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Abstract

A key functionality of emerging connected autonomous systems such as smart cities, smart trans-
portation systems, and the industrial Internet-of-Things, is the ability to process and learn from data
collected at different physical locations. This is increasingly attracting attention under the terms
of distributed learning and federated learning. However, in connected autonomous systems, data
transfer takes place over communication networks with often limited resources. This paper exam-
ines algorithms for communication-efficient learning for linear regression tasks by exploiting the
informativeness of the data. The developed algorithms enable a tradeoff between communication
and learning with theoretical performance guarantees and efficient practical implementations.
Keywords: Distributed Learning; Federated Learning; Learning over Networks

1. Introduction

Conventional machine learning approaches require data to be collected at a centralized location to
be trained in a centralized manner. However, the emergence of new cyber-physical architectures
that are distributed requires rethinking this approach. Examples of distributed cyber-physical archi-
tectures include the Industrial Internet-of-Things with sensors/actuators/robots connected to access
points collecting data to jointly update system models and application operating conditions — see,
for example, Fig. 1; or future transportation systems with connected vehicles collecting and com-
municating observations from the road; or large-scale sensing infrastructures in future Smart Cities.
As a result, in distributed cyber-physical architectures there is a need to enable learning when data
are collected by agents across different physical locations.

A concept relevant to address this need is federated learning, introduced by Google (Kone¢ny
et al., 2016; Bonawitz et al., 2019), enabling multiple users to jointly solve a machine learning
problem over a communication network from data collected from the users. A major challenge in
federated learning is that data can be high-dimensional, making their communication costly and in-
efficient. To alleviate this communication bottleneck, one direction is based on communicating the
machine learning model parameters as they are being trained, such as the weights of a Deep Neural
Network, instead of the data itself, or communicate the gradients of the objective with respect to the
parameters. In deep learning models with high dimensional weights, sparsification and quantization
of the weights or the gradients is further introduced to limit the communication cost (Kone¢ny et al.,
2016; Aji and Heafield, 2017; Sattler et al., 2019; Lin et al., 2020). Lazy updates are introduced
in (Chen et al., 2018a,b), and combinations of non-periodic updates and quantization is explored
in (Reisizadeh et al., 2020). Furthermore, when distributed learning is taking place over a wire-
less network, there is an interest in allocating the available network resources efficiently among the
users holding the data (Giindiiz et al., 2019; Ahn et al., 2020), such as power (Chen et al., 2020b)
or rates (Chang and Tandon, 2020). The problem of scheduling gradient updates over multiple ac-
cess channels has also received initial consideration, for example comparing time-based approaches
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with approaches based on channel conditions (Yang et al., 2019), or including gradient informa-
tion (Amiri et al., 2020; Chen et al., 2020a).

The present paper hinges on the idea that when model parameters are updated from noisy data,
then not all updates are equally informative. Performing updates selectively can be beneficial, and
we can evaluate the informativeness of the data by estimating the obtained gain in machine learning
performance. Building upon this intuition the proposed algorithms aim for agents to update the
machine learning task when their data are most informative, i.e., bring about the most gain. By
prioritizing updates with more relevant information, agents can efficiently use communication re-
sources and progress the learning task. This approach builds on recent work by the author, where
centralized scheduling of multiple machine learning tasks was explored (Gatsis, 2021), while the
present paper addresses the more challenging setup of decentralized communication schemes where
agents decide to update independently. The technical methodology borrows ideas from the problem
of scheduling control tasks over shared communication networks (Eisen et al., 2019; Gatsis et al.,
2015; Ayan et al., 2019; Soleymani et al., 2016). The methodology is also related to event-triggered
learning that tries to update only if necessary (Solowjow et al., 2018; Zhao et al., 2020).

