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Abstract
In this paper, we design a theoretical framework allowing to apply model predictive control on

hybrid systems. For this, we develop a theory of approximate dynamic programming by leveraging
the concept of alternating simulation. We show how to combine these notions in a branch and
bound algorithm that can further refine the Q-functions using Lagrangian duality. We illustrate the
approach on a numerical example.
Keywords: Hybrid systems, reinforcement learning, approximate dynamic programming, branch
and bound

1. Introduction

The capability of hybrid systems to model both continuous dynamics and discrete events in the
same mathematical model renders them essential in fields such as robotics, automotive control or
air traffic management. However, with their ability to model such complex systems come substan-
tial challenges for controlling them. In this work1, we study finite time horizon optimal control
problems on hybrid systems.

For a linear hybrid system, a quadratic cost function and a fixed choice of discrete control in-
puts, the optimal value of the continuous control inputs can be found solving a Quadratic Program
(QP) Bemporad et al. (2002). However, the number of discrete control inputs typically grows expo-
nentially with the time horizon or “size” of the system. In Bemporad and Morari (1999), the authors
introduce a Mixed Integer Quadratic Program (MIQP) that simultaneously finds the optimal value
of both the discrete and continuous control inputs. While the number of integer variables of the
MIQP grows linearly with the time horizon or “size” of the system, MIQPs are NP-hard to solve
in general hence this approach is not suitable for the online control of large-sized problems with
real-time constraints.

Several approaches were proposed to enable a small horizon Model Predictive Controller (MPC)
to satisfy such real-time constraints online along with the control objective. In Gol et al. (2014,
2015), the authors develop an algorithm to obtain a Lyapunov function that guarantees the MPC

1. A version of this paper containing the proofs is available in Legat et al. (2020b). The results of the numerical
experiments presented in section 4 can be reproduced using the Code Ocean capsule in Legat et al. (2021). It uses
the Dionysos Julia package which relies on the OSQP solver Stellato et al. (2020) for solving quadratic programs
through the MathOptInterface Legat et al. (2020a).

© 2021 B. Legat, R.M. Jungers & J. Bouchat.
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controller to reach a target discrete state. Computing this Lyapunov function can however be pro-
hibitive and their method is not ensured to find an optimal solution. In Bouchat et al. (2020); Menta
et al. (2020), the authors show how the weak duality of the MIQP allows the refinement of an under-
approximation given by a value or Q-function. This value or Q-function can be used as terminal
cost of the MPC to improve the cost of the solution found.

Computing a Lyapunov function or an accurate approximation of the value or Q-function over
the whole state-space is intractable for most classes of hybrid systems Blondel and Tsitsiklis (2000),
hence it seems appropriate to only generate an accurate approximation along the optimal trajectory.
As the optimal trajectory is unknown, Bouchat et al. (2020) alternates between 1) a search for a
sub-optimal trajectory according to the current under-approximation of the value function using
Model Predictive Control (MPC), which they called forward pass, and 2) a refinement of the under-
approximation of the value function along the trajectory, called backward pass.

In section 2, we formalize an approach based on simulation relations to obtain Lyapunov func-
tions and Bellman-like Q-functions. This generalizes the algorithm of Gol et al. (2014) for Lya-
punov functions. This abstraction approach provides both a Bellman-like value function on the
whole state-space as well as a Lyapunov function on some set Xf containing the target set.

In section 3, we show how to combine a Lyapunov and a Bellman-like Q-function in a branch
and bound algorithm solving an optimal control problem. Since learning an accurate Q-function in
the whole state-space is intractable, the algorithm only refines it along trajectories computed with
an MPC-approach throughout the algorithm.

In section 4, we demonstrate the algorithm on an example from Gol et al. (2014); Bouchat et al.
(2020) illustrated in fig. 1.

−10 −8 −6 −4 −2 0 2
−10

−8

−6

−4

−2

0

2

Xt

O1

O2

A

B
x0

x1

x2

−10 −8 −6 −4 −2 0 2
−10

−8

−6

−4

−2

0

2

Xt

O1

O2

A

B

x0

x1

x2

Figure 1: Feasible trajectories providing increasingly better upper bounds found by algorithm 2 on
the example detailed in section 4. The first feasible trajectory found by algorithm 2 is
represented in red, the last one in blue and the intermediate ones are colored accordingly.
The left (resp. right) figure provides the trajectories found for instance I1 (resp. I2) with
Bellman-like Q-function Q2; see section 4 for the definition of I1, I2 and Q2.

