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Abstract

We consider measurement-feedback control in linear dynamical systems from the perspec-
tive of regret minimization. Unlike most prior work in this area, we focus on the problem
of designing an online controller which competes with the optimal dynamic sequence of
control actions selected in hindsight, instead of the best controller in some specific class
of controllers. This formulation of regret is attractive when the environment changes over
time and no single controller achieves good performance over the entire time horizon. We
show that in the measurement-feedback setting, unlike in the full-information setting, there
is no single offline controller which outperforms every other offline controller on every dis-
turbance, and propose a new Hs-optimal offline controller as a benchmark for the online
controller to compete against. We show that the corresponding regret-optimal online con-
troller can be found via a novel reduction to the classical Nehari problem from robust
control and present a tight data-dependent bound on its regret.

Keywords: dynamic regret, Nehari problem, robust control

1. Introduction

The central question in control theory is how to regulate the behavior of an evolving system
with state z that is perturbed by a disturbance w by dynamically adjusting a control
action wu; in the measurement-feedback setting, the information available to the controller
is restricted to observations y which are corrupted by noise v. Traditionally, this question
has been studied in two distinct settings: in Hy control, the disturbance w and noise v
are assumed to be generated by stochastic processes and the controller is designed so as
to minimize the expected control cost, whereas in H, control w and v are assumed to be
generated adversarially and the controller is designed to minimize the worst-case control
cost. Both Hs and H, controllers suffer from an obvious drawback: they are designed with
respect to a specific class of disturbances, and if the true disturbances fall outside of this
class, may exhibit poor performance. Indeed, the loss in performance can be arbitrarily
large if the disturbances are carefully chosen Doyle (1978).

This observation naturally motivates the design of adaptive controllers, which dynami-
cally adjust their control strategy as they sequentially observe the disturbances instead of
blindly following a prescribed strategy. This problem has attracted much recent attention
in machine learning (e.g. Goel and Wierman (2019); Goel and Hassibi (2020b); Hazan et al.
(2020); Cohen et al. (2019); Foster and Simchowitz (2020); Abbasi-Yadkori and Szepesvari
(2011); Agarwal et al. (2019); Dean et al. (2018)), mostly from the perspective of regret
minimization. In this framework, the online controller is chosen so as to minimize the dif-
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ference between its cost and the best cost achievable in hindsight by a controller from some
fixed class of controllers. The resulting controllers are adaptive in the sense that they seek
to minimize cost irrespective of how the disturbances are generated.

In this paper, we take a somewhat different approach to the design of adaptive con-
trollers. Instead of designing a controller to minimize regret against the best controller
selected in hindsight from some specific class, we instead focus on designing a controller
which minimizes regret against the optimal dynamic sequence of control actions selected in
hindsight. We believe that this formulation of regret minimization in control is more at-
tractive than the standard formulation, where the controller learns the best fixed controller
in some specific class, for two fundamental reasons. Firstly, it is more general: instead
of restricting our attention to some specific class of controllers (e.g. state feedback, LTI
controllers, etc), we instead try to compete with the globally optimal dynamic sequence
of control actions, without assuming any specific structure. Secondly, and perhaps more
importantly, the controllers we obtain are more likely to perform well in dynamic environ-
ments, where the disturbance-generating process varies over time. Consider, for example, a
scenario in which the disturbances alternate between being generated by a stochastic pro-
cess and being generated adversarially. When the disturbances are stochastic, an optimistic
controller (such as the Hy controller) will perform well; conversely, when the disturbances
are adversarial, a more conservative, pessimistic controller (such as an Ho, controller) will
perform well. No single controller will perform well over the entire time horizon; hence any
online algorithm which tries to learn the best static controller will incur high cumulative
cost. A controller which minimizes regret against the optimal dynamic sequence, however,
is not constrained to converge to any static controller, and hence can potentially outperform
standard regret-minimizing control algorithms when the environment is dynamic.

Several recent papers Goel et al. (2017); Goel and Wierman (2019); Goel and Hassibi
(2020a,b) also consider the problem of designing controllers which compete with the optimal
offline dynamic sequence of control actions. All of these papers focus on the full-information
setting, where the controller observes the true state x and disturbance w. This paper
is the first to study this problem in the more challenging measurement-feedback setting,
where the controller only has access to a noisy measurement y of the state x. This setting
presents several unique challenges which do not arise in the full-information setting. The key
distinction is that in the measurement-feedback setting, the information sequence observed
by a controller depends on the previous control actions selected by that controller. In essence,
the controller is caught in a feedback loop: its control actions depend on the observations it
makes, but those observations depend on its previous control actions. These feedback loops
make it challenging to analyze control through the lens of regret, since the premise of regret is
to compare online policies (which receive information sequentially) to counterfactual offline
policies (which receive the same information, but all at once, at the start of the game).

