtain each component’s
control action ui(t) from the state X(t) only involve information relied by other components to
which component i is connected. We call them distributed controllers and denote them by

U(t) = Φ
(
X(t);G

)
(4)

where Φ : RN×F → RN×G and where the mapping is explicitly parametrized by the graph G. We
have assumed, to ease the learning process, that the distributed controller is static.

The optimal distributed LQR controller can then be found by solving the following problem:

min
Φ∈ΦG

J
(
{X(t)}Tt=0, {U(t)}T−1t=0 ; Q,R

)
(5)

s. t. U(t) = Φ
(
X(t);G

)
(6)

where ΦG is the space of all possible mappings RN×F → RN×G that respect the structure of the
graph. Solving problem (5)-(6) requires solving an optimization problem over the field of functions
ΦG . This is mathematically intractable in the general case (Jahn, 2007), and requires specific ap-
proaches involving variational methods (Cassel, 2013), dynamic programming (Bertsekas, 2005) or
kernel-based functions (Murphy, 2012, Ch. 14). However, when we drop the distributed constraint
(6), problem (5) can actually be solved resulting in a linear controller; but this is a centralized con-
troller that does not respect the distributed nature of the system. In any case, methods for solving
(5)-(6) require large datasets and exhibit poor generalization (Goodfellow et al., 2016, Ch. 6).

Considering the inherent complexities of functional optimization, a popular approach is to adopt
a specific model for the representation map Φ (Anthony and Bartlett, 1999, Ch. 2), leading to a
parametric family of representations. Then, finding the best representation amounts to finding the
optimal set of parameters, which results in a more tractable optimization problem over a finite-
dimensional space (Engl et al., 1996, Ch. 9). One such parametrization is that of distributed
linear controllers Φ(X(t);G) = H(G)X(t)H̄, where we optimize over the space of all matrices
H(G) ∈ RN×N (and H̄ ∈ RF×G) that respect the connectivity pattern of the system. Many prop-
erties of this parametric family of controllers have been studied, including stability, robustness and
(sub)optimality (Fazelnia et al., 2017; Fattahi et al., 2019b).

However, it is known that even a linear system like (2) may have a nonlinear optimal controller
if we force a distributed nature on it (Witsenhausen, 1968). This suggests that it would be more
convenient to work with nonlinear parametrizations, rather than linear ones. In particular, we focus
on graph neural networks (GNNs) (Bruna et al., 2014; Defferrard et al., 2016; Gama et al., 2019a)
as they are nonlinear mappings that exhibit several desirable properties. Fundamentally, they are
naturally computed by means of local and distributed operations. This implies that any controller
that is parametrized by means of a GNN respects the distributed nature of the system (as given by
the graph G), naturally incorporating the distributed constraint into the chosen parametrization.

3. Graph Neural Networks

Graph signal processing (GSP) is a convenient framework to describe distributed problems (Sandry-
haila and Moura, 2013; Shuman et al., 2013). For a given graph G = {V, E}, we define a graph
signal as the mapping x : V → RF that assigns an F -dimensional vector to each node, x(vi) = xi ∈
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RF . We can thus conveniently describe a graph signal by means of a matrix X ∈ RN×F so that
its ith row corresponds to the value of the signal at that node, x(vi) = xi. It is immediate that we
can consider both the system state X(t) and the control action U(t) as time-varying graph signals,
xt : V → RF and ut : V → RG, respectively [cf. (1), (2)].

Describing a graph signal by means of a matrix X is mathematically convenient but, in doing so,
we rescind the relationship between the signal and the underlying graph support. In other words, the
matrix X contains no information about the graph. To recover this relationship, we start by defining
the support matrix S ∈ RN×N , which respects the sparsity pattern of the graph, i.e. [S]ij = 0 for
i 6= j whenever (vj , vi) /∈ E . Therefore, the matrix S represents the underlying graph support, and
examples in the literature include the adjacency (Sandryhaila and Moura, 2013) and the Laplacian
(Shuman et al., 2013) matrices, as well as their normalized counterparts (Defferrard et al., 2016).

The support matrix S can then be used to define a linear mapping such that the output SX is
another graph signal whose values are related to the underlying graph support. More specifically,
the f th output value at the ith component is given by

[SX]if =

N∑
j=1

[S]ij [X]jf =
∑

j:vj∈Ni

[S]ij [X]jf (7)

where Ni = {vj : (vj , vi) ∈ E} ∪ {vi} is the neighborhood of node vi. Note that while the first
equality corresponds to the definition of the matrix multiplication, the second equality holds because
of the sparsity pattern of S, i.e. the only nonzero entries in S correspond to those nodes that share
an edge. In short, the linear map (7) yields an output graph signal that is a linear combination of
neighboring values of the input graph signal.