2



ABSTRACTION-BASED BRANCH AND BOUND APPROACH TO Q-LEARNING FOR HYBRID OPTIMAL CONTROL

2. Discrete optimal control

In this section, we define simulation relations between discrete-time systems and show how to
deduce a Lyapunov function for a system from a Lyapunov function for a simulated system as well
as a Bellman-like value function for a system from a Bellman-like value function for a simulation.

We use the following notation for discrete-time control systems.

Definition 1 (Discrete-time control system) A discrete-time control system is defined as a triple
S = (X ,U , ) where U is the set of input sets and is the subset of transitions (x, u, x′) such that
the system can reach x′ ∈ X from x ∈ X with input u ∈ U . We denote (x, u, x′) ∈ as x  

u
x′,

and the set of x′ such that x 
u
x′ as Post 

u
(x).

We denote the set of inputs associated with transitions departing from some state x ∈ X as
U(x) = {u ∈ U | Post 

u
(x) 6= ∅ }. Also, we say that a discrete-time control hybrid system is

deterministic if for every state x ∈ X and control input u ∈ U(x), Post 
u

(x) is a singleton.
The simulation used in this section is commonly referred to as an alternating simulation.

Definition 2 (Alternating simulation relation (Tabuada, 2009, Definition 4.19 and Definition 4.22))
Consider discrete-time control systems S1 = (X1,U1, 1) and S2 = (X2,U2, 2), as defined in

theorem 1. Given a relation R ⊆ X1 × X2, consider the extended relation Re defined by the set
of (x1, x2, u1, u2) such that for every x′2 ∈ Post 2

 
u2

(x2), there exists x′1 ∈ Post 1
 
u1

(x1) such that

(x′1, x
′
2) ∈ R. If for all (x1, x2) ∈ R, and for all u1 ∈ U1(x1), there exists u2 ∈ U2(x2) such that

(x1, x2, u1, u2) ∈ Re then R is an alternating simulation relation, Re is its associated extended
alternating simulation relation and S2 is an alternating simulation of S1.

2.1. Bellman-like value and Q-functions

In this section, we define Bellman-like value functions and Bellman-like Q-functions, and show how
a Bellman-like value function of a system can be deduced from the Bellman-like value function of
an alternating simulation. The Bellman-like value function will be used to provide lower bounds for
the branch and bound algorithm in section 3.

We denote the empty tuple as ∅, the l-tuple (ui)
l
i=1 as ul and the concatenation of tuples ul1 ,u

′
l2

as the (l1 + l2)-tuple (ul1 ; u′l2). A cost function is a function c : X × U → R ∪ {∞} such that
c(x, u) =∞ if u /∈ U(x) and a value function is a function V : X → R∪{∞}. Given a Q-function
Q : X ×U l → R∪ {∞} for some l ∈ N with some cost function c, we recursively define the value
of Q(x,ul′) for l′ > l with the following identity for k = l + 1, . . . , l′:

Q(x,uk) =

c(x, u1) + maxx′∈Post 
u1

(x)Q(x′, (ui)
k
i=2) if u1 ∈ U(x)

∞ otherwise.
(1)

Given a cost function c and a value function V , T Q
c V denotes the Q-function with cost function c

such that T Q
c V (x, ∅) = V (x).

The Bellman operator Tc is defined as2:

TcV (x) = min
u∈U
T Q
c V (x, u) TcQ(x,ul) = min

u′∈U
Q(x, (ul;u

′)). (2)

2. Note that we have TcV (x) = TcT Q
c V (x, ∅).
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Definition 3 (Bellman-like value function) Consider a discrete-time control system S = (X ,U , 
). A value function V is a Bellman-like value function of S with cost function c if V (x) ≤ TcV (x)
for all x ∈ X .

