
Proceedings of Machine Learning Research vol 144:1–12, 2021

Safe Reinforcement Learning Using Robust Action Governor

Yutong Li YUTLI@UMICH.EDU
University of Michigan, Ann Arbor, MI, USA

Nan Li NANLI@UMICH.EDU
University of Michigan, Ann Arbor, MI, USA

H. Eric Tseng HTSENG@FORD.COM
Ford Motor Company, Dearborn, MI, USA

Anouck Girard ANOUCK@UMICH.EDU
University of Michigan, Ann Arbor, MI, USA

Dimitar Filev DFILEV@@FORD.COM
Ford Motor Company, Dearborn, MI, USA

Ilya Kolmanovsky ILYA@UMICH.EDU

University of Michigan, Ann Arbor, MI, USA

Abstract
Reinforcement Learning (RL) is essentially a trial-and-error learning procedure which may cause
unsafe behavior during the exploration-and-exploitation process. This hinders the application of
RL to real-world control problems, especially to those for safety-critical systems. In this paper, we
introduce a framework for safe RL that is based on integration of a RL algorithm with an add-on
safety supervision module, called the Robust Action Governor (RAG), which exploits set-theoretic
techniques and online optimization to manage safety-related requirements during learning. We
illustrate this proposed safe RL framework through an application to automotive adaptive cruise
control.
Keywords: safety-critical systems, reinforcement learning, action governor, automotive applica-
tions

1. Introduction

In Reinforcement Learning (RL), the agent interacts with the environment by perceiving environ-
ment’s states and selecting the action that maximizes the long-term return based on a real-valued
reward signal (Sutton and Barto, 2018). The success of RL has been apparent in a broad spectrum of
applications (Mnih et al., 2013; Kober et al., 2013; Abbeel et al., 2007). However, RL is essentially
a trial-and-error learning process which may cause unsafe behavior during the learning process.
This hinders the RL real-world applications, especially to safety-critical systems.

One approach to addressing such safety issues is the safe RL approach (Garcıa and Fernández,
2015). In particular, risk-sensitive safe RL aims to promote the constraint satisfaction via balanc-
ing the long-term return and the risk of reaching the unsafe region (Geibel and Wysotzki, 2005).
Methods based on policy optimization with constraints were also proposed, where a constraint
on the probability of the system being able to return to the safe region is enforced (Wachi et al.,
2018; Moldovan and Abbeel, 2012). However, safety cannot be guaranteed via these model-free

© 2021 Y. Li, N. Li, H.E. Tseng, A. Girard, D. Filev & I. Kolmanovsky.

SAFE RL WITH RAG

approaches, as the agent needs to learn to operate safely via its interactions with the environment,
which may lead to constraint violations.

To guarantee the safety constraint satisfaction during the learning process, an effective approach
is to incorporate the system model information. In general, the safe region can be determined by the
system model, and a control policy that keeps system state staying inside this safe region can then
be computed (Aswani et al., 2013; Fisac et al., 2018; Larsen et al., 2017; Sloth et al., 2012). The
main advantage of these model-based methods is that within the interior of the safe region, the RL
agent can explore safely to improve the performance. However, the optimality of the trained policy
is highly dependent on the size of the safe region computed based on the system model.

Following the idea of this model-based direction, in this paper, we propose a novel safe RL
framework that also exploits the system model to design a safe set that regulates the RL explorations
to guarantee system safety. In particular, the proposed framework exploits an add-on module, called
the Robust Action Governor (RAG), to manage safety. With the RAG, an arbitrary RL algorithm
can be integrated into the framework and lead to safe RL. The RAG enforces safety constraints by
monitoring, and minimally modifying when necessary, the control signal produced by the nominal
RL policy to a constraint-admissible one.

