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Abstract
Autoregressive exogenous (ARX) systems are the general class of input-output dynamical system
used for modeling stochastic linear dynamical system (LDS) including partially observable LDS
such as LQG systems. In this work, we study the problem of system identification and adaptive
control of unknown ARX systems. We provide finite-time learning guarantees for the ARX systems
under both open-loop and closed-loop data collection. Using these guarantees, we design adaptive
control algorithms for unknown ARX systems with arbitrary strongly convex or non-strongly con-
vex quadratic regulating costs. Under strongly convex cost functions, we design an adaptive control
algorithm based on online gradient descent to design and update the controllers that are constructed
via a convex controller reparametrization. We show that our algorithm has Õ(

√
T ) regret via ex-

plore and commit approach and if the model estimates are updated in epochs using closed-loop
data collection, it attains the optimal regret of polylog(T ) after T time-steps of interaction. For the
case of non-strongly convex quadratic cost functions, we propose an adaptive control algorithm that
deploys the optimism in the face of uncertainty principle to design the controller. In this setting, we
show that the explore and commit approach has a regret upper bound of Õ(T 2/3), and the adaptive
control with continuous model estimate updates attains Õ(

√
T ) regret after T time-steps.

Keywords: ARX systems, system identification, adaptive control, regret

1. Introduction

Autoregressive Exogenous (ARX) Systems: ARX systems are simple yet central dynamical sys-
tems in time-series modelings. They represent stochastic linear dynamical systems (LDS) in the
input-output form which have a wide range of applicability to real dynamical systems and amenabil-
ity for precise analysis. Due to their ability to approximate linear systems in a parametric model
structure, ARX systems have been crucial in many areas including chemical engineering, power en-
gineering, medicine, economics, and neuroscience (Norquay et al., 1998; Bacher et al., 2009; Fetics
et al., 1999; Huang and Jane, 2009; Burke et al., 2005). The ARX systems have corresponding LTI
state-space representations and in their most general form, they can be represented as follows,

xt+1 = Axt +But + Fyt, yt = Cxt + et. (1)

The dynamics are governed by Θ = (A,B,C, F ) where xt is the internal state, yt is the output,
ut is the input and et is the measurement noise. Notice that by knowing the initial condition x0
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and Θ, one can recover the state sequence. These models provide a general representation of LDS
with arbitrary stochastic disturbances. In particular, via different distributions of et, they are able
to model partially observed LDS (PO-LDS) with various process and measurement noises. For in-
stance, LQG control systems, which are the canonical settings in control, can be modeled as ARX
systems. In an LQG control system, the process and measurement noises have Gaussian distribu-
tions which corresponds (in predictive form) to an ARX system, where et has a particular Gaussian
distribution determined by the state-space parameters and noise distributions (Kailath et al., 2000).

System Identification and Adaptive Control: They are the central problems in control theory
and reinforcement learning (Lai et al., 1982). System identification aims to learn the unknown dy-
namics of the system from the collected data, whereas adaptive control pursues the goal of minimiz-
ing the cumulative control cost of dynamical systems with unknown dynamics. Thus, adaptive con-
trol inherently includes the system identification process to design a favorable controller. The data
collection to achieve these tasks can be performed via independent control inputs yielding open-loop
data collection, or via feedback controllers resulting in closed-loop data collection (Ljung, 1999).

Finite-time System Identification and Adaptive Control: In contrast to classical results in both
of these problems that analyze the asymptotic performances, recently, there has been a flurry of
studies that consider the finite-time performance and learning guarantees in both. In finite-time sys-
tem identification setting pioneered by Campi and Weyer (2002, 2005), currently, the main focus has
been on obtaining optimal learning rate of 1/

√
T after T samples. Using open-loop data collection

to avoid correlations in the inputs and outputs, Oymak and Ozay (2018); Sarkar et al. (2019); Tsi-
amis and Pappas (2019); Simchowitz et al. (2019) suggest methods that achieve this rate for stable
LDS. However, due to the difficulty in handling the correlations caused by the feedback controller,
the closed-loop system identification guarantees are scarce. Recently, Lale et al. (2020a) propose
the first finite-time system identification algorithm that attains the optimal learning rate guarantee
for both open and closed-loop data collection.