1.1. Contributions of this paper

We make two main contributions in this paper. First, we consider measurement-feedback
control in the offline (noncausal) setting, where the offline controller can compute the mea-
surements y that would counterfactually arise if the offline controller were to select some
control u. We show that there does not exist a single “globally optimal” offline measurement-
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feedback controller which always achieves lower cost than every other offline measurement-
feedback controller. This stands in stark contrast to the full-information setting, where a
single offline controller dominates every other Goel and Hassibi (2020b). We derive a new
offline controller K. which optimal in the Hs-sense. Second, we consider the problem of
designing an online (causal) controller K. which minimizes regret against the offline con-
troller K,,.. We show that K. can be found using a novel reduction to the Nehari problem,
which attracted much attention in the robust control community starting in the 1970’s. We
completely characterize K. in terms of the solutions to the Nehari problem and present a
tight data-dependent bound on its regret.

1.2. Related work

There has been a surge of interest in regret minimization in control in the past few years,
to the point that we are able to survey only a tiny fraction of the papers in this area. One
of the first works in this area was Abbasi-Yadkori and Szepesvari (2011), which focused on
regret minimization when the noise is stochastic. A more general setting where the noise
is stochastic but the costs are adversarial was considered in Cohen et al. (2019). A series
of more recent papers (e.g. Hazan et al. (2020); Agarwal et al. (2019); Dean et al. (2018);
Foster and Simchowitz (2020)) consider the setting where the noise is adversarial. All of
these works consider a setting where the online learner is trying to minimize static regret
against a fixed benchmark controller, often taken to be a state feedback or LTI controller.

A key distinction between this paper and these papers is that we focus on designing
an online controller which competes against an optimal offline dynamic sequence of control
actions. This problem was also studied in Goel and Wierman (2019) (albeit through the
lens of competitive ratio rather than regret) where it was shown that the Online Balanced
Descent algorithm introduced in Chen et al. (2018) could be used to give some performance
guarantees in the LQR setting; this result was improved in Goel et al. (2019). We note
that the reduction in those works relied crucially on very strong assumptions about the
structure of the dynamics, such as invertiblility of the control matrix. In this paper, we
are able to remove all such assumptions and prove results about arbitrary LQR control
systems. Our results in measurement-feedback control parallel recent results in the much
simpler full-information setting obtained in Goel and Hassibi (2020b).

2. Preliminaries
We consider a linear dynamical system governed by the following evolution equation:
Ti41 = Ata;t + Bwut + Bth'wt. (1)

Here x; € R” is a state variable we are interested in regulating, u; € R™ is a control variable
which we can dynamically adjust to influence the evolution of the system, and w; € R" is
unknown environmental noise. We formulate the problem of regulating the system over a
finite time horizon ¢t = 0...7 — 1 as an optimization problem, where the goal is to select
the control actions so as to minimize the LQR cost

T-1

cost(w,u) = 7 Qra; + Z ) Quay + uf Ryuy, (2)
=0
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where Q, Ry > 0 for t = 0,...T — 1 and Q7 > 0 is a terminal cost. The sequence of
matrices {A¢, By i, Bw,t, Qt, Rt};f:_ol is assumed to be known. We assume without any loss
of generality that g = 0 and u; is scaled such that R; = I; we emphasize that this imposes
no real restriction, since for all R; >= 0 we can always rescale u; so that Ry = I.

We distinguish between two types of control problems, depending on what information
is available to the controllers. In the full information setting, we assume the controller
has access to the actual state = and disturbance w. In the more challenging measurement-
feedback setting studied in this paper, we assume that the controller only has access to noisy
measurements y of the state x:

yr = Crxy + vy, (3)

where C; € RP*™ and v; € RP. We emphasize that this observation model can represent a
significant restriction on the information available to the controller; consider, for example,
a scenario where p < n and the noise v is selected adversarially, so that the controller only
has access to compressed, highly corrupted information about the state.

2.1. Causal, noncausal, and anticausal operators

We distinguish between two types of controllers: causal (online) controllers, which select the
control action u; using only the information up to time ¢, and noncausal (offline) controllers,
which may select u; using all the information over the full time horizon. We say that a linear
operator S is causal if it is block lower-triangular; if u = Sv, then each u; is a linear function
of vy, ..., v, so u is a causal function of v. Similarly, we say that S is strictly anticausal if it
is strictly block upper-triangular. We say that S is noncausal if it is not causal; in this case
each u; may potentially depend on some or all of vyyq,...,v7_1. We define M, and M_ to
be the causal and strictly anticausal components of a matrix M, so that My +M_ = M. If
M is positive definite, we use the notation M'/2 to mean the unique causal matrix L such
that LTL = M.

