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Abstract
Value functions are powerful abstractions broadly used across optimal control and robotics al-

gorithms. Several lines of work have attempted to leverage trajectory optimization to learn value
function approximations, usually by solving a large number of trajectory optimization problems as
a means to generate training data. Even though these methods point to a promising direction, for
sufficiently complex tasks, their sampling requirements can become computationally intractable.
In this work, we leverage insights from adversarial learning in order to improve the sampling effi-
ciency of a simple value function learning algorithm. We demonstrate how generating adversarial
samples for this task presents a unique challenge due to the loss function that does not admit a
closed form expression of the samples, but that instead requires the solution to a nonlinear op-
timization problem. Our key insight is that by leveraging duality theory from optimization, it is
still possible to compute adversarial samples for this learning problem with virtually no computa-
tional overhead, including without having to keep track of shifting distributions of approximation
errors or having to train generative models. We apply our method, named SEAGuL, to a canonical
control task (balancing the acrobot) and a more challenging and highly dynamic nonlinear control
task (the perching of a small glider). We demonstrate that compared to random sampling, with the
same number of samples, training value function approximations using SEAGuL leads to improved
generalization errors that also translate to control performance improvement.
Keywords: Adversarial learning, Value function approximation, Trajectory optimization, Model
predictive control

1. Introduction

Value functions are powerful tools in machine learning and robotics as they encode the optimal cost
of moving from each state to some desired goal and hence, can form the basis of many types of
controllers. There has been extensive work in learning value function approximations using neural
networks, including (Silver et al., 2016; Mnih et al., 2013; Deits et al., 2019). One approach to
learning value functions is to first generate a set of samples, where each sample contains a pair of
initial state and its associated optimal cost, and later train a neural network on the state-value pairs to
produce an approximate value function. There exists several approaches to computing the optimal
cost for a given state. When the system dynamics are unknown or stochastic, a typical approach
consists of estimating it using Monte Carlo simulation starting from that state (Silver et al., 2016;
Sutton and Barto, 2018). Alternatively, when the system dynamics are known and deterministic, the
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optimal cost can be computed (to a small integration error in the continuous dynamics case) using
trajectory optimization, or equivalently optimal control (Betts, 2010; Kelly, 2017). In this work, we
assume that the system dynamics are given and deterministic, and solve a trajectory optimization
problem to compute each state-value pair. We then learn a value function from these pairs, allowing
us to then synthesize a model predictive controller (MPC) from the learned value function.

One major difficulty of this approach is that generating samples of state-value pairs can be time
consuming. For most systems, each sampled state-value pair involves solving an optimal control
problem as a nonlinear optimization problem (NLP), which could take anywhere from seconds to
hours for some complicated problems (Bertsekas, 1997; Schultz and Mombaur, 2009). We are
hence motivated to decrease the total computation time, by reducing the number of sampled state-
value pairs while retaining good accuracy of the learned value function approximation. To this end,
we introduce SEAGuL, an algorithm that leverages ideas from adversarial training (Madry et al.,
2017; Wong et al., 2020; Kurakin et al., 2016), and seeks adversarial samples at which the learned
value function incurs large approximation error. Similar to many reinforcement learning algorithms,
SEAGuL trains a value function approximation while also generating data, and uses feedback from
the learning process to adapt its sampling. By prioritizing adversarial samples while generating
training data, the training process penalizes more heavily where the neural network approximation
error is large, and hence learns a more accurate approximation with fewer training samples.