Definition 4 (Bellman-like Q-function) Consider a discrete-time control system S = (X ,U , ).
A function Q : X × Uk → R ∪ {∞} is a Bellman-like Q-function of S with cost function c if
Q(x,uk) ≤ Q(x, (uk; u′l)) for all x ∈ X ,uk ∈ Uk and u′l ∈ U l, where Q(x, (uk; u′l)) is defined
from eq. (1).

Proposition 5 Consider a discrete-time control system S = (X ,U , ). If V is a Bellman-like
value function of S with cost function c, then T Q

c V is a Bellman-like Q-function of S with cost
function c.

Theorem 6 Consider discrete-time control systems S1 = (X1,U1, 1), S2 = (X2,U2, 2), as
defined in Definition 1, and an alternating simulation relation R such that for each x1 ∈ X1, there
is exactly one x2 ∈ X2 such that (x1, x2) ∈ R, which we denote by R(x1). Given a cost function c1

for S1, consider an associated cost function satisfying c2(x2, u2) ≤ min(x1,x2,u1,u2)∈Re c1(x1, u1).
If V2(x) is a Bellman-like value function for S2 with cost function c2, then V1(x1) = V2(R(x1)) is
a Bellman-like value function for S1 with cost function c1.

2.2. Lyapunov functions and receding horizon control

In this section, we define Lyapunov functions and show how a Lyapunov function of a system can
be deduced from a Lyapunov function of an alternatingly simulated system. We then show how a
Lyapunov function can ensure that a model predictive controller reaches a target.

Definition 7 (Lyapunov function) Consider a discrete-time control system S = (X ,U , ), a set
Xf ⊆ X and a cost function c. A value function L is a Lyapunov function with cost function c for
S in Xf if, for all x ∈ X \ Xf , L(x) =∞, and for all x ∈ Xf , L(x) is finite and L(x) ≥ TcL(x).

Theorem 8 Consider discrete-time control systems S1 = (X1,U1, 1), S2 = (X2,U2, 2), as
defined in Definition 1, and an alternating simulation relationR such that for each x2 ∈ X2, there is
exactly one x1 ∈ X1 such that (x1, x2) ∈ R, which we denote byR(x2). Given a cost function c2 for
S2, consider an associated cost function satisfying c1(x1, u1) ≥ max(x1,x2,u1,u2)∈Re c2(x2, u2). If
L1(x) is a Lyapunov function for S1 with cost function c1, then L2(x2) = L1(R(x2)) is a Lyapunov
function for S2 with cost function c2.

Receding horizon controllers may not reach the target due to their short-sighted nature. This
can be circumvented thanks to a Lyapunov function in several ways, two of which we recall in
Proposition 9 and Proposition 10.

The following proposition provides a classical condition for ensuring the convergence of a
model predictive controller Mayne (2001).

Proposition 9 (Mayne (2001).) Consider a discrete-time control system S = (X ,U , ), a target
set Xt ⊆ X , a set Xf ⊆ X and a nonnegative cost function c. Let L be a nonnegative Lyapunov

4
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Data: Initial state x0, target set Xt, horizon H , Q-functions (Qk(x))∞k=0.
k ← 0
while xk /∈ Xt do

u?
H ∈ arg minuH∈UH Qk(xk,uH)
uk+1 ← u?1
xk+1 ∈ Post  

uk+1

(xk)

k ← k + 1
end
return uk,xk

Algorithm 1: Receding horizon controller algorithm for a discrete-time control system as defined
in Definition 1.

function with cost function c for S in Xf . Let vk = minuH∈UH Qk(xk,uH). If Qk = T Q
c L for all

k ∈ N, and
δ = inf

x∈X\Xt, u∈U
c(x, u) > 0 (3)

then algorithm 1 terminates in at most v0/δ iterations.

The following proposition generalizes (Gol et al., 2015, Theorem 5.4) where the Lyapunov func-
tion is called “distance function”. This distance function is computed from the Lyapunov function
of an alternatingly simulated system that is constructed with (Gol et al., 2014, Algorithm 2).