2.2. The input-output approach to control

It is convenient to encode the dynamics in “operator form”, instead of the state-space form
(1). Let s; = Q2 for t =0,...T — 1 and define

Uuo S0 Yo wo Vo

UT—1 ST-1 Yr—1 wr-1 Ur-1
With this notation, the LQR cost (2) takes a very simple form:
2 2
cost(w;u) = [|s(jz + [[ull2.

Clearly s = Fu+ Gw and y = Ju + Lw + v where F, G, J and L are appropriately defined
strictly causal operators encoding the dynamics (1) and observation model (3). In this pa-
per, we focus on control strategies where the control u is a linear function of the measure-
ments: u = Ky, for some matrix K, which we think of as a controller mapping observations
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to control actions. Solving for y in terms of w, v, and K, we see that y = (I—JK) ™! (Lw+v).
Define the Youla parameterization Q = K (I — JK)~!. Notice that Q is causal if and only
if K is causal, and furthermore, we can easily recover K from Q:

K=QUI+QJ)™". (4)

Recall that every controller K has an associated transfer operator

o [w} [s} '
K-y U
We can write Tx in terms of F, G, L, and @ as

FQL+G FQ]
QL Q|

We can write the LQR cost incurred by the controller K on the instance (w,v) as

|

-
cost(K,w,v) = [ls] T T [ZUU] :

2.3. H,.-optimal control and regret-optimal control

Our approach to regret-optimal control is strongly influenced by classic techniques from
robust control, whose central objective is the design of H,-optimal controllers:

Problem 1 (H.-optimal measurement-feedback control) Find a causal controller

K that minimizes
cost (K, w, v)

wo [lwlg + 3
This objective has the natural interpretation of minimizing the worst-case cost incurred by
the online controller, normalized by the energy in the disturbance w and noise v. In this

paper, instead of minimizing the worst-case cost, our goal is to minimize the worst-case
regret. This problem has a natural analog of the H, problem:

Problem 2 (Regret-optimal control problem) Given a benchmark controller Ky, find
a causal controller K that minimizes

cost(K, w,v) — cost( Ko, w,v)
su
w,v wila Ull2
v Twl3+Tlol3

As is common in the Hy, literature, we consider the relaxation:
Problem 3 (Regret-suboptimal control problem) Given a performance level v > 0
and a benchmark controller Ky, find a causal controller such that
cost(K, w,v) — cost( Ko, w,v)
l[well3 + [[ol3

for all disturbances w, or determine whether no such policy exists.

We emphasize that if we can solve the regret-suboptimal problem , we can easily recover
the solution to the regret-optimal problem via bisection on .
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2.4. The Nehari problem

A key idea in this paper is to reduce the regret-optimal measurement-feedback control
problem to the Nehari problem, which asks how best to approximate an anticausal matrix
by a causal matrix:

Problem 4 (Nehari problem) Let W be an strictly anticausal matriz. Find a causal
matriz X such that
[ X = Wl

18 minimized.

Like the H.-optimal control problem, the Nehari problem is generally solved by first solving
a suboptimal problem at level v, and then finding the optimal problem by bisection on ~:

Problem 5 (Suboptimal Nehari problem) Let W be an strictly anticausal matriz. Given
a performance level v > 0, find a causal matriz X such that

X =Wz <,
or determine whether no such X exists.

We emphasize that there exist efficient numerical algorithms to solve the suboptimal Nehari
problem. The details of these algorithms are beyond the scope of this paper; we refer the
reader to Gohberg and Olshevsky (1994); Hassibi et al. (1999) for details.

3. Noncausal measurement-feedback controllers

The goal of this paper is to derive an online controller which minimizes regret against the
optimal dynamic sequence of control actions selected in hindsight. In the full-information
setting, it is clear what this means: we design an online controller which minimizes regret
against the sequence of control actions

u* = argmin cost(w, u).
u
It was recently shown in Goel and Hassibi (2020b) that u* = K*w, where K* = —(I +
FTF)"'FTG. We can hence view the optimal dynamic sequence of control actions selected
in hindsight as precisely those actions selected by the optimal noncausal controller K*, and
design our online controller to compete against this K*.