However, there exists a major challenge to applying existing adversarial training approaches to
our problem. Most commonly, adversarial training is used in classification problems, for which
loss functions are closed form functions of the neural network input (for example, a negative log-
likelihood loss, or an l2 loss). A typical adversarial training algorithm computes the gradient of the
loss function w.r.t the input sample, and then applies projected gradient ascent to move the input
sample along the direction of that gradient and obtain a more adversarial sample (one with larger
loss). In contrast, in our problem the loss function itself contains another optimization problem,
namely the optimal control problem starting from the sampled state (in this optimization problem
the sampled state is not a decision variable but a parameter); as a result, the loss function is not a
closed form expression of the input sample, and computing the gradient of the loss function might
appear to be difficult at first glance. Our key insight is that this gradient can be readily obtained
from the result of the optimization itself simply by leveraging duality theory (Bertsekas, 1997). Our
work therefore demonstrate that it is possible to apply adversarial training methodologies to learning
value function approximations with negligible computational overhead. We list our contributions as
follows,

1. we demonstrate how to easily compute adversarial samples for a value function learning al-
gorithm by solving a nested optimization problem known as a bilevel optimization problem,

2. we demonstrate how those samples can improve the convergence of a simple supervised learn-
ing method for learning value function approximations,

3. we show how this improved convergence has meaningful impact on the quality of the resulting
controllers, specifically in the context of model predictive control.

2. Related Work

Several approaches have been proposed that use trajectory optimization in order to learn value func-
tions and policies. For example, (Zhong et al., 2013) proposed to learn a value function using the
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iterative LQG method and use the learned value function as terminal cost of an MPC problem in
order to shorten the horizon of the controller. More recently, (Deits et al., 2019) proposed a similar
approach but where the value function is trained using upper and lower bounds on the objective of a
control problem solved as a mixed-integer convex program. Note that unlike our proposed method,
neither of these directly leverage the optimization problem itself in order to guide the sampling, and
they instead rely on a mix of random sampling and of sampling of states visited by the learned con-
troller, similar to DAGGER (Ross et al., 2011). Moreover, our proposed method does not preclude
the use of these existing sampling schemes, and could be combined with them in various ways.

There has also been substantial work done in leveraging adversarial learning ideas in order to
speedup convergence of various learning algorithms. Some existing work in adversarial imitation
learning looks at improving the sampling efficiency of these learning approaches, but generally rely
on generative models to do so (Ho and Ermon, 2016; Torabi et al., 2019). Perhaps most similar
to our approach is Prioritized Experience Replay (Schaul et al., 2015), where a distribution of the
largest temporal difference (TD) error is estimated during training and used for sampling. However
the problem formulation is slightly different in our case, where our training data comes from solving
nonlinear trajectory optimization problems, and is therefore more costly (but more informative) on
a per-sample basis. Adversarial learning has also been investigated in the context of improving
robustness to parameter variation as in (Pattanaik et al., 2018; Mehta et al., 2019). These methods
are similar to ours, but they once again do not leverage a trajectory optimization formulation of
the underlying optimal control problem like our proposed approach does. Moreover, they generally
introduce additional machinery such as estimates of shifting distributions or generative models,
which our method does not.

Finally, our algorithm relies on solving a special class of optimization problems known as bilevel
optimization problems. Previous work in machine learning has investigated the incorporation of
convex optimization problem into the learning pipeline (Amos and Kolter, 2017; Amos et al., 2018).
Specifically, the lower level problem of our bilevel programs are nonlinear optimization problems,
an especially challenging type of problems that has been investigated in the context of robotics
notably by (Landry et al., 2019) and (Chen and Posa, 2020), but with different solution methods.

3. Problem Formulation

Given a system with state x ∈ X , control input u ∈ U and dynamics captured by a nonlinear
differential equation, the optimal control problem defines an integrating stage cost function c which
must be minimized while respecting both dynamics and problem-specific constraints on the state
and input trajectories of the system. Those constraints generally include desired initial and final
configurations as well as actuation limits, and any other problem specific constraints such as obstacle
avoidance.