Proposition 10 Consider a deterministic discrete-time control system S = (X ,U , ), a target set
Xt ⊆ X , a set Xf ⊆ X and the cost function c such that for all x ∈ X and u ∈ U , c(x, u) = 0
if x ∈ Xt and c(x, u) = 1 otherwise. Let L be a Lyapunov function with cost function c for S in
Xf such that L(x) = 0 if x ∈ Xt. Suppose there is T ∈ N and value functions (Vi)

T
i=0 such that

Vi(x) is finite if and only if i ≥ L(x) and Qk(x,uH) = T Q
c Vmax(0,T−k−H)(x,umin(H,T−k)) for

k = 1, 2, . . . , T , x ∈ X and uH ∈ UH . Let vk = minuH∈UH Qk(xk,uH). If v0 is finite, then
algorithm 1 terminates in at most T iterations.

3. Branch and bound algorithm

In this section, we show how the concepts of Lyapunov functions and Bellman-like Q-functions
can be exploited by a branch and bound algorithm. In section 3.3, we show that the Bellman-like
Q-function can be further refined during the optimization by learning it only along the optimal
trajectory as approximating it over the whole state-space is not scalable.

For this section we use the following definition of hybrid systems. As it is a special case of
Definition 1, it allows to reuse the results of the previous section.

Definition 11 (Discrete-time control hybrid system) A discrete-time control hybrid system is de-
fined as a triple S = (Q × X ,V × U , ) where Q is the finite set representing the discrete
state-space, X ⊆ Rnx represents the continuous state-space, V is the finite set of discrete con-
trol inputs, U ⊆ Rnu is the set of continuous control inputs and  is the subset of transitions
((q, x), (v, u), (q′, x′)) such that the system can reach q′ ∈ Q, x′ ∈ X from q ∈ Q, x ∈ X with
inputs v ∈ V, u ∈ U . We denote ((q, x), (v, u), (q′, x′)) ∈ as (q, x)  

v,u
(q′, x′).
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The optimal control problem is formally defined as follows.

Problem 1 Consider a discrete-time control hybrid system S as defined in Definition 11. The
optimal control problem for S with initial states q0 ∈ Q, x0 ∈ X , target set Xt and cost function
c : Q×X × V × U → R is defined as the optimization problem:

inf
l∈N, vl∈Vl, ul∈U l

T Q
c V0((q0, x0), (vl,ul)) (4)

where V0(q, x) = 0 for all (q, x) ∈ Xt and V0(q, x) =∞ otherwise.

Given a Bellman-like Q-function Q, we define the Q-function Q̂ that is only parametrized by
the discrete input vk as:

Q̂((q, x),vk) = min
uk∈Uk

Q((q, x), (vk,uk)). (5)

The following proposition shows that this is a Bellman-like Q-function as well.

Proposition 12 Consider a discrete-time control hybrid system S as defined in Definition 11. If
Q is a Bellman-like Q-function of S with cost function c, then the Q-function Q̂ defined by (5) is a
Bellman-like Q-function of S with cost function c.

As shown in Bemporad and Morari (1999), if the cost function c is quadratic then problem 1
can be formulated as a Mixed Integer Quadratic Program (MIQP) and then solved by generic MIQP
solvers. On the other hand, we show in the remaining of this section that algorithm 2 can incorporate
the information gathered in the computation of a Lyapunov and Bellman-like value functions, as
well as refine these functions during the optimization. The aim is to enable the branch and bound
algorithm to better exploit the structure of the problem than a generic MIQP solver.

3.1. Convergence and optimality

In this section is discussed the convergence and optimality of the algorithm. For optimality, we need
to ensure that the condition “Q̂((q0, x0),vl) ≤ β̄” in the algorithm does not exclude any optimal
solution. To this end, we start by proving in Lemma 13 that Q̂((q0, x0),vl) gives a lower bound to
(4), provided that Q̂ is a Bellman-like Q-function.

Lemma 13 Consider problem 1 for a discrete-time control hybrid system S with initial states
q0, x0, cost function c, and a Bellman-like Q-functionQ for S with cost function c. IfQ((q0, x0), (vl,ul)) ≤
T Q
c V0((q0, x0), (vl,ul)) for any vl ∈ V l and ul ∈ U l, then Q̂((q0, x0),vk) is a lower bound to (4)

for any vk ∈ Vk.

To ensure the convergence of the algorithm, the following assumption excludes pathological
optimal control problems that only admit arbitrarily long optimal solutions.