In finite-time adaptive control, the efforts have been centered around achieving sub-linear regret
which measures the difference between the cumulative cost of the adaptive controller and the op-
timal controller that knows the system dynamics. Most of the prior works follow the explore and
commit approach. This approach proposes to first use open-loop data collection to solely explore
the system and then estimate the system dynamics and fix a policy to be applied for the remaining
time-steps (Lale et al., 2020b; Mania et al., 2019; Simchowitz et al., 2020). The recent introduction
of the first finite-time closed-loop system identification algorithm in Lale et al. (2020a) allowed
the design of “truly” adaptive control algorithms that naturally use past experiences to improve the
model estimates and the controller continuously. Deploying closed-loop data collection, Lale et al.
(2020c,a) provide adaptive control algorithms for PO-LDS that achieve optimal regret results.

Contributions: In this work, we study finite-time system identification and adaptive control prob-
lems in ARX modeled systems with sub-Gaussian noise. First, we state the finite-time guarantees
for learning the ARX systems that hold for both open and closed-loop data collection. Deploying
the least-squares problem introduced in Lale et al. (2020a), we show that the estimation error of
model parameters decays with Õ(1/

√
T ) rate after collecting T samples with persistent excitation.

Secondly, we study the adaptive control problem in ARX modeled systems with sub-Gaussian
noise. Leveraging the finite-time system identification results, we propose adaptive control frame-
works for the ARX systems with strongly convex or non-strongly convex quadratic cost functions:
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Table 1: Comparison with prior works for PO-LDS. Our results extend similar regret guarantees to
general ARX systems with sub-Gaussian noise disturbances, subsuming the prior works.
E&C := Explore-and-commit approach CLU := Closed-loop model estimate updates

Work Regret Setting Cost Noise Method

Mania et al. (2019)
√
T PO-LDS Str. Convex Gaussian E&C

Simchowitz et al. (2020)
√
T PO-LDS Str. Convex Semi-adversarial E&C

Lale et al. (2020a) polylog(T ) PO-LDS Str. Convex Gaussian CLU
Lale et al. (2020b) T 2/3 PO-LDS Convex Gaussian E&C
Lale et al. (2020c)

√
T PO-LDS Convex Gaussian CLU

Theorem 3
√
T ARX Str. Convex Sub-Gaussian E&C

Theorem 4 polylog(T ) ARX Str. Convex Sub-Gaussian CLU
Theorem 5 T 2/3 ARX Convex Sub-Gaussian E&C
Theorem 6

√
T ARX Convex Sub-Gaussian CLU

1. ARX systems with strongly convex cost functions: For this cost function setting, which can
possibly be time-varying, we provide an adaptive control algorithm framework that deploys online
learning for controller design and exploits the strong convexity. Using online gradient descent with
a convex policy reparametrization of linear controllers, we show that adaptive control problem turns
into an online convex optimization problem and optimal regret results can be achieved in this setting.
To this end, we first show that the explore and commit approach, which fixes the model estimate
after open-loop data collection, attains regret of Õ(

√
T ) after T time-steps of interaction via the

proposed framework. Here Õ(·) presents the order up to logarithmic terms. We then show that
if the model estimates are updated in epochs using the data collected in closed-loop, this adaptive
control framework of ARX systems yields the optimal regret rate of polylog(T ).
2. ARX models with fixed non-strongly convex quadratic cost function: For this setting, we
propose an adaptive control framework that deploys the principle of optimism in the face of uncer-
tainty (OFU) (Auer, 2002) to balance exploration vs. exploitation trade-off in the controller design.
The OFU principle prescribes to use the optimal policy of the model that has the lowest optimal
cost, i.e. the optimistic model, within the plausible set of systems according to system identification
guarantees. We show that using this framework with the explore and commit approach yields regret
of Õ(T 2/3). Ultimately, we prove that the adaptive control based on OFU principle attains regret of
Õ(
√
T ) if the model estimates are continuously updated using closed-loop data in ARX systems.