In the measurement-feedback setting we study in this paper, it is much less clear which
noncausal benchmark controller we should select for the online controller to compete against.
This is because the information sequence observed by any controller K depends on the
previous choices of the controller. This is easy to see from the two relations

u=Ky, y=Ju+ Lw+ .

In essence, the controller K is caught in a feedback loop: its control actions depend on
the observations it makes (u = Ky), but those observations depend on its previous control
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actions (y = Ju + Lw + v). In the full-information setting this issue does not arise: we
assume that the controller observes the true disturbance w, irrespective of what control
actions they previously selected, and can thus define the optimal noncausal controller K*
to be the unique controller which selects the optimal control u in response to w. Given that
any offline controller will receive a different set of observations than the online controller,
which offline controller should we pick for the online controller to compete against? One
natural idea, in analogy with the full-information setting, is to select the “optimal” offline
measurement-feedback controller, i.e. one which always incurs less cost than any other
offline controller. Our first result is that no such controller exists:

Theorem 1 There does not exist a noncausal controller K such that cost(K,w,v) <
cost(K', w,v) for all noncausal controllers K' # K and all instances (w,v).

In other words, no noncausal controller can guarantee that it achieves the lowest possible
cost on every instance (w,v). Before we present the proof of Theorem (1), we state a key
lemma which plays a central role in all of the results of this paper:

Lemma 2 Define
S=I+FF'", T=I+F'F, U=I+LL", V=I+L"L (5)

and let

s-12 I -—F I LTl[v-i2 ¢
0 = |: 0 T_1/2:| |:F—|— I :| ) ¢ - |:_L I:| |: 0 U—1/2:| . (6)

Let K be any controller and let Tk be the transfer operator associated to K. The following
identity holds

S—l/QGv—l/Q S—1/2GLTU—1/2 :|

T = [T_WFTGV_W TV2QUY2 4 T2 FT GLTU 12

(7)

This lemma is easily verified via direct calculation; its significance is that the matrix 07y
depends on @ only in the (2, 2) entry instead of in all four entries, which greatly simplifies
our computations. We now return to the proof of Theorem (1):

Proof Suppose by way of contradiction that there was some noncausal controller K such
that cost(K,w,v) < cost(K’,w,v) for all noncausal controllers K’ # K and all instances
(w,v). This would imply that

T T — Tt Tie > 0. (8)

Let 6 and v be defined as in (6). Because 6 and v are unitary, condition (8) is equivalent
to

(0Txcb) " (0Tx) — (0Tx) T (0Txct)) = 0. (9)
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In light of Lemma (2), the matrix on the left-hand side of (9) simplifies to

0 X(Q, Q)
X'1(Q.Q) Y(Q,Q)

where X (+,-) and Y (-, -) are appropriately defined functions of @ and @Q'. The fact that the
(1, 1) block of this matrix is zero ensures that it cannot be positive definite. |

Given that no noncausal controller dominates every other, we are now faced with the
question of which noncausal controller we should design our online controller to compete
against. In this paper, we choose to benchmark against the noncausal controller which is
optimal in the Hy sense. By this, we mean the noncausal controller K. whose associated

[

is smallest in the Frobenius norm. This noncausal controller is also the one which minimizes
the expected LQR cost under the assumption that w and v are both random variables
with zero mean and bounded variance. We note that are several other natural choices of
benchmark controllers; for example, one could instead choose the more pessimistic Hqo-
optimal noncausal controller. We leave such comparisons for future work. We prove:

transfer operator

Theorem 3 The Hy-optimal noncausal controller has the form K. = Q(I + QJ)~! and
associated transfer operator
[FQL +G F}
TKnc = P

QL @
where Q = —T 'FTGLTU™ and T and U are defined as in Lemma (2).

Proof Let 6 and v be defined as in Lemma (2). Notice that 6 and v are unitary, hence
10T ||% = || Tk||% since the Frobenius norm is unitarily invariant. It hence suffices to
minimize ||07x||% over Q. Looking at the statement of Lemma (2), we notice that @
appears only in the (2, 2) entry of 0Tk, so || Tk||% is minimized by choosing @ such that
this entry is zero:

Q=-T'F'eL'u .

We can easily recover the He-optimal K from this choice of @ using identity (4).