The methodology is developed for the task of solving linear regression problems in Section 2
and the communication efficient learning problem is introduced. Section 3 introduces the proposed
communication algorithm which prioritizes updates whose data carries the most information, i.e.,
that would lead to the highest performance gain. The approach is theoretically analyzed and guar-
antees are provided about both convergence and required communication resources. Importantly,
the proposed approach allows to provably tradeoff learning performance with communication effi-
ciency. Furthermore, as the method is developed ideally when the data distribution is known, special
effort is placed on a practical communication algorithm that uses only the currently available data
to estimate how informative the current update will be. Numerical evaluations in Section 4 validate
the theoretical results and the improvements compared to approaches in the literature that treat the
magnitude of the gradients as a measure of informativeness.

2. Problem Setup

The architecture examined in this paper, shown in Fig. 1, involves a single access-point/server inter-
ested in building a data-driven model by solving a machine learning task on data that are collected
by multiple agents. The goal is to find a vector of weights (parameters) w of appropriate dimensions
to minimize a performance metric (cost) J(w). The aim will be to achieve this with communication
efficiency. This is for example the case when an agent should not communicate all the time over a
communication network to update the vector of parameters at the access point/server, e.g., due to
capacity constraints.

Specifically we consider the machine learning task to be a linear regression problem (Shalev-
Shwartz and Ben-David, 2014, Ch. 9). We are interested in finding a vector of weights w that
explains the relationship between random variables (z,y) € R” x R, i.e., y ~ 27 w. The random
variables (x,y) follow in general a joint distribution denoted by p. The desired choice for the
weights is the one that minimizes the expected square prediction error, i.e.,

1
SE gy — 2T w)? (1)

min J(w) = 5

where the expectation is with respect to the data distribution p — in the sequel we drop this notation
when it is implied that expectation is with respect to this distribution.
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Figure 1: (Left) Architecture for solving machine learning tasks over networks of agents. Agents
are collecting data and are communicating with an access point/server. Examples in-
clude Industrial IoT systems with sensors/actuators/robots connected to common access
points, collecting data to jointly update system models and application operating condi-
tions. (Right) Comparison between our communication efficient learning approach based
on estimating the gain in (30) versus the approach in (31) based on the magnitude of the
gradients.

The optimal solution w* is given as the solution to the linear equations
Ezzw* — Ezy = 0. 2)

Towards finding an optimal set of weights, we would like to employ a gradient descent algorithm.
Starting from some initial set of weights wy we would like to update the weights according to

Wiy 1 = wy, — €VJ (wy) 3)

where V.J(wy,) = ExazTwy, — Exy, and € > 0 is a small positive stepsize. As will be illustrated
later, choosing € < 2/Apax(Ezz”) guarantees convergence.

The distribution of the data is not a priori known, and hence as is common in machine leaning,
e.g., in empirical risk minimization (Shalev-Shwartz and Ben-David, 2014, Ch. 2), we will attempt
to minimize the empirical cost computed as an average over collected data. Specifically we assume
that at each iteration k there are /N new data points of the form

(zi,9:)) €R" xR,  i=1,...,N. (4)

We assume each data pair is independent and identically distributed according to a distribution .'
Then we form the empirical cost

N
- 11
J —

(w) = PN £

(yi — x] w)? (5)

1. This setup arises either when an agent in Figure 1 collects N new independent samples at each iteration, or when
it just maintains a large pool of samples and selects randomly /N from them at each iteration as frequently done in
stochastic gradient descent practice.
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With this approximation, we follow a stochastic gradient vector

Wh41 = Wk — €k (6)

computed over the data as

N
1
gk = VJ (wy) =5 Z ziw] wy, — ziy;) (7)
After this update the prediction error becomes

1
J(wi1) = SE(y - T wiy1)” ®)

where the expectation is with respect to the distribution p. We note that since the N data points
are random, so is the constructed gradient direction gy, the updated vector wy41, as well as the
performance metric J(wy41). To evaluate how good is this updated prediction error, we would like
to measure on average the quantity

E[J (wg11)[wi] = Eggpamp,n [ (Wht1)|wi] ©)

It is important to note here that the expectation is over the N i.i.d. data that are collected at iteration
k and used to construct the stochastic gradient gi. In the paper, whenever an expectation over
iterates wy, is taken, this is an expectation over the data collected until time k.