These results extend the prior results in PO-LDS to the general class of ARX systems with
sub-Gaussian noise which can be adopted in various real-world time-series modelings (Table 1).1

2. Preliminaries

The Euclidean norm of a vector x is denoted as ‖x‖2. For a given matrix A, ‖A‖2 denotes its
spectral norm, ‖A‖F is its Frobenius norm, A> is its transpose, A† is its Moore-Penrose inverse,
and Tr(A) is the trace. ρ(A) denotes the spectral radius of A, i.e., the largest absolute value of its

1. Due to the limited space, the Appendix, which contains the proofs, and the details are omitted. Interested readers are
referred to the extended version of this work found online.
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eigenvalues. The j-th singular value of a rank-n matrix A is denoted by σj(A), where σmax(A) :=
σ1(A)≥σ2(A)≥ . . .≥σn(A) :=σmin(A)>0. I is the identity matrix with appropriate dimensions.
N (µ,Σ) denotes a multivariate normal distribution with mean vector µ and covariance matrix Σ.

Consider the unknown ARX model of Θ given in (1). At each time-step t, the system is at state
xt and the agent observes yt. Then, the agent applies a control input ut, observes the loss function
`t, pays the cost of ct = `t(yt, ut), and the system evolves to a new xt+1 at time step t+ 1.

Assumption 2.1 (Sub-Gaussian Noise) There exists a filtration (Ft) such that for all t ≥ 0,
and j ∈ [0, . . . ,m], et,js are R2-sub-Gaussian, i.e., for any γ ∈ R, E [exp (γet,j) |Ft−1] ≤
exp

(
γ2R2/2

)
and E

[
ete
>
t |Ft−1

]
= ΣE � σ2

eI for some σ2
e > 0.

Following general construction of ARX models we assume that A is stable such that Φ(A) =
supτ≥0 ‖Aτ‖ /ρ(A)τ is finite. This is a mild assumption and captures extensive number of systems
including detectable partially observable linear dynamical systems (Kailath et al., 2000).

3. System Identification

Using the dynamics in (1), for any positive integer h, the output of the system can be written as

yt =
∑h−1

k=0
CAk (But−k−1+Fyt−k−1) + et + CAhxt−h. (2)

The behavior of an ARX system is uniquely governed by its Markov parameters.

Definition 1 (Markov Parameters) The set of matrices that maps the previous inputs to the output
is called input-to-output Markov parameters and the ones that map the previous outputs to the output
are denoted as output-to-output Markov parameters of the system Θ. In particular, the matrices
that map inputs and outputs to the output in (2) are the first h parameters of the Markov operator,
G={Giu→y, Giy→y}i≥1 where ∀i≥1, Giu→y=CAi−1B and Giy→y=CAi−1F which are unique.

Let Gu→y(h)=[G1
u→yG

2
u→y . . . G

h
u→y]∈Rm×hp and Gy→y(h)=[G1

y→yG
2
y→y . . . G

h
y→y]∈Rm×hm

denote the h-length Markov parameters matrices. Consider the following h-length operator G and
the subsequences of h input-output pairs from the data collected, either open or closed-loop or both,

G = [Gu→y(h) Gy→y(h)] ∈ Rm×h(m+p), φi=[u>i−1 . . . u
>
i−h y>i−1 . . . y

>
i−h]> ∈ Rh(m+p) (3)

for h ≤ i ≤ t. Using G, at each time step t, the output of the system can be written as

yt = Gφt + et + CAhxt−h. (4)

Since A is stable, for h = ch log(T ), for some problem dependent constant ch and total execution
duration of T , the last term in (4) provides a negligible bias term of 1/T 2. Therefore, we solve the
following regularized least squares problem to estimate the Markov parameters of the system:

Ĝt = arg min
G

λ‖X‖2F +
∑t

i=h
‖yi − Gφi‖22. (5)

The problem in (5) is first introduced in Lale et al. (2020a) to recover LQG systems in predictor
form, which is a special case of ARX systems with sub-Gaussian noise. The following learning
guarantee for (5) follows from Theorem 3 of Lale et al. (2020a), which is presented for i.i.d. Gaus-
sian innovation terms yet holds for sub-Gaussian measurement disturbances of ARX systems.
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Theorem 2 (Learning Markov Parameters of ARX Systems) Let Ĝt be the solution to (5) at
time t. For the given choice of h, define Vt = λI +

∑t
i=h φiφ

>
i . Let ‖G‖F ≤ S. For δ ∈ (0, 1),

with probability at least 1− δ, for all t ≤ T , G lies in the set CG(t), where

CG(t) = {G′ : Tr((Ĝt − G′)Vt(Ĝt − G′)>) ≤ βt},

for βt =
(√

mR log(δ−1 det(Vt)1/2 det(λI)−1/2) + S
√
λ + t

√
h/T 2

)2. Furthermore, for persis-
tently exciting inputs, i.e., σmin(Vt) ≥ σ2

?t for some σ?>0, and bounded φi, with high probability,
the least square estimate Ĝt obeys ‖Ĝt − G‖F = Õ(1/