4. Derivation of the regret-optimal measurement-feedback controller

We now turn to the problem of deriving a causal measurement-feedback controller K. which
tracks K,. as closely as possible, where K. is the Ho-optimal noncausal measurement-
feedback controller derived in section 3. We call K. the regret-optimal measurement-
feedback controller, and show that it can be found via a reduction to the classical Nehari
problem of robust control.
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We give a high-level summary of our proof technique before turning to the derivation of
K,.. We first solve the regret-suboptimal problem; in other words, for a given performance
level v > 0, we show how to find a causal controller K such that

t(K — t (K
cost( ,w,v)2 cos (2 nes W, V) < ,yz (10)
[wllz + [Jv]l3

for all disturbances w and all measurement noise v, or to determine whether no such K
exists. We show this problem is equivalent to a Nehari problem with performance level
1 and an input matrix W_ ,; once this Nehari problem is solved, we can easily recover
the desired K. Conversely, if this Nehari problem has no solution the desired K does not
exist. Once the suboptimal problem is solved, the regret-optimal controller is easily found
via bisection on <, in the same way H., controllers can be found once the H., suboptimal
problem is solved.
We now state our main result:

Theorem 4 A regret-suboptimal measurement-feedback controller K at level v exists if and
only if there exists a causal matriz X such that | X — W_ |l < 1, where W, and W_
are the causal and strictly anticausal components of the matrix

Wry — _2\4";17771/2}71T(;1[JTijl/Q7

M. = (7_21—|—’)/_4T_1/2FTGV_1GTFT_l/Q)l/Z,

and T,U,V are defined as in Lemma (2). If such an X ezists, then K has the following
form:

K=Q(+QJ)™",

where

Q=T""2MNX +W, ) U2

The regret-optimal measurement-feedback controller K. is the regret-suboptimal measurement-
feedback controller at level Yopt, where Yope can be found by bisection on . Furthermore,
the regret incurred by K. against Ky. on the instance (w,v) is at most 2 ([wl3 + ||v|13),
and this bound is tight.

Proof Condition (10) can be expressed in terms of transfer operators as
w
v

Ta T — T Ticne <721 (11)

2

)

2

)
m (T Tk = T Tic.,) m <2

or even more cleanly as

Let 6 and v be defined as in (6). Because 6 and 1 are unitary, condition (11) is equivalent
to

VI — (0Tx)) T (0Tkc) + (0Tk,. %) T (0Tk,, %) = 0. (12)
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Applying identity (7), we can expand the matrix on the left-hand side of (12) as

,YQI V—I/QGTFT—l/Q(W_Tl/ZQUl/Q) (13)
(W _ Tl/QQU1/2)TT71/2FTGV71/2 72[ _ (Tl/QQUl/Q _ W)T(Tl/ZQU1/2 _ W)
where T,U,V are defined in (5), we set W = —T~/2FTGLTU~/2 and we used the fact
the (2, 2) entry of 67k, 1 is zero. Clearly 72 is positive definite, so the matrix (13) is
positive definite if and only if the Schur complement

72[ - (TI/QQUI/Q - W)T(I + ,Y—QT—I/QFTGv—lGTFT—l/Q)(Tl/QQUl/Q - W)

is positive definite. Dividing by 72 and rearranging, we see that this condition is equivalent
to

(Tl/QQUl/Q - W)T(’}’_QI + ’7_4T_1/2FTGV_1GTFT_1/2)(TI/QQUI/Q o W) <1 (14)

We have shown that there exists a causal controller K satisfying (10) if and only if there
exists a causal matrix @ satisfying condition (14).

We now show that the problem of finding such a @ (or determining whether no such @
exists) can be reduced to a Nehari problem with an appropriate change of variables. Define

M, = (v + 7’4T’1/2FTGV’1GTFT’l/z)l/Q,

and let W, = M, W. Let W, ;. and W, _ denote the causal and strictly anticausal parts of
W, respectively. Define
X = M, TV?QUY? — W, .

We emphasize that X is causal if and only if @ is causal, since W, ., M., T 12 and UY?2
are all causal; furthermore, we can easily recover ) from X:

Q=T""2MNX +W,,)U V2 (15)
Notice that condition (14) can be written as
X =W_pyl2 < 1.

We recognize the problem of finding a causal X satisfying this condition as an instance
of the suboptimal Nehari problem, where the desired performance level is 1 and the input
anticausal matrix is W_ . If the desired X exists then K is easily found using the identities
(4) and (15); conversely, if this Nehari problem has no solution then a regret-suboptimal
controller at level v does not exist.

Now that we know how to solve the regret-suboptimal problem, we can easily find
the regret-optimal controller K. by iteratively decreasing ~ until convergence to some
Yopt- Rearranging condition (10), we immediately obtain the data-dependent regret bound
Yot (llwll3 + [Jv]|3); tightness of this bound follows from the minimality of yop.

|

10
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