2.1. Communication-efficient learning problem

Given the above modeling for a machine learning task that needs to be solved, the communication
problem is as follows. At each iteration k, the server broadcasts the current weights wy, to all agents.
Then each agent ¢ collects N local data points identically distributed (across time and across agents),
computes a local stochastic gradient g,i from the available local data, and decides whether to transmit
this gradient update over the communication network to the receiving server. The server maintains
a current vector of weights w;, which will be updated depending on the information received from
different agents. For simplicity of exposition the case of two agents is considered, leading to the
update rule at the server

wy, — €g}. if agent 1 transmits

Wiy = 4 kT €g; o %f agent 2 transmits . (10)
wy, — €/2(g, + g;;) if both agents transmit
Wy if no agent transmits

We also denote with o, € {1,0} the decision for each agent i to transmit or not. At the next iteration
k + 1 a new set of data is collected as in (4) at each agent, a new stochastic gradient direction g/, 41
is computed at each agent, and the process repeats. The aim will be to avoid sending updates all the
time in order to limit the communication burden.

Remark 1 (Scope of the setup) The setup (linear regression, two agents) is chosen as a basis for
theoretical analysis of convergence and communication utilization jointly, illustrating inefficiencies
of approaches in the literature (Remark 3). A larger number of agents is consider in the numerical
results in Section 4. Besides, linear regression forms the basis for relevant problems in the control
systems and learning community, and extensions of the theoretical results to general convex learning
problems and more agents is under investigation.
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3. Proposed communication-efficient learning

The approach is based on the notion of performance gain which can be thought as a measure of
how informative are the data collected at each agent at each time step with respect to the machine
learning problem. The gain at agent i« = 1,2 can be calculated by measuring how much will the
objective change if the agent sends the update Whether this gain is negative or positive depends on
the random direction of the update. The proposed approach then is to send a gradient update if the
gain is large enough. Mathematically we write
i 1 if J(wy —egp) — J(wg) < —A
U = { 0 otherwise ’ (In
for some scalar parameter A > 0. Intuitively this approach saves up communication resources,
because the larger the parameter value A is, the more infrequent the updates will be. But then the
question is what can be said about the progress of learning. We have then the following result.

Theorem 1 (Convergence) Consider the optimization problem defined in (1) and let w* be the
optimal solution. Consider the update rule in (10). Suppose g,i,i = 1,2, are independent ran-
dom variables with mean equal to NV J(wy) and covariance G at each iteration k. Consider the
communication strategy in (11). Then for any iteration N we have that

2 N 2 )
EJ(wy) < pVJ(wo) + (1= p™) [J(w*) + 67;’(_51;@] + )\ZpN—Z Dz E2(1 @) (12)
(=0

where the expectation is with respect to the data collected until iteration N, and the parameters are
Yo = Exa” /2 and p = max;(1 — e);(Exaz™))? and the stepsize ¢ > 0 is chosen small enough so
that p < 1.

Proof Note that by the dynamics in (10) we can write

J(wi+1) = (1 — ap) (1 — af)J (wg) + o (1 — o) J (wy — €g})
+ (1= ag)ajd (wi — egi) + apaid (wy, — €/2g), — €/2g7), (13)

depending on each of the four cases. Then due to the convexity of the problem we have for the last
case the bound

J(wy — €/291 — €/29%) < 1/2J(wy — €gj) + 1/2J (wy, — €gi). (14)

Substituting this bound in (13) and after a rearrangement of terms we get

1
+5(1—ab)[(1 = a}) T (we) + oI (wn = eg)| + SR Iw —egh)  (15)