√
t)

This result shows that under persistent of excitation, the least squares problem (5) provides consis-
tent estimates and the estimation error decays with the optimal rate. Note that both input-to-output
and output-to-output Markov parameters of ARX system are submatrices of G. Therefore, the given
bound trivially holds for ‖Gu→y(h)− Ĝu→y(h)‖ and ‖Gy→y(h)− Ĝy→y(h)‖.

4. Adaptive Control of ARX Systems with Strongly Convex Cost

In this section, we will first introduce linear dynamic controllers (LDC) and provide a convex policy
reparametrization, disturbance feedback controllers (DFC) (Simchowitz et al., 2020; Lale et al.,
2020a), to approximate LDC controllers. We then provide the details of the setting of ARX systems
regarding the loss and regret definition. Finally, we consider two variants of an algorithm that uses
DFC policies in adaptive control of ARX system and provide the regret performances.
Linear Dynamic Controllers (LDC): An LDC (π) is a linear controller with internal state dynam-
ics sπt+1 = Aπs

π
t + Bπyt and uπt = Cπs

π
t + Dπyt where sπt ∈ Rs is the state of the controller,

yt is the input to the controller, i.e. observation from the system, and uπt is the output of the con-
troller. (Aπ, Bπ, Cπ, Dπ) control the internal dynamics of the LDC. LDC include a large number of
controllers including H2 and H∞ controllers of fully and partially observable LDS (Hassibi et al.,
1999). The optimal control law for ARX models with quadratic cost is also an LDC (Section 5).
Output uncertainties bt(G): The output can be decomposed to its components via G as follows,

yt =
∑t−1

k=0
Gk+1
u→yut−k−1 +Gk+1

y→yyt−k−1 + CAtx0 + et.

The output uncertainties of ARX system at time t is denoted as follows:

bt(G) = yt −
(∑t−1

k=0
Gk+1
u→yut−k−1 +Gk+1

y→yyt−k−1

)
= CAtx0 + et. (6)

This definition is similar to Nature’s output adopted in Simchowitz et al. (2020); Lale et al.
(2020a). It represents the only unknown components on the output. Notice that, one can identify
the uncertainty in the output at any time step uniquely using the history of inputs, outputs and the
Markov parameters. This gives the ability of counterfactual reasoning, i.e., consider what the output
would have been, if the agent had taken different sequence of inputs and observed different outputs.

4.1. Adaptive Control Setting

Disturbance Response Controllers (DFC): For adaptive control of ARX systems with strongly
convex cost functions, we adopt a convex policy parametrization called DFC. A DFC of length h′ is
defined as a set of parameters, M(h′) := {M [i]}h′−1

i=0 acting on the last h′ output uncertainties, i.e.,

uMt =
∑h′−1

i=0
M [i]bt−i(G). (7)
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Algorithm 1 Adaptive Control of ARX Systems with Strongly Convex Cost
1: Input: ID, T , h, h′ Tw, τ , S > 0, δ > 0, ηt
2: if ID = Explore & Commit then Set Twarm = Tw, else Set Twarm = τ

—— WARM-UP ————————————————
3: for t = 0, 1, . . . , Twarm do
4: Deploy ut∼N (0, σ2

uI) and store DTwarm ={yt, ut}Twarm
t=1 and set Mt as any member ofMr

—— ADAPTIVE CONTROL ———————————–
5: for i = 0, 1, . . . do
6: Calculate Ĝi via (5) using Di = {yt, ut}2

iTwarm
t=1

7: if ID = Explore & Commit then Set Ĝi = Ĝ0→ IN E&C, ONLY Ĝ0 USED FOR CONTROL

8: Compute bj(Ĝi) := yj − (
∑h−1

k=0 Ĝ
k+1
u→yuj−k−1 + Ĝk+1

y→yyj−k−1), ∀j ≤ t
9: for t = 2iTwarm, . . . , 2

i+1Twarm − 1 do
10: Observe yt, and compute bt(Ĝi) := yt − (

∑h−1
k=0 Ĝ

k+1
u→yut−k−1 + Ĝk+1

y→yyt−k−1)