Direct methods are a class of solution methods that discretize finite horizon optimal control
problems and casts them as nonlinear programs. Formally, the direct method trajectory optimization
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problem has the form

V (xinit, τ) = minimize
xi,ui,hi;i=0 ...m

m−1∑
i=0

c(xi, ui, hi) + cf (xm, um, hm)

subject to g(x,u,h) ≤ 0,

h(x,u,h) = 0,

x0 = xinit,

eTh = τ

(1)

where the decision variables are way-point states along the trajectory x := [x0, x1, . . . , xm], way-
point control inputs u := [u0, u1, . . . , um] and time between each way-point h := [h0, h1, . . . , hm].
c and cf are the additive and terminal costs respectively. g and h are nonlinear inequality and
equality constraints such as control input limits, obstacle avoidance or kinematic constraints, and
e := [1, 1, . . . , 1]T . xinit denotes the given initial state. For all of our problems, we also constrain
the ”time-to-go” τ of our optimal control problems. Note that xinit and τ are parameters of the
optimization problem, and manifests as the right-hand side of equality constraints, which plays
an important role in duality theory. V (xinit, τ) is the optimal cost-to-go, or state value function,
starting from xinit with τ time remaining. For the remainder of the paper, unless specified, we
will write V (xinit) := V (xinit, τ), since the treatment of τ is largely similar to the treatment of
xinit. Note that computing the solution to V (xinit, τ) also gives us the solutions to V (xinit, τk) for
k = 0 . . .m−1 with τk =

∑i=k
i=0 hi through Bellman’s principle of optimality (Kirk, 2012). We can

therefore focus exclusively on generating state-value pairs for larger values of τ ∈ T0 and use the
state-value pairs produced (as by-products) for the smaller values of τ to train a time-varying value
function approximation. The details of direct method trajectory optimization are beyond the scope
of this document and we refer the reader to (Kelly, 2017) for a good introduction. However, we
stress that nonlinear trajectory optimization has repeatedly been shown to be applicable to a broad
range of important robotics problems, from high degrees of freedom humanoid (Dai et al., 2014) to
control of reusable rockets (Ma et al., 2019).

In this work, we are interested in training a differentiable function approximator, most predomi-
nantly a deep neural network, such that it approximates V (xinit). More formally, we are looking for
Ṽθ(xinit), a differentiable function parametrized by θ, with the objective

min
θ

Exinit

M∑
m=0

(V (xinit)− Ṽθ(xinit))
2. (2)

Without loss of generality, we assume that the initial state xinit is subject to a uniform distribution
within an admissible set X0. Even though our general approach has other interesting use cases, we
are especially motivated by learning approximations (like trained deep neural networks) that are
orders of magnitude faster to evaluate than solving the original nonlinear trajectory optimization
problem (1), therefore enabling their use as part of high rate feedback controllers.

4. Limited lookahead MPC

There are numerous ways in which a learned value function Ṽθ(xinit) can be used to perform control
efficiently. Here, we highlight an important one which we utilize for all of our experiments below:
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limited lookahead model predictive control (Bertsekas, 1995; Zhong et al., 2013). This method
relies on using the learned value function as a way to shorten the horizon of a model predictive
control algorithm without reducing its efficacy. Namely, given the original problem (1), we pick
n� m, and at every time step we solve the following optimization problem

minimize
xi,ui,hi;i=1 ...n

n∑
i=1

c(xi, ui, hi) + Ṽθ(xn, τ − eT h̄)

subject to ḡ(x̄, ū, h̄) ≤ 0,

h̄(x̄, ū, h̄) = 0,

x0 = xcurrent,

τ = ttogo .

(3)

where x̄ := [x0, x1, . . . , xn], ū := [u0, u1, . . . , un], τ̄ := [t0, t1, . . . , tn], and xcurrent, ttogo are
the state and time-to-go at which the controller is being evaluated. This problem has much fewer
decision variables than the original trajectory optimization problem (1), and hence can be solved
online at a high rate. Our overall approach to using the learned value function is similar to (Hoeller
et al., 2020).

We note that unlike many methods that attempt to speed-up model predictive controllers by
synthesizing equivalent closed form policies (Kaufmann et al., 2020; Carius et al., 2020), limited
lookahead MPC has the benefit that it preserves the full expressiveness of the original problem
formulation over a short horizon. This has the advantage, among other things, of allowing the
controller to include unforeseen constraints (e.g. additional obstacles to avoid) at run time.