Then the terms in the brackets can be bounded. Note that due to the choice in (11) the following
inequality holds for all times (technically it holds almost surely as all the variables involved are
random variables)

(1-— a};)J(wk) + aZJ(wk — eg,i) <A+ J(wg — eg,i). (16)
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This can be easily verified by examining the two cases a}; = 0 or 1 separately. Substituting this
inequality for agents ¢ = 1,2 in (15) we get

< — a2 [ | 1y 1

J(wit1) < (1= ag) A+ J(w, —€gi) | + Q%J(wk €9k

+

N o =

1
(1= ab)[A+ i — egd)| + 5P (wy = eg?) a7

Taking expectation over the stochastic gradients g,}; and g,%, conditioned on the current iterate wy,
and using the symmetry of the problem with respect to agents ¢ = 1, 2 we get that

E[J(wg+1) ‘wk] <E[l- a;c ‘ wg) [)\ + E[J(wg — eg};) ‘wk]] + E[a};J(wk — egf;) ‘wk] (18)
Then we have the following key fact, which is shown separately in the Appendix,
E[a};J(u}k — eg};) ‘wk] < IE[chC ! wi] E[J (wg — egi) ‘wk] (19)
Substituting this bound in (18), we get
E[J(wk1) ‘wk] <E[l1- a?c ‘ wi] A + E[J (wy, — eg};) | wg) (20)

Then given the fact that the function J(w) is quadratic, and the property of the stochastic gradient
that the mean is unbiased Eg;, = V,,, J(wy,) with a constant variance, we get that?

E[J(wy — egk) ‘ wi] < pd(wy) + 62Tr(2$G) + (1 —p)J(w") 21
Substituting this we get,
E[J(wis1) | we] < E[1 — af, | wp] A + pJ (wg) + €Tr(S.G) + (1 — p)J (w*) (22)

Taking expectation on both sides with respect to the variable wy, and iterating over time k =
1,..., N, we get the desired result (12). |

The result verifies that the update rule converges (in a stochastic sense) because p < 1 as can
be confirmed by the appropriate choice of the stepsize 0 < ¢ < 2/Amax(Ezz”?). Essentially the
result follows because the function J(w) can be thought as a Lyapunov function for the stochastic
dynamics of the update in (10). A direct consequence of the above result is

2
limsup EJ(wy) < J(w*) + At eTe(5:6)

(23)
N—o00 1- p

This means that eventually we get close to the optimal set of weights w* subject to some overshoots.
The latter are due to the stochastic gradient and its covariance G, which can be made small in
practice by choosing the step size € to be small — or by choosing a diminishing stepsize which will
be analyzed in future work. Moreover, there is a penalty proportional to the parameter A, introduced
to save up on communication cost. It is also possible to choose a diminishing parameter A to
eliminate this effect.

2. We exploit the fact that (I — €2%,)'S, (I — €23;) X pXa
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Remark 2 In Theorem 1 we assumed for simplicity that the stochastic gradients have bounded
covariances that are constant over time. In reality for the problem above the covariance of the
stochastic gradient in (7) will depend on the current iterate wy, but our choice can be justified in
two ways. We can either consider these covariances to be uniformly bounded over time by some
constant G. Or alternative if we consider the case close enough to the equilibrium wy, ~ w*, then
it follows that the covariances are indeed constant over time. A more detailed investigation will be
explored in a follow up work.

Furthermore, we can establish the following guarantee about the total communication rate of
the proposed approach.

Theorem 2 (Communication guarantee) Consider the same setup as in Theorem 1. The total
communication rate satisfies

N

J — J(w*
lim supZmaX{a,lg,a%} < J(wo) = J(w)

(24)
N—oo k=0 A

almost surely, with respect to the data collected as iterations N — oo.