Assumption 1 There exists L ∈ N and an optimal solution vL,uL of problem 1.

Remark 14 Assumption 1 ensures that there exists an optimal solution of finite length. A more con-
servative alternative to assumption 1 would be to assume that the cost function c is lower bounded
by a positive number and that there is an upper bound to the optimal cost of the optimal control
problem.

6
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Data: Initial states q0 ∈ Q, x0 ∈ X , a heuristic function h, a target set Xt, a Bellman-like Q-
function Q, an upper bound function β and L ∈ N satisfying assumption 1.

β̄ ←∞
N ← {∅}
while N 6= ∅ do

vl ← h(N )
N ← N \ {vl}
if Q̂((q0, x0),vl) ≤ β̄ and l < L then

for v′ ∈ V do
v̂l̂, ûl̂, β̂ ← β(q0, x0, (vl; v

′))

if β̂ < β̄ then v̄l̄, ūl̄, β̄ ← v̂l̂, ûl̂, β̂
N ← N ∪ {(vl; v

′)}
end

end
end
return v̄l̄, ūl̄

Algorithm 2: Branch and bound algorithm for problem 1. The setN represents the set of nodes of
the search tree for which subtrees still need to be explored. The heuristic function determines which
node is considered next, two different heuristics are discussed in section 4. Note the difference
between the notation ∅ used to denote the empty tuple of discrete control inputs and the notation ∅
used to denote the empty set.

The following result ensures both the convergence and optimality of algorithm 2.

Theorem 15 Consider problem 1 for a deterministic discrete-time control hybrid system S with
initial states q0, x0, cost function c, a Bellman-like Q-function Q for S with cost function c, and
an upper bound function β. Assume that Q((q0, x0), (vl,ul)) ≤ T Q

c V0((q0, x0), (vl,ul)) for any
vl ∈ V l and ul ∈ U l and that β either returns ∅, ∅,∞ or v, u, T Q

c V0((q0, x0), (vl,ul)) with finite
T Q
c V0((q0, x0), (vl,ul)). Then algorithm 2 returns an optimal solution of problem 1.

3.2. Obtaining upper bounds

Algorithm 2 is parametrized by a function β responsible to provide upper bounds. As discussed in
section 3.1, the only necessary condition on β for the convergence and optimality of algorithm 2 is
that β should either return nothing or a feasible solution of problem 1. However, a good algorithm
for β, i.e. that provides a feasible solution of low cost, can have a dramatic impact on the efficiency
of algorithm 2 as it allows it to prune significant parts of the search tree.

In this section, we introduce a candidate for β as algorithm 3. Algorithm 3 searches for feasible
trajectories given a fixed prefix of discrete inputs. Its ability to return feasible solutions highly
depends on the size of the setXf and the horizonH . However, computing a Lyapunov function with
a larger set Xf requires more offline computation, while a larger horizon H requires more online
computation in algorithm 3. This increase in computational effort might result in better pruning
for algorithm 2, hence there is a compromise to reach between a computationally cheap β function
that often provides a costly feasible solution or no feasible solution at all, and a computationally
expensive β function that will quickly find good feasible solutions by pruning large parts of the
search tree.

7
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Data: A deterministic discrete-time control hybrid system S, initial states q0 ∈ Q, x0 ∈ X , target
set Xt, discrete input vk, horizon H , deadline T and Q-functions (Qk)Tk=0.

Let Z be the value function such that Z(q, x) = 0 for all q ∈ Q, x ∈ X
uk ← arg minuk∈Uk T Q

c Z((q0, x0), (vk,uk))

if T Q
c Z((q0, x0), (vk,uk)) =∞ then return ∅, ∅,∞

Let (qk, xk) be the unique pair such that (q0, x0)  
vk,uk

(qk, xk)

if minvH∈VH ,uH∈UH Qk((qk, xk), (vH ,uH)) is finite then
(v′l′ ,u

′
l′), (q

′
l′ ,x

′
l′)← Algorithm 1 with (qk, xk), H , Xt,, (Qi)

T
i=k

return (vk; v′l′), (uk; u′l′), T
Q
c V0((q0, x0), ((vk; v′l′), (uk; u′l′)))

else return ∅, ∅,∞
Algorithm 3: Upper bound algorithm that can be used as β function for algorithm 2.