Finally, note that the resulting optimization problem can be solved by a number of nonlinear
optimization methods, including popular gradient-free ones like cross-entropy methods (Botev et al.,
2013).

5. Adversarial Training

Even though (2) suggests that a simple supervised learning approach to this problem should work,
and has in fact already been demonstrated with simple systems (Zhong et al., 2013), the cost of solv-
ing a single instance of a trajectory optimization problem to compute V (xinit) for that single sampled
initial state xinit, mixed with the high number of samples required to produce a good approxima-
tions, can render the approach impractical in many cases. Specifically, our method addresses the
two competing requirements of learning value functions through supervised learning, namely that
(i) the approximation must be good over a large set of states and (ii) the generation of the training
data must remain tractable.

We propose learning Ṽθ(xinit) by training using a smaller number of adversarial samples. We
define an adversarial sample xadv as a sample that has a comparatively large difference between its
true value and the value of the function approximation i.e. |V (xadv)− Ṽθ(xadv)| � 0. Our approach
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generates adversarial samples by solving

xadv = arg max
xinit

1

2
(V (xinit)− Ṽθ(xinit))

2,

s.t. xinit ∈ X0,

= arg max
xinit

1

2
(min
x,u,h

∑
i

c(xi, ui, hi) + cf (xm, um, hm)− Ṽθ(xinit, τ))2,

s.t. g(x,u,h) ≤ 0,

h(x,u,h) = 0,

x0 = xinit,

eTh = τ,

xinit ∈ X0, τ ∈ T0,

(4)

to suboptimality, where X0 is a set of admissible initial states.
Note that solving (4) is far from trivial, and this approach now requires us to solve this addi-

tional optimization problem on top of our original learning problem (2). However, this is greatly
mitigated by the specifics of our algorithm. First, we only solve the adversarial problem (4) to
suboptimality using a few iterations of a projected gradient ascent method (in practice one or two
iterations often appear to suffice), i.e., in each iteration we compute the gradient of the cost func-
tion ∂

(
1
2 ||V (xinit)− Ṽθ(xinit)||2

)
/∂ xinit in (4), and move xinit along that gradient direction for a

small step. Additionally, this method ensures that every individual iterate of each instance of the
adversarial problem generates a valid sample pair (xadv, V (xadv)), which is computation that would
have been required of any supervised training approach to (2). It is tempting to think that generating
adversarial samples is a lot more expensive than randomly sampling the initial states in X0. We
wish to clarify here that since obtaining the gradient of the cost in (4) is effortless (as will be shown
shortly), the computational cost is the same between training with adversarial samples versus with
random samples, as they both require solving the same number of trajectory optimization problems
so as to generate the same number of state-value pairs.

In order to take a gradient step to obtain a new adversarial sample xinit, we need to com-
pute the gradient of the loss function in (4), which eventually requires computing the gradient
∂V (xinit)/∂ xinit. The challenge is that V (xinit) is not a closed-form function of xinit; instead it
is the optimal cost of another minimization problem (1), where xinit is a parameter of the optimiza-
tion problem. As a result, problem 4 as a whole is known as a maxmin problem or more generally as
a bilevel optimization problem (Colson et al., 2007; Landry et al., 2019). Bilevel optimization prob-
lems are a class of problems where an optimization is embedded in another optimization, either as
part of its constraints or objective. The embedded problem is usually referred to as the lower-level
optimization, and the resulting nested optimization as the upper-level optimization. We refer the
reader to (Colson et al., 2007; Bard, 2013) for a more complete treatment of bilevel optimization.