The support matrix S acts as an elementary operator between graph signals. More precisely,
it is a proper generalization of the unit time-shift (or time-delay) operator in traditional signal pro-
cessing; it just shifts the signal through the graph (diffuses the signal), often receiving the name of
graph shift operator (GSO). Therefore, we can use S as the basic building block to construct linear
graph filters as follows (Sandryhaila and Moura, 2013):

H(X; S) =

K∑
k=0

SkXHk (8)

for some polynomial order K and where Hk ∈ RF×G is the corresponding filter tap (or filter
coefficient). Certainly, the output of the graph filtering operation (8) is another graph signal, but
with G values at each node, so that H : RN×F → RN×G is a linear map between graph signals.

Linear graph filters as in (8) are local and distributed operations. To understand this, note that
matrix multiplications to the left of X compute linear combinations of signal values across different
nodes, while matrix multiplications to the right of X compute linear combinations of signal values
within the same node. Therefore, for the operation to be local, multiplications on the right need
to respect the sparsity of the graph, i.e. only combine values of nodes that are connected to each
other (multiplications to the left can be arbitrary). This is precisely the case when multiplying
by Sk = S(Sk−1) since the operation can be computed by k repeated exchanges with one-hop
neighbors. Additionally, by storing the values of the filter taps {Hk}, each node can compute the
corresponding output separately by leveraging the information provided by the k exchanges with its
one-hop neighbors. Thus, a linear graph filter is a local and distributed operation, making them well
suited for learning linear distributed controllers.
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The graph filter (8) is a proper generalization of the convolution operation and, thus, is usually
referred to as a graph convolution as well (Gama et al., 2020b). Technically speaking, (8) is a finite-
impulse response (FIR) graph filter. However, due to the finite nature of graphs, it also encompasses
infinite-impulse response (IIR) graph filters. In what follows, we focus on filters of the form (8) and
generically refer to them as graph filters.

Graph filters (8) naturally model linear distributed controllers, i.e. U(t) = H(X; S). However,
we are interested in learning distributed controllers that are capable of capturing nonlinear relation-
ships between the state and the control action. Towards this end, we introduce GNNs (Gama et al.,
2020b), which cascade L layers, each applying a graph filter followed by a pointwise nonlinearity

Φ(X; S) = XL , X` = σ
(

H`(X`−1; S)
)

(9)

for ` = 1, . . . , L, with X0 = X being the input graph signal. The function σ : R→ R is a pointwise
nonlinearity that acts on each entry of the graph signal (in a slight abuse of notation, we write σ(X)
to denote [σ(X)]ij = σ([X]ij)). The output of each layer is a graph signal X` ∈ RN×F` with
F0 = F and FL = G. The specific nonlinearity σ to be used, the size of the graph signals F`, and
the number of filters taps K` are design choices. We remark that once these values are chosen, the
space of possible GNN-based controllers is completely characterized by the values of the filters taps
{H`k}`,k at each layer (Gama et al., 2020b).

The GNN (9) exhibits several desirable properties for learning distributed nonlinear controllers.
Fundamentally, due to the pointwise nature of the nonlinearity, they retain the local and distributed
nature of graph filters. This means that their output can be computed separately at each node, by ex-
changing information with one-hop neighbors only. Additionally, they are permutation equivariant
and Lipschitz continuous to changes in the graph support S (Gama et al., 2020a). These two prop-
erties show how the GNNs effectively exploit the graph structure of the system to improve learning
(and thus, they are expected to work better when the dynamics are also graph-dependent), and fa-
cilitate scalability and transferability. Finally, we note that while permutation equivariance and
Lipschitz continuity to perturbations are properties also exhibited by linear graph filters, the GNNs
leverage the nonlinearity to increase the discriminative power, helping to capture more information
that graph filters do (Pfrommer et al., 2020).

All GNN-based controllers are naturally distributed. However, we are interested in those that
exhibit a small quadratic cost. That is, we are interested in finding the appropriate filter taps such
that (3) is minimized

min
{H`k}`,k

J
(
{X(t)}Tt=0, {U(t)}T−1t=0 ; Q,R

)
(10)

s. t. U(t) = Φ
(
X(t); S

)
. (11)

Note that problem (10)-(11) is a finite-dimensional optimization one that has
∑L

`=1 F`F`−1K` di-
mensions (independent of the size of the system N ). Note, also, that the distributed constraint (6)
has been incorporated by forcing Φ to be a GNN (9) [cf. (11)].