11: Commit to uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi), observe `t, and pay a cost of `t(yt, uMt

t )

12: Update Mt+1 = projMr

(
Mt − ηt∇ft

(
Mt, Ĝi

))
, Dt+1 = Dt ∪ {yt, ut}

This convex policy parameterization follows the classical Youla parameterization (Youla et al.,
1976) and used for adaptive control of PO-LDS in Simchowitz et al. (2020); Lale et al. (2020a).
DFC policies are truncated approximations of LDC policies and for any LDC policy there exists a
DFC policy which provides equivalent performance (see Appendix A).

Define the closed, convex and compact sets of DFCs, M and Mr such that the controllers
M(h′0) = {M [i]}h

′
0−1
i=0 ∈M are bounded andMr is an r-expansion ofM, i.e.,

∑h′0−1
i≥0 ‖M [i]‖≤κψ

andMr = {M(h′) = M(h′0) + ∆ : M(h′0) ∈ M,
∑h′−1

i≥0 ‖∆[i]‖ ≤ rκψ}, where h′0 = bh′2 c − h.

Therefore, all controllers M(h′) ∈ Mr are also bounded
∑h′−1

i≥0 ‖M [i]‖ ≤ κψ(1 + r). Throughout
the interaction with the system, the agent has access toMr.

Loss function: The loss function `t(·, ·) is strongly convex, smooth, sub-quadratic and Lipschitz
with a parameter L, such that for all t, 0≺αlossI � ∇2`t(·, ·) � αlossI for a finite constant αloss
and for any Γ with ‖u‖, ‖u′‖, ‖y‖, ‖y′‖ ≤ Γ, we have,

|`t(y, u)− `t(y′, u′)| ≤ LΓ(‖y − y′‖+ ‖u− u′‖) and |`t(y, u)| ≤ LΓ2. (8)

Regret definition: Let M? be the optimal, in hindsight, DFC policy in the given set M, i.e.,
M? = arg minM∈M

∑T
t=1 `t(y

M
t , u

M
t ). For ARX systems with strongly convex loss function, the

adaptive control algorithm’s performance is evaluated by its regret with respect to M? after T steps
of interaction and it is denoted as REGRET(T ) =

∑T
t=1 ct − `t(yM? , uM?).

The proposed algorithm for the ARX systems with strongly convex cost is given in Algorithm
1. It has two possible approaches depending on the persistence of excitation of given DFC setMr:
explore and commit approach or adaptive control with closed-loop estimate updates.

4.2. Adaptive Control via Explore and Commit Approach

In the explore and commit approach, Algorithm 1 has two phases: an exploration (warm-up) phase
with the duration of Tw = O(

√
T ) and an exploitation phase for the remaining T − Tw time-steps.
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Warm-up: During the warm-up period, Algorithm 1 applies ut ∼ N (0, σ2
uI) in order to recover

the Markov parameters of the system. The duration of warm-up Tw is chosen to guarantee reliable
estimate of Markov parameters of ARX system and the stability of DFC controllers in exploitation
phase. The exact duration of warm-up is given in Appendix C.
Exploitation: At the end of warm-up, Algorithm 1 estimates the Markov parameters of ARX sys-
tem, G, using the data gathered in warm-up. It deploys the regularized least-squares estimation of
(5) to obtain Ĝ. At each time-step t, Algorithm 1 uses this estimate and the past inputs to approxi-
mate the output uncertainties, bt(Ĝ) = yt−

∑h−1
k=0 Ĝ

k+1
u→yut−k−1+Ĝk+1

y→yyt−k−1. These approximate
output uncertainties are then used to execute a DFC policy Mt ∈ Mr as given in (7). Upon apply-
ing the control input, the algorithm observes the output of the system along with the loss function
`t(·, ·) and pays the cost of ct = `t(yt, u

Mt
t ). At each time-step, Algorithm 1 employs the counter-

factual reasoning introduced in Simchowitz et al. (2020) to compute a counterfactual loss. Briefly,
it considers what the loss would be if the current DFC policy has been applied from the beginning.
This provides a noisy metric to evaluate the performance of the current DFC policy. The details
of the counterfactual reasoning are in Appendix E. Finally, Algorithm 1 deploys projected online
gradient descent on the counterfactual loss to update and keep the DFC policy within the given set
Mr for the next time-step. This process is repeated for the remaining T − Tw time-steps.