Proof Due to the choice in (11) the following inequality holds for all times (technically it holds
almost surely as all the variables involved are random variables)

Amax{at,ar} + J(wpr) < J(wp). (25)

This can be easily verified by examining the four cases for a}; = 0or1 for 7 = 1,2. Specifically,
when both a,%/, = ai = 1 we have that

(1) = T(wy — /2g} — ¢/2g7) < 1/2J(wy, — eg) + 1/2J (wy, — eg?)
< 1/2(J(wg) = A) + 1/2(J () — A). (26)

where the first inequality holds due to convexity and the second inequality holds due to the choice
in (11).

Iterating (25) over time k = 0, ..., N, and summing up, we conclude that
N
)\Zmax{oz}c, a2} + J(wni1) < J(wp). (27)
k=0

Moreover, since any value of the variable w1 is in general suboptimal, we have that J(wn41) >
J(w*). From which we get the desired result (24). [

This result counts communication as long as one agent transmits. It guarantees explicitly that
increasing A will decrease the resulting communication in an inversely proportional manner.
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3.1. Practical communication scheme

Despite the above guarantee, implementing the proposed communication scheme in (11) would be
practically challenging because it requires information that is not known. Specifically it would
require knowledge of the data distribution in order to compute the actual performance gain. Since
the true distribution is unknown, one approach is to estimate the performance gain from the data.
In particular, since the objective function is quadratic, we can write the performance gain as

1
J(wy — egr) — J(wy) = — g} VJ (wy) + 562g£V2J(wk)gk (28)
This is a quadratic function of the stochastic gradient g;. Then we can approximate the quantities
1 o 1 o
VJ(wy) = ~ Z; (ziz]wy — ziy:) = gr, V2 J (wi) ~ N z;me (29)
1= 1=

where we note that the stochastic gradient direction g; appears again. Hence, using the expression
for the information gain in (28), we can approximate the gain as’

N
J(wy — egr) — J(wy) ~ —egi [I - e%% xeZT] Gk (30)

i=1
It is crucial to emphasize that this is no longer a simple quadratic function of the data but a more
complicated function - we note that the data appear both in the stochastic gradients g by (7) as well
as the matrix in the middle. This approximate value of the gain may take again positive or negative

values but it induces an approximation error/bias.

As a result, we can implement the communication decision in (11) with the approximation
in (30). In this case we no longer have the performance guarantee in Theorem 1. In numerical

evaluations however we see that despite the bias this mechanism performs very well.

Remark 3 (Other approaches in the literature) A different perspective would be to treat the agents
with the largest updates as the most important, and let an agent communicate if the norm of its
(stochastic) gradient is large, i.e.,
i _ 1 ifllgl? = p

e = { 0 othe’}fwise (D
for some scalar parameter | > 0. From our expression on (30) we see that for small stepsizes € the
magnitude of the gradient may serve as a proxy for the performance gain. But in numerical com-
parisons we show that this scheme typically leads to worse performance. This may also be the case
when the Hessian of the problem is further from an identity matrix. The idea of scheduling based
on gradient magnitudes has been proposed in very recent works in federated learning over wireless
channels (Amiri et al., 2020; Chen et al., 2020a), and in the context of sparsification and quanti-
zation for high-dimensional gradient updates (Aji and Heafield, 2017; Sattler et al., 2019). Our
findings hence point to a novel and more communication- efficient approach for gradient updates.
Finally, a different perspective is followed by (Chen et al., 2018a,b); when agents do not update
their gradients at the server, the server just keeps a memory of past received gradients and uses
them for gradient descent. A difference compared to the present paper is that here there is an ex-
plicit communication-learning tradeoff controlled by the parameter . A more detailed comparison
between that approach and the one in the present paper will be considered in future work.

3. Overall at each agent these require O(Nn) operations hence are scalable.
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Figure 2: (Left) Evaluation of the tradeoff between communication rate and machine learning per-
formance of the proposed algorithm in (11). (Right) Comparison between our communi-
cation approach in (11) requiring the data distribution to compute the gains by (28) versus
estimating the gain by (30).