Problem (10)-(11) is nonconvex due to the GNN-based controller constraint (11). Thus, to
approximately solve this problem, we leverage an empirical risk minimization (ERM) approach that
is typical in learning (Vapnik, 2000). To do this, we create a training set T = {X1,0, . . . ,X|T |,0}
containing |T | samples Xp,0 drawn independently from some distribution p, which we consider to
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be different random initializations of the system. We then focus on the ERM problem given by

min
{H`k}`,k

|T |∑
p=1

J
(
{Xp(t)}Tt=0, {Up(t)}T−1t=0 ; Q,R

)
s. t. Up(t) = Φ

(
Xp(t); S

)
Xp(t+ 1) = AXp(t) + BUp(t)B̄ , Xp(0) = Xp,0.

(12)

Recall that A,B,Q,R are given by the problem, and S is an appropriately chosen support matrix
(i.e. adjacency, Laplacian, etc.). We solve (12) by means of an algorithm based on stochastic
gradient descent (Kingma and Ba, 2015), efficiently computing the gradient of J with respect to the
parameters H`k by means of the back-propagation algorithm (Rumelhart et al., 1986). To estimate
the performance of the learned controllers (i.e. those obtained by solving (12)), we generate a new
set of initial states, called the test set, and compute the average quadratic cost (3) on the resulting
trajectories. In essence, we transform the optimization problem (10)-(11) into a self-supervised
ERM problem (12) that is solved through simulated data.

Henceforth, we focus on a two-layer GNN-based controller given by [cf. (9)]

U(t) = H2

(
σ
(
H1(X(t); S)

)
; S
)
. (13)

We do so because, in practice, each communication exchange between one-hop neighbors takes
time. Thus, having many layers and/or large values ofK` may require unrealistically fast communi-
cations or would only be applicable to particularly slow processes. For more details on time-varying
graph signals and communication delays, please refer to Isufi et al. (2019); Gama et al. (2020b,c).

We now give a sufficient condition for a GNN-based learned controller to stabilize the system
in the input-state sense of (?).

Proposition 1 Consider a linear dynamical system (2) controlled by U(t) = Φ(X(t)) +E(t) with
Φ the GNN-based controller given by (13) and with a nonlinearity σ such that |σ(x)| ≤ |x| for all
x ∈ R; and where E(t) is a disturbance term or exploratory signal that satisfies

∑∞
t=0 ‖E(t)‖ <∞.

Then, the closed-loop system is input-state stable, i.e there exist constants β0, β1 ≥ 0 such that

∞∑
t=0

‖X(t)‖ ≤ β0 + β1

∞∑
t=0

‖E(t)‖ (14)

as long as H1 and H2 satisfy

bc2c1a + c2c̄1b <
(
1− a

)(
1− c2c̄1b

)
(15)

where

a = ‖A‖ , b = ‖B‖ , c2 =

G∑
g=1

cg2 , c1a =

F1∑
g=1

cg1a , c̄1b =

F1∑
g=1

c̄g1b (16)

for ‖ · ‖ is the spectral norm, and with Hfg
` (S) =

∑K`
k=0[H`k]fgS

k being a polynomial built with
the (f, g) entries of the filter taps {Hk}, H̄1k = B̄H1k and

cg2 = max
f=1,...,F1

‖Hfg
2 (S)‖ , cg1a = max

f=1,...,F
‖Hfg

1 (S)A‖ c̄g1b = max
f=1,...,G

‖H̄fg
1 (S)B‖. (17)

7



GRAPH NEURAL NETWORKS FOR DISTRIBUTED LINEAR-QUADRATIC CONTROL

Proof See Supplementary Material in Gama and Sojoudi (2020).

Proposition 1 is a sufficient condition for the closed-loop system to be input-state stable. We note
that the condition on the nonlinearity is mild and is satisfied by most popular nonlinearities (ReLUs,
tanh, sigmoid, etc.). We remark that (15) is a conservative bound, in that systems that do not satisfy
it may be input-state stable as well.

4. Numerical Experiments

We showcase the performance of GNNs for learning decentralized controllers in the linear-quadratic
problem. We consider the traditional finite-time horizon formulation,

min x(T )TQx(T ) +
T−1∑
t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
subject to x(t+ 1) = Ax(t) + Bu(t) , t = 0, 1, . . . , T − 1

(18)

for some given matrices A,B,Q,R ∈ RN×N with Q,R being positive definite. We note that
x(t),u(t) ∈ RN so that (18) is a particular case of (2)-(3) with F = G = 1, where B̄ = b̄ has been
absorbed in B, and where we use the `2 norm in (3). In short, we consider the state and the control
action of each node to be a scalar, [x(t)]i = xi(t) and [u(t)]i = ui(t), respectively.