Note that deploying DFC policies turns adaptive control problem into an online convex op-
timization problem which is computationally and statistically efficient. Moreover, using online
gradient descent for controller updates exploits the strong convexity grants the following regret rate.

Theorem 3 GivenMr, a closed, compact and convex set of DFC policies, Algorithm 1 with ex-
plore and commit approach attains REGRET(T ) = Õ(

√
T ) with high probability.

The proof is in Appendix E. In the proof, we first show that the choice of Tw guarantees that the
open-loop data is persistently exciting and the Markov parameter estimates are refined. Then, we
show that the estimates of the output uncertainties, the DFC policy inputs and the outputs of the ARX
system are bounded. Following the regret decomposition of Theorem 5 of Simchowitz et al. (2020),
we show that with the choice of Tw, the regret of running gradient descent on strongly convex losses
scales quadratically with the Markov parameters estimation error. This roughly gives REGRET(T )=
Õ
(
Tw+(T−Tw)/(

√
Tw)2

)
which is minimized by Tw=O(

√
T ), giving the advertised bound.

4.3. Adaptive Control with Closed-Loop Model Estimate Updates

Prior to describing Algorithm 1 with closed-loop model estimate updates, we need a further condi-
tion on the setsM andMr, such that the DFC policies in these sets persistently excite the underly-
ing ARX system. The exact definition of the persistence of excitation is given in Appendix B. Note
that this condition is mild and briefly implies having a full row rank condition on a significantly
wide matrix that maps past et to inputs and outputs. One can also show that if a controller satisfies
this, then there exists a neighborhood around it that consists of persistently exciting controllers. In
the adaptive control with closed-loop model estimates approach, Algorithm 1 also has two phases:
a fixed length warm-up phase and an adaptive control phase in epochs.
Warm-up: Algorithm 1 applies ut∼N (0, σ2

uI) for a fixed duration of τ that solely depends on the
underlying system. This phase guarantees the access to a refined first estimate of the system, the
persistence of excitation and the stability of the controllers during adaptive control.
Adaptive control in epochs: After warm-up, Algorithm 1 starts controlling the system and operates
in epochs with doubling length, i.e., the i’th epoch is of duration 2i−1τ for i≥1. Unlike the explore

7
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and commit approach, at the beginning of each epoch, it uses all the data gathered so far to estimate
the Markov parameters via (5). It then uses this estimate throughout the epoch to approximate
the output uncertainties and implement the DFC policies. At each time step, the DFC policies
are updated via projected online gradient descent on the computed counterfactual loss. The main
difference from the explore and commit approach is that Algorithm 1 updates the model estimates
during adaptive control which further refines the estimates and improves the controllers.

Theorem 4 GivenMr with DFCs that persistently excite the underlying ARX system, Algorithm 1
with closed-loop model estimate updates attains REGRET(T ) = polylog(T ), with high probability.

The proof is in Appendix E and it follows similarly with Theorem 3. One major difference
that allows to achieve the optimal regret rate is the use of data collected during adaptive control to
improve the Markov parameter estimates. This approach roughly gives the following decomposi-
tion REGRET(T ) = O(τ + polylog(T )

∑log(T )
i=1 2i−1τ/(

√
2i−1τ)2). Notice that unlike explore and

commit approach, the estimation error decays at each epoch gives the advertised logarithmic regret.

5. Adaptive Control of ARX Systems with Non-Strongly Convex Quadratic Cost

In this section, we present the setting of ARX systems with non-strongly convex quadratic cost and
the regret definition that competes against the optimal controller for this setting. Finally, we propose
an optimism based adaptive control algorithm with two variants and provide the regret guarantees.

5.1. Adaptive Control Setting

The unknown ARX system belongs to a set S which consists of systems that are (A,B) and (A,F )
controllable and (A,C) observable. The ARX system has quadratic cost on ut and yt, i.e., ct =
y>t Qyt + u>t Rut where Q � 0 and R � 0, hence non-strongly convex. For this ARX system, the
minimum average expected cost problem is given as follows

J?(Θ)= lim
T→∞

min
u=[u1,...,uT ]

1

T
E
[∑T

t=1
y>t Qyt + u>t Rut

]
.