4. Numerical results

In this section we make an additional assumption about the data samples, that x; are i.i.d. Gaussian
random variables, while the points y; are given as y; = a:iTw* +n; where w* is the true parameter and
7; are i.i.d. Gaussian measurement noises. These assumptions are not necessary for the theoretical
analysis above.

We consider the communication algorithm in (11) with the performance gains estimated as in
(30). We consider m = 2 agents. We consider a problem with dimensions n = 2, with covariances

Ezzl = [ g (1] ] (which affects the Hessian of the problem), the initial weights are wg = 0, and
the true weights equal to w* = 3 . First for stepsize ¢ = 0.1 and N = 5 data points available

5
at each iteration and at each agent (cf.(4)), we simulate algorithm (11) for varying values of the
parameter A. In Fig. 2(Left) we plot the observed mean learning performance after the KX = 10
iterations (J(wpg)) versus the total communication rate (Zfzo Z?Zl at). We observe that the
proposed communication approach indeed allows us to tradeoff communication rate with machine
learning performance.

We would like to investigate how much bias is introduced by our practical scheme that is based
on estimating the performance gain at each agent based on the currently available data. Hence we
compare (11) when using the performance gains computed by (28) that requires knowledge of the
data distributions, with the completely data-based scheme in (30). For the same linear regression
setup as before, for N = 5 samples per agent, stepsize e = 0.2 and for a single time step, for varying
value of the parameter A\ the comparison is shown in Fig. 2(Right). In our numerical evaluations,
we surprisingly do not observe a significant difference due to the estimation procedure. This was
observed across different instances, reinforcing the usefulness of our scheme.

We finally compare our communication scheme (11) based on estimating the performance gain
across tasks in (30) with the simple strategy based on the magnitude of the gradients at each agent
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in (31). We consider m = 5 agents here. We consider a randomly chosen w* of dimensions n = 10
and a covariance matrix Ezz” diagonal with randomly chosen coefficients. We assume N = 20
data points are available at each iteration per agent. We consider K = 10 steps in the algorithm. For
stepsize € = 0.2 the comparisons are shown in Fig. 1(Right) for varying values of the parameters A
and p in each of the schemes. We observe that our approach performs significantly better than the
gradient-based one. The improvements get typically more significant as the setpsize increases. Our
conclusion is that the magnitude of the gradient is not a reliable measure for the informativeness of
the data. Our approach which is based on the more complex estimate of performance gain provides
a more reliable and communication-efficient approach.

5. Concluding remarks

In this paper we examine the problem of solving machine learning tasks over a network. We con-
sider the problem of selecting which updates to communicate to lower the communication rate. To
exploit the informativeness of the data we examine the notion of performance gain and we illustrate
numerically how this can be approximated from the data without further model knowledge. The
approach is contrasted to other related works in the area of communication-efficient learning. On-
going work explores the use of the approach in more complex networks of learning agents, as well
as other machine learning tasks beyond linear regression.

Appendix A. Technical Results

Proof of (19). Let us consider the distribution of the gradient g denoted by F'(g). Then we can
rewrite (19) as

/ a(9)(w — eg)dF(g) < / o(g)dF () / J(w — eg)dF(g) (32)

However, by definition of the communication rule (11) we have that a(g) = 1 only when J(w —
eg) < J(w) — X and zero otherwise. Let us define this set of values S = {g € R" : J(w — eg) <
J(w) — A}. Then (19) is equivalent to

[t cqirio) < [ar@| [ stw-pir) + [ sw-ware)] 6
which is equivalent to

ir(g) [ I - iro) < [ ar(e) [ I irto) 64

Sc

We can bound the left hand side because we can bound J(w — €g) point wise on the set .S as

[ art) [ st -epari < [ ar) [ art) 0w - A G5)

Further we can bound the right hand side of (34) as

[ [ stw-epari) = [ ar) [ drt) ) - A (36)

Combining (35) and (36) we verify (34) and conclude the proof.

10
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