Setting. We consider a system with N nodes placed uniformly at random in a plane, and we build
the corresponding graph G by keeping only the 5-nearest neighbors of each node. We adopt a
support matrix S given by the adjacency matrix and normalized by the largest eigenvalue ‖S‖2 = 1.
The system matrices A and B are chosen at random and we set Q = R = I. Unless otherwise
specified, we set N = 20 nodes, T = 50 instances, and the matrices A and B are made to share
the same eigenvector basis as S, while the eigenvalues are chosen at random using a zero-mean
unit-variance Gaussian, and are then normalized to have ‖A‖2 = 0.995 and ‖B‖2 = 1.

Controllers. We consider 5 different controllers. (i: Optim) As a baseline, we use the optimal,
linear and centralized controller, which can be computed recursively by knowing A,B,Q,R. (ii:
MLP) We consider a learned centralized controller given by a two-layer fully-connected neural
network with FMLPN hidden units in the first layer, N output units, and a σMLP nonlinearity. (iii:
D-MLP) The decentralized controller in (Huang et al., 2005) which assigns an individual two-layer
fully connected neural network to each node with σD-MLP nonlinearity. (iv: GF) A decentralized
linear graph filter bank controller [cf. (8)] consisting of a cascade of two banks with F0 = F2 =
1, F1 = FGF and K1 = KGF,K2 = 0. (v: GNN) A two-layer GNN [cf. (9), (13)] with F0 = F2 =
1, F1 = FGF, and K1 = KGF,K2 = 0, and a σGNN nonlinearity. Unless otherwise specified, all
nonlinearities are tanh, and we set FMLP = FGNN = 32, FGF = 16 and KGF = KGNN = 3.

Training and evaluation. For training, we consider the ERM equivalent problem of (18) [cf. (10)-
(11), (12)] which we minimize over a training set consisting of |T | initial states xp,0, p = 1, . . . , |T |,
with entries randomly distributed following a zero-mean unit variance Gaussian. We adopt an
ADAM optimizer with learning rate µ and forgetting factors 0.9 and 0.999 (Kingma and Ba, 2015).
The training procedure consists of 30 epochs with a batch size of 20. Moreover, every 5 training
steps we run an evaluation over a validation set consisting of 50 samples. After the training is

8



GRAPH NEURAL NETWORKS FOR DISTRIBUTED LINEAR-QUADRATIC CONTROL

Table 1: Average (std. deviation) normalized cost for different hyperparameters. Cost of other controllers: (i: Optim)
0.9961(±0.0007), (ii: MLP) 0.999(±0.002), (iii: D-MLP) 1.11(±0.02).

FGF/KGF 1 2 3
16 10(±10) 1.5(±0.5) 1.21(±0.05)
32 1.6(±0.8) 1.3(±0.2) 1.3(±0.2)
64 1.5(±0.3) 1.6(±1.0) 2(±1)

FGNN/KGNN 1 2 3
16 1.26(±0.07) 1.20(±0.05) 1.18(±0.04)
32 1.26(±0.08) 1.19(±0.05) 1.17(±0.05)
64 1.26(±0.07) 1.20(±0.05) 1.18(±0.05)

finished, we retain the model parameters that have resulted in the lowest validation cost. For eval-
uation, we create a test set of 50 samples in analogous fashion and run the resulting controllers.
For each controller, we compute the cost given by (18) for each trajectory, and average over all 50
trajectories. For a fair comparison, we normalize the cost by the lower bound for decentralized con-
trollers provided in (Fazelnia et al., 2017). To account for the randomness in the data generation,
for each experiment we run 10 different graph realizations, and we run 10 different instances of
matrices A,B for each graph realization. The reported results include the average over these real-
izations as well as the estimated standard deviation. Unless otherwise specified, we set |T | = 500
and µ = 0.01 (except for training MLP where we set µ = 0.001).