Using the average cost optimality equation, one can derive the optimal control law for this problem
(Appendix G). The optimal control law of ARX systems, π∗, is a linear feedback policy,

u∗t = K∗xxt +K∗yyt = −(R+B>PB)−1B>P (Axt + Fyt) (9)

where P is the unique positive semidefinite solution to the discrete-time algebraic Riccati equation:

P = C>QC+ (A+FC)>P(A+FC)− (A+FC)>PB(R+B>PB)−1B>P(A+FC). (10)

Note that π∗ is an LDC policy with the optimal minimum average expected cost of J?(Θ) =
Tr(ΣE(Q+F>(P−PB(R+B>PB)−1B>P)F )). We assume that the systems in the set S are
contractible such that the optimal controller produces contractive closed-loop system dynamics for
the state and the output, i.e. ‖A + BK∗x‖ ≤ ρ < 1 and ‖F + BK∗y‖ ≤ υ < 1. Finally, the regret
measure in this setting is REGRET(T ) =

∑T
t=0(ct − J∗(Θ)).

Optimism in the face of uncertainty (OFU) principle: OFU principle has been widely adopted
in sequential decision making tasks in order to balance exploration and exploitation. It suggests to
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Algorithm 2 Adaptive Control of ARX Systems with Non-Strongly Convex Quadratic Cost
1: Input: ID, T , Tw, τ , h, S > 0, δ > 0, n, m, p, Q, R, ρ, υ
2: if ID = Explore & Commit then Set Twarm = Tw, else Set Twarm = τ

—— WARM-UP ————————————————
3: for t = 0, 1, . . . , Twarm do
4: Deploy ut∼N (0, σ2

uI) and store D0 ={yt, ut}Twarm
t=1

—— ADAPTIVE CONTROL ———————————–
5: for i = 0, 1, . . . do
6: Calculate Ĝi via (5) using Di = {yt, ut}2

iTwarm
t=1

7: Deploy SYSID-ARX (h, Ĝi, n) for Âi, B̂i, Ĉi, F̂i
8: Construct Ci := {CA(i), CB(i), CC(i), CF (i)} s.t. w.h.p. (A,B,C, F )∈Ci
9: Find a Θ̃i = (Ãi, B̃i, C̃i, F̃i) ∈ Ci ∩ S s.t. J(Θ̃i) ≤ infΘ′∈Ci∩S J(Θ′) + T−1

10: if ID = Explore & Commit then Set Θ̃i = Θ̃0→ IN E&C, ONLY Θ̃0 USED FOR CONTROL

11: for t = 2iTwarm, . . . , 2
i+1Twarm − 1 do

12: Execute the optimal controller for Θ̃i

estimate the model up to confidence interval and proposes to act according to the optimal controller
of the model that has the lowest optimal cost within the confidence interval, i.e., the optimistic
model. For adaptive control in this setting, we deploy the controllers designed via OFU principle.

The proposed algorithm for the ARX systems with non-strongly convex quadratic cost is given
in Algorithm 2. It has two variants depending on the persistence of excitation of the optimal con-
troller π∗: explore and commit approach or adaptive control with closed-loop estimate updates.

5.2. Adaptive Control via Explore and Commit Approach

Similar to prior setting, in the explore and commit approach, Algorithm 2 has two phases: an
exploration (warm-up) phase with the duration of Tw = O(T 2/3) and an exploitation phase.
Warm-up: Algorithm 2 uses ut∼N (0, σ2

uI) for exploration. The exact Tw is given in Appendix D
and it guarantees reliable estimation of system parameters and the stability of OFU based controller.

Exploitation: At the end of warm-up, Algorithm 2 estimates the Markov parameters of ARX
system via (5) and constructs confidence sets (CA, CB, CC , CF ) for the system parameters up to sim-
ilarity transform using SYSID-ARX, a variant of Ho-Kalman realization algorithm (Ho and Kálmán,
1966). The procedure follows similarly with SYS-ID of Lale et al. (2020c) and the details are given
in Appendix F. Algorithm 2 then deploys the OFU principle and chooses the optimistic system pa-
rameters, Θ̃, that lie in the intersection of the confidence sets and S. Finally, Algorithm 2 constructs
the optimal control law for Θ̃ via (9) and (10) and executes it for the remaining T − Tw time-steps.