Our key insight is that according to the duality theory (Bertsekas, 1997), the gradient of the
cost function in the bilevel optimization problem (4) can be readily obtained when the lower-level
optimized trajectory is solved, by using the dual variable values associated with the constraint x0 =
xinit:

∂V (xinit)

∂ xinit
= λ∗ (5)
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where λ∗ is the dual variable (or shadow price) associated with the constraint x0 = xinit. Most
nonlinear optimization solvers (e.g., SNOPT Gill et al. (2005b), IPOPT Wächter and Biegler (2006))
report both the primal solution (x in (1)) and the dual solution when the solver finishes, hence by
solving the nonlinear optimization problem in (1), we not only compute the value of V (xinit), but
also its gradient w.r.t the initial state, and therefore we can readily compute the gradient of the cost
in (4) as (

V (xinit)− Ṽθ(xinit)
)( ∂V

∂xinit
− ∂Ṽθ
∂xinit

)
. (6)

Note that since Ṽθ(xinit) is the output value of the neural network with xinit as the input, we can
easily compute its gradient ∂Ṽθ/∂ xinit using automatic differentiation (Paszke et al., 2017). The
entire process of generating adversarial examples is summarized in algorithm 1.

Algorithm 1
Bilevel Adversarial Sample Generation
Result: {x1adv, x

2
adv, · · · }, {V 1, V 2, · · · }

x1adv ∼ UniformSample X0

i← 1
while i ≤ maxSteps do
V i ← solve(1) using xiadv as xinit
∂V i/∂xinit ← λ∗

xi+1
adv ← projectX0

(xiadv + α∂V i/∂ xinit)

if ||xi+1
adv − xiadv||2 ≤ ε then

return
end
i← i+ 1

end

Algorithm 2
SEAGuL: Sample-Efficient Adversarially
Guided Value Learning

Result: θ, such that Ṽθ(x) ∼ V (x)
buffer← ∅
i← 0
while i ≤ maxIter do

adv samples← algorithm 1
buffer← buffer ∪ adv samples
for j in 1 . . . numBatches do

batch← sample(buffer)
θ ← step(θ, batch)

end
i← i+ 1

end

Using the adversarial example generation described in Algorithm 1, we can now train our neural
network approximation as follows. First, we generate a sample x1adv randomly, then take a number
of projected gradient ascent steps. Every gradient ascent step generates a labeled sample xiadv, V

i,
which is (on average) increasingly adversarial. The samples come from the solution to the inner
problem of the bilevel nonlinear optimization. Next, we take the samples generated during the
bilevel optimization and add them to a sample buffer. We then sample random batches (but usually
start with the newly generated samples since they are most adversarial in the network’s current state)
from this buffer and perform a few iterations of gradient descent to optimize the parameters θ of the
neural network. We repeat each step until convergence. The entire process is described in Algorithm
2.

6. Results

We apply our learning algorithm on two well-known robotic control problems: the acrobot and
the perching glider. All the trajectory optimization problems are solved using the off-the-shelf
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SQP-based nonlinear solver SNOPT (Gill et al., 2005a) through Drake interface Tedrake and the
Drake Development Team (2019) and learning is performed with Pytorch (Paszke et al., 2017). For
comparison, as a baseline, we train value function approximations using the exact same number of
samples, but sampled uniformly over the state space of each system. The starting points for the
adversarial sample problems are taken from a randomly selected subset of the samples used by the
baseline in order to reduce the effect of chance in the comparison as much as possible. For both
methods, the samples are generated and added to the respective datasets at fixed intervals between
training steps. The important point to stress here is that both the baseline and the adversarially
trained networks are trained by solving the exact same number of nonlinear optimization problems,
which is by far the biggest computational bottleneck of the overall approaches.

6.1. Acrobot

We train a neural network to approximate the value function of an optimal control problem for an
acrobot. This system consists of a double pendulum that is only actuated at its elbow. The samples
are generated using a horizon of 50 time steps of 100ms each. We train a time varying value function
using a feedforward neural network with 32 units and one hidden layer. The overall training process
ends up generating 100 samples per network and 10,000 training steps. Figure (1) shows the mean
squared error for both the baseline and the adversarially trained value functions over 100 validation
samples taken from a grid in the state-space (these samples are not trained over). 10 samples are
generated at every 500 training steps (so the number of training steps also corresponds to the number
of samples generated at that point). The validation loss shows that adversarial training converges
more quickly than the baseline. Note that both neural networks were initialized with identical
parameters, which were initially trained for 100 steps over 10 random samples.