Experiment 1: Design hyperparameters. In the first experiment, we study the dependency of (iv:
GF) and (v: GNN) with the number of featuresFGF, FGNN and number of filter tapsKGF,KGNN. Re-
sults are shown in Table 1. First, it can be observed that for the GF controller, the behavior with FGF
and KGF is erratic, as evidenced not only by the different average costs, but also by the larger stan-
dard deviations. Notice that considering information from farther away neighbors (increasing KGF)
improves performance. The performance of the GNN controller, on the other hand, is more consis-
tent and exhibits relatively good results in all cases. This does not appear to be affected by the num-
ber of chosen features FGNN, but it improves with increasing the neighborhood information KGNN.
We have also ran experiments for different values of learning rate µ ∈ {0.001, 0.005, 0.01}, and
observed that this hyperparameter considerably impacts the performance of the learned controllers.
In particular, the GF controller fails for almost all values of FGF andKGF when µ ∈ {0.001, 0.005}.
The GNN controller, on the other hand, succeeds for other values of µ but at a slightly higer cost
(1.21(±0.05) for µ = 0.001 and 1.18(±0.05) for µ = 0.005). From this experiment, we adopt the
values of FGF = 16, FGNN = 32,KGF = KGNN = 3 and µ = 0.01 to be used from now on.

Experiment 2: Comparison between controllers. In the above experiment, we also computed the
optimal centralized controller (i: Optim), a learnable centralized controller (ii: MLP) and a learnable
decentralized controller (iii: D-MLP). We ran the methods for different values of µ and FMLP and
kept the ones with the best performance, namely µ = 0.001 and FMLP = 32 for MLP and µ =
0.01 for D-MLP. The normalized costs obtained are 0.9961(±0.0007) for Optim, 0.999(±0.002)
for MLP and 1.11(±0.02) for D-MLP. We note that the centralized controllers perform better, as
expected, and, in fact, they have a lower cost than the lower bound (Fazelnia et al., 2017). This is
expected since the space of centralized controllers contains the space of decentralized ones, and thus
any optimal centralized controller is bound to be at least as good as any optimal decentralized one.
Next, we observe that D-MLP has a lower cost than GF and GNN. This is also expected since the
representation space of D-MLP contains that of GNNs. However, as we see in Experiment 4, this
controller does not scale, since the optimization space grows with the size of the network, making
it increasingly difficult to navigate during the training process.
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Figure 1. (Left) Change in cost for structured matrix A. (Middle) Change in cost for random matrix A. The higher the
value of ‖A‖ the harder it is to control the system. We see that when the system matrix shares the same structure as the
graph (i.e. same eigenvectors), the controllers are better at learning how to handle the system. We see that, when the
structure is random, all decentralized controllers fail to learn appropriate actions when ‖A‖ > 0.8. (Right) Change in
cost for increasingly bigger systems. We observe that the D-MLP controller does not transfer at scale since, for bigger
systems, it yields a higher cost than the GNN-based controller.

Experiment 3: Dependence on the system matrix A. In this experiment, we analyze the ability
of the learned controller to successfully handle different system matrices A. We consider, first,
the case when A and S have the same set of eigenvectors; and, second, when A is completely
random and bears no relationship with the underlying graph support. Additionally, we consider
different values of ‖A‖ where we recall that the larger the value of ‖A‖ is, the harder the system
is to control. The results are shown in Fig. 1. First, it is evident that when the system dynamics
share the same structure as the underlying graph support, the decentralized learning methods are
capable of capturing this structure to improve their performance. Even as ‖A‖ gets closer to 1 and
the system becomes less stable [cf. Prop. 1], the learned controllers work well. Second, when the
system matrix A is completely arbitrary, then the decentralized controllers fail.

Experiment 4: Transferability and scalability. In the last experiment, we consider the case in
which we train the learnable controllers in a graph with N = 20 nodes, but then we test it on in-
creasingly bigger systems of N ∈ {35, 50, 75, 100} nodes. The results show in Fig. 1 illustrate
that, while the D-MLP performs better when tested in a small system, it does not transfer to larger
systems. This is because it assigns a different fully connected neural network controller to each
component. Thus, when tested on larger systems, it has to replicate this controller on other compo-
nents and that may have a substantially different topological neighborhood. GNN-based controller,
on the other hand, successfully adapt to larger systems, even when trained on small ones.

5. Conclusions

Finding optimal distributed controllers is intractable in the most general case, and even in specific
cases where the problem admits a convex formulation, the resulting controller does not scale up.
Since it is expected that the optimal distributed controller is a nonlinear function of the states, we
proposed to adopt a GNN to parametrize the controller. GNNs are well suited since they are non-
linear, naturally distributed, computationally efficient, scale and transfer. We observed in numerical
experiments that they exhibit good performance.

This preliminary investigation of GNN-based controllers shows their potential for distributed
control and opens up several avenues of future research. First, the sufficient condition for closed-
loop stability is conservative and can be improved. Second, we can analyze the robustness of the
GNN-based controller to changes in the system connectivity as well as in the matrix that describe
the linear dynamics. Third, we can investigate the suboptimality of the GNN-based controllers.
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