Proposition 16 Consider problem 1 for a deterministic discrete-time control hybrid system S with
initial states q0, x0 and cost function c. If the Q-functions (Qk(x))Tk=0 satisfy either the assumptions
of Proposition 9 or Proposition 10, then algorithm 3 either returns ∅, ∅,∞ or vl,ul, T Q

c V0((q0, x0), (vl,ul))
with finite T Q

c V0((q0, x0), (vl,ul)).

3.3. Q-learning

The difference between the value of the Q-function provided to algorithm 2 with the actual minimal
cost of problem 1 has a significant impact on the performance of algorithm 2. As discussed in
Bouchat et al. (2020); Menta et al. (2020), the function providing this minimal cost is in general
nonlinear and nonconvex. As a matter of fact, a Q-function with a small such difference over the
whole state space may not be computable in a reasonable amount of time.

To circumvent this issue, Bouchat et al. (2020) suggests a reinforcement learning approach
to generate an approximation of the Q-function that is close to the actual minimal cost near the
optimal trajectory of the problem. As the optimal trajectory is unknown, the approach employed by
Bouchat et al. (2020), which is classical in Stochastic Programming Birge and Louveaux (2011),
consists in alternating between a forward pass and a backward pass. The forward pass computes a
feasible trajectory with a receding horizon controller using the current Q-function as terminal cost.
Starting from the end of the trajectory, the backward pass generates new cuts for the Q-function
corresponding to each transition using the state at each step of the trajectory.

This backward pass can be used to refine the Q-function along feasible trajectories found by
β in algorithm 2. Given such trajectory (q̂0, x̂0)  

v̂1,û1

(q̂1, x̂1)  
v̂2,x̂2

· · ·  
v̂l,ûl

(q̂l, x̂l) and a Q-

function Q((q, x), (vl,ul)) defined for l ≥ k with (1), this learning phase consists in replacing
Q by max(Q,Q′j) for j = l − k, l − k − 1, . . . , 1 where Q′j is computed as follows. The affine
lower approximation Q′j of the function TcQ((q, x), (vk,uk)) is obtained using a feasible solution

of the dual of the problem minv′,u′ Q((q̂j , x̂j), (((v̂i)
j+k
i=j+1; v′), ((ûi)

j+k
i=j+1;u′))). As shown in the

following proposition, the set of Bellman-like Q-functions is invariant under this operation.

Proposition 17 Consider problem 1 for a deterministic discrete-time control hybrid system S with
cost function c and a Bellman-like Q-functionQ for S with c. IfQ′((q, x), (vk,uk)) ≤ TcQ((q, x), (vk,uk)),
then max(Q,Q′) is a Bellman-like Q-function.

8
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4. Numerical example

In this section, we illustrate the algorithms developed in this paper on the double integrator dynam-
ics example introduced in (Gol et al., 2014, Example VIII.A). The deterministic discrete-time hybrid
control automaton (Q× [−10, 1.85]2,Q× [−2, 2], ) is such that a transition (q, x)  

q′,u
(q′, x′) oc-

curs if x′ =
[
1 1
0 1

]
x+

[
0.5
1.0

]
u, in addition to logical constraints ensuring that a feasible trajectory

goes through either squareA or B before reaching the target square Xt. The squares are represented
in Figure 1. See (Gol et al., 2014, Example VIII.A) for more details on the definition of the system.
Finally, let the cost

c((q, x), (q′, u)) =


∞ if (q′, u) /∈ U((q, x)),

u2
1 if (q′, u) ∈ U((q, x)) and (q, x) ∈ Xt,

u2
1 + 1 if (q′, u) ∈ U((q, x)) and (q, x) /∈ Xt.

We benchmark the number of iterations of the branch and bound algorithm with no Lyapunov
function and horizon H = 0, i.e. upper bounds are only obtained when the candidate vl of algo-
rithm 2 is such that xk ∈ Xt in algorithm 3. The heuristic h is a depth-first heuristic, i.e., it selects
the candidate vl with the largest k and breaks ties by selecting the one with the smallest lower bound
Q̂((q0, x0),vl). Note that, as we have no Lyapunov function and a horizon H = 0, a breadth-first
heuristic would not be able to prune much of the search tree as β̄ would remain infinite for most of
the iterations.