Figure 1: Validation losses dur-
ing training of value function
approximations for the acrobot.

Next, to validate that this improvement on the generalization
of the value function leads to tangible improvement in control, we
use the learned value functions as final costs for limited lookahead
model predictive controllers with horizons of 5 time steps (com-
pared to the 50 time steps used in the data generation). For each
controller, we show the distance to the desired state (in which
the acrobot is balancing itself pointing upwards) after simulating
the system for 5 seconds. Figure (2) shows the performance of
both the baseline as well as the adversarially trained approxima-
tion after 5,000 training steps (50 samples) and 10,000 training
steps (100 samples). As expected, the improve convergence on
our value function approximation leads to improved performance
of the resulting model predictive controller.

6.2. Perching Glider

We train a neural network to approximate the value function of a more challenging task, which
consists of trying to perch a small glider on a string by executing a high pitch maneuver as described
in (Cory and Tedrake, 2008) and Figure (3). Specifically, we use a nonlinear trajectory optimization
formulation of this task adapted from (Moore and Tedrake, 2012) with only minor modifications.
The samples are generated using a horizon of 40 time steps of about 25ms each (variable time steps
are permitted in the optimization). We train a time varying value function using the same network
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Figure 2: Control performance of the resulting model predictive controllers for the acrobot system
for a grid of initial states. The color scale corresponds to the L2 distance between the final state
and the desired setpoint of the controller (with the acrobot balancing itself) after a 5 seconds of
simulation. Thus, each point shows the final state error starting from the initial state at that point.
Adversarially training the value function approximations leads to faster convergence to useful ap-
proximations. We include the performance of LQR on the same task for reference.

Figure 3: Left: Validation loss during adversarial training of the perching glider system. Center:
Resulting trajectories of the perching glider using the model predictive controllers based on adver-
sarially and randomly trained value function approximations, for various initial positions. Right:
The perching glider task consists of attempting to land a small glider on a string located in front of
it. The task is highly dynamic and requires aggressive control actions. Figure borrowed from (Cory
and Tedrake, 2008)
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Figure 4: Control performance of the resulting model predictive controllers for the perching glider
system for a grid of initial states. The color scale corresponds to the cost of the resulting trajectory
for a 1 second simulation. Smaller cost means better trajectory. Each cell represents the trajectory
cost starting from the initial state at that point. Again, adversarially training the value function
approximations leads to faster convergence to useful approximations.

architecture and hyperparameters as the acrobot, except that since the state space of the glider is
too large (7-dimensional) to properly cover with a grid, we build the validation set by combining a
coarse grid of 216 samples and an additional 250 random samples. As with the acrobot, Figure 3
(left) shows that training over adversarial samples allows the neural network to converge to a low
validation error with fewer training steps and therefore samples.

Figure 4 shows the resulting control performance for limited lookahead model predictive con-
trollers (with about 250ms of lookahead horizon) using the randomly and adversarially trained value
function approximations as terminal costs. The color scale corresponds to the cost of the resulting
trajectories for each controller. Once again, for a given number of samples, adversarial sampling
leads to better performance from the controller. Figure 3 (right) shows a few sampled rollouts from
various initial positions.

7. Conclusion

In this work, we introduce the SEAGuL algorithm, and demonstrate how it is capable of easily
generating adversarial samples in the context of learning a value function approximation, where the
samples are generated by nonlinear trajectory optimization. We show how these samples can be
used to more efficiently train value function approximations. Moreover, we demonstrate how these
gains are also reflected in improvements of the resulting controllers. We stress that our method is
both simple to implement and involves minimal computational overhead. We also note that there
are many other ways in which generating similar adversarial samples could be useful, including
by combining them with other adaptive sampling schemes such as generative models (the differ-
entiability of our adversarial loss function makes this possible and straightforward). Furthermore,
we note that our method can readily be extended to generating adversarial samples with respect to
environmental parameters, therefore making our approach an attractive avenue to experiment with
more principled ways to perform domain randomization, an exciting direction of future work.
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