Theorem 5 Given an unknown ARX system with non-strongly convex quadratic cost, Algorithm 2
with explore and commit approach attains REGRET(T ) = Õ(T 2/3), with high probability.

The proof is in Appendix F. In the proof, we first show that the choice of Tw guarantees persistence
of excitation in open-loop data and the stability of inputs and outputs. Then, we derive the Bellman
optimality equation for ARX systems which we use for decomposing regret via OFU principle. This
roughly gives REGRET(T )=Õ

(
Tw+(T−Tw)/

√
Tw
)

which is minimized by Tw=O(T 2/3).

9
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5.3. Adaptive Control with Closed-Loop Model Estimate Updates

Before describing Algorithm 2 with closed-loop model estimate updates, we need a further condi-
tion such that the optimal controller for the underlying ARX system persistently excited the system.
This is again a mild condition and briefly implies that a significantly wide matrix which maps the
past et to inputs and outputs and formed via optimal controller is full row rank. The precise condi-
tion is given in Appendix B. Note that if the system parameter estimates are accurate enough, the
controller designed with system parameter estimates persistently excite the ARX system. Similar to
strongly convex cost setting, in the adaptive control with closed-loop estimates approach, Algorithm
2 has two phases: a fixed length warm-up phase and an adaptive control in epochs.
Warm-up: Algorithm 2 uses ut ∼ N (0, σ2

uI) for a fixed warm-up duration τ which grants refined
estimates of the system parameters, persistence of excitation and stability for adaptive control phase.
Adaptive control in epochs: After warm-up, Algorithm 2 starts adaptive control in doubling length
epochs, i.e., i’th epoch has the duration of 2i−1τ . At the beginning of i’th epoch, it estimates the
system parameters via (5), constructs the confidence sets and deploys OFU principle to recover an
optimistic model, Θ̃i. Finally, it executes the optimal control law for Θ̃i until the end of epoch i.
Thus, the main difference from explore and commit approach is the use of closed-loop data to further
refine the model estimates. This improves the regret performance and the proof is in Appendix F.

Theorem 6 Given an unknown ARX system with non-strongly convex quadratic cost whose optimal
controller persistently excites the system, Algorithm 2 with closed-loop model estimate updates
attains REGRET(T ) = Õ(

√
T ), with high probability.

6. Related Works

System Identification: The classical open or closed-loop system identification methods mostly
consider the asymptotic performance of the proposed algorithms or demonstrate positive and neg-
ative empirical studies (Verhaegen, 1994; Forssell and Ljung, 1999; Van Overschee and De Moor,
1997; Ljung, 1999). These works mostly consider LQR or LQG systems in their state-space form.
However, Chiuso and Picci (2005); Jansson (2003) provide asymptotic studies of closed-loop sys-
tem identification of LQG systems in predictive form which corresponds to the exact ARX systems
formulation of LQG. Moreover, the ARX systems, in particular, have been studied extensively in
system identification perspective due to their input-output form (Diversi et al., 2010; Bercu and
Vazquez, 2010; Sanandaji et al., 2011; Stojanovic et al., 2016). In these works, the authors discuss
the role of persistence excitation in consistent asymptotic recovery of ARX system parameters. On
the other hand, the finite-time learning guarantees, which is the focus of this work, are not known.

Adaptive Control: The classical works in adaptive control also study the asymptotic performance
of the designed controllers (Lai et al., 1982; Lai and Wei, 1987; Fiechter, 1997). In the ARX systems
setting, Prandini and Campi (2000a,b); Campi and Kumar (1998) study the asymptotic convergence
to optimal controller of ARX systems using an early interpretation of OFU principle. The current
paper is the finite-time counterpart of these studies and completes an important part of the picture
in adaptive control of ARX systems by providing optimal regret guarantees. It also extends the
prior efforts in adaptive control of LQR and LQG systems in regret minimization perspective to the
general ARX systems setting (Abbasi-Yadkori and Szepesvári, 2011; Dean et al., 2018; Abeille and
Lazaric, 2018; Agarwal et al., 2019a,b; Cohen et al., 2019; Faradonbeh et al., 2018, 2020a,b; Lale
et al., 2020a,b,c; Mania et al., 2019; Simchowitz and Foster, 2020; Simchowitz et al., 2020).
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