In order to study the generalization of the Q-function we consider two instances of the optimal
control problem: I1 with x0 = [1.5,−2.5], L = 9 and I2 with x0 = [1,−6], L = 11.

We analyze the behavior of algorithm 2 with two different Bellman-like Q-functions: Q1 and
Q2. The first one is the trivial Q1(x, u) = −∞ that corresponds to no lower bound hence no
pruning in the branch and bound algorithm. The second one, Q2, is obtained by applying theorem 6
to the extended alternating simulation relation Re = { ((q, x), q, (q′, u), q′) | (q′, u) ∈ U((q, x)) }
and the alternating simulation (Q,Q, ′) such that q  

q′
′ q′ if there exists x, x′ ∈ [−10, 1.85]2,

u ∈ [−2, 2] such that (q, x)  
q′,u

(q′, x′). The number of iterations for different choices of Bellman-

like Q-function is given in table 1. Feasible trajectories found by β are given in fig. 1.

5. Conclusion

The size of abstractions that can simulate the behavior of a hybrid system with enough accuracy in
the whole state-space typically grows exponentially with the dimension of the systems. However,
as we show in section 2, any abstraction can provide a Lyapunov function over some set Xf or a
Bellman-like value function. Of course, the coarser the abstraction, the smaller the set Xf , and the
larger the gap between the value of the Q-function provided to algorithm 2 and the actual minimal
cost of problem 1. Nevertheless, we show in section 3 that this information can be leveraged by a
branch and bound algorithm. Moreover, as illustrated by our numerical example in section 4, even
the Bellman-like value function obtained from a rather coarse abstraction allows drastic pruning of
the search tree of the branch and bound algorithm.

Our algorithm is parametrized by a solver for the sub-problems of small horizon that needs to be
solved in algorithm 1. For quadratic objectives, this solver can for instance be miOSQP Stellato et al.
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Bellman-like Q-function Number of iterations for I1 Number of iterations for I2

Q1 197 234 9 388 410
Q2 1076 96

Q2 with learning 789 75
Q2 learning on I1 782 74
Q2 learning on I2 800 74

Table 1: Number of iterations of algorithm 2 with input parameters described in section 4 for the
instances I1 and I2 with different Bellman-like Q-functions. We observe that the number
of iterations for I2 is drastically reduced. When using the abstraction-based Q-function
Q2, it is divided by appropriately 105. It is also significantly reduced for I1, by more than
103, and it is further decreased thanks to the learning approach detailed in section 3.3. We
also note that the Bellman-like Q-function learned on I2 generalize well for I1, with only
800 iterations, and the Q-function learned on the same instance prunes even more nodes,
as there is only 782 iterations.

(2018). While such solver could be used directly to solve problem 1, embedding it in algorithm 2
allows to additionally exploit control theoretical concepts such as Lyapunov or Bellman-like Q-
functions that are either known for by the control engineer or computed offline via an abstraction as
detailed in section 2. Refinements for these functions can then be learned throughout the algorithm
and reused to solve variations of the same control problem. Future work should include both a
computational and performance-oriented analysis on these benefits.

While the computation of a global Lyapunov function or a good approximation of the minimal
cost of problem 1 is not tractable for hybrid systems in general, we can still aim at computing
a local Lyapunov function and a Bellman-like value function that are sufficient for an effective
pruning of the search tree. For this purpose, it seems appropriate to guide the improvements of
these functions using feasible trajectories found during the algorithm. Often, this will in practice
enhance the refinement of these functions in the appropriate regions of the state-space. As we show
in section 4, the refinement of the Bellman-like value function obtained after algorithm 2 can be
reused for solving similar optimal control problem.

Several key research directions of this approach are left as future work. This includes a detailed
complexity analysis of the algorithm with, in particular, the complexity of computing the cut in
section 3.3. A second line of research is the iterative refinement of the abstractions used to compute
the Lyapunov and Bellman-like value functions throughout the algorithms.
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