The proposed safe RL framework based on RAG operates on the basis of set-theoretic tech-
niques and online optimization. Similar approaches were proposed by integrating the Reference
Governor (RG) with RL to enforce constraint satisfaction (Li et al., 2018, 2019). A distinguishing
feature of our safe RL framework based on RAG is that, unlike the RG which modifies the reference
input to the controller, the RAG modifies controller output signal, i.e. the RAG can be placed closer
to the environment/plant. A direct consequence is that our safe RL framework based on RAG can be
used to train lower-level controls, while the approach based on RG in Li et al. (2018, 2019) can only
be used to train higher-level planners where the plant must have already been stabilized by some
controller that is fixed. Another advantage of RAG compared to RG is that the use of RAG yields
a larger safe set, and thereby, can potentially achieve better control performance (Li et al., 2021a).
On the other hand, unlike safe RL approaches based on the use of control barrier functions (Cheng
et al., 2019; Sloth et al., 2012), our RAG is formulated based on discrete-time models from the start
and thereby can be more directly applied in a digital setting (e.g., one does not need to modify the
algorithm to account for sampling time and discrete updates).

In summary, the contributions of this paper include: 1) establishing a safe RL framework based
on RAG, 2) extending the theoretical results and computational methods in Li et al. (2021a) for the
Action Governor for discrete-time linear systems to their robust versions for linear systems with
additive bounded disturbances and non-convex constraints, and 3) illustrating effectiveness of the
proposed safe RL framework using an example relevant to automated driving and adaptive cruise
control.

2. Conventional RL and Safe RL

Conventional RL optimizes the agent’s action via trial-and-error to maximize its accumulated re-
ward (or minimize accumulated cost) through continuously interacting with the environment, as
illustrated in Figure 1a. Specifically, at each time instant k ∈ Z≥0, the agent takes a measurement
of the state x(k) ∈ Rn, executes a control uφ(k) ∈ Rm and collects a reward r(k) ∈ R. A control
policy, π : Rn → Rm, which is a mapping from the state space Rn to the action space Rm, describes
the agent’s behavior. The control policy is learned from the experience {x(k), uφ(k), r(k)} to max-

2

SAFE RL WITH RAG

imize the long-term reward R =
∑∞

k=0 γ
kr(k), where γ ∈ (0, 1) is a discount factor. However,

to maximize the long-term reward, RL agent needs to explore within the action space, which may
cause unsafe behaviors (i.e., violation of certain safety constraints) during the learning process. This
feature hinders the application of RL to actual engineering systems, and motivates us to propose a
safe RL framework enabling the agent to learn a policy safely.

The proposed safe RL framework is illustrated in Figure 1b. An add-on module, termed Robust
Action Governor (RAG), is introduced between the RL agent and the environment (which repre-
sents the system that the control policy is acting on, e.g., the plant in a conventional control setting).
The RAG monitors the control signal uφ(k) generated by the RL agent and corrects the ones that
may cause unsafe behavior. We will describe the properties and design procedure of the RAG in the
subsequent section.

RL agent
𝑢!

𝑥, 𝑟

Environment
Robust action

governor
𝑢! 𝑢

𝑥, 𝑟

Environment
(a) (b)

RL agent

Figure 1: Schematic diagram of conventional RL (a) and safe RL (b).

3. Robust Action Governor

3.1. Problem Formulation

In this section, we review the main results in Li et al. (2021a) on the Action Governor and extend
them from disturbance-free systems to systems subject to bounded disturbances, enabling the Action
Governor to be applicable to more general cases. Consider a discrete-time linear model with additive
disturbances as follows:

x(k + 1) = Ax(k) +Bu(k) + Ew(k), (1)

where x(k) ∈ Rn is the state at discrete time instant k ∈ Z≥0 and u(k) ∈ Rm is the control input.
The vector w(k) represents an unmeasured disturbance input and we assume that it is bounded in
a known set, i.e., w(k) ∈ W = {w : Mw ≤ m}, where W is a known polytope in Rnw . In
applications to RL, w(k) can account for model mismatch, e.g., differences between the actual
lead vehicle acceleration and assumed zero lead vehicle acceleration in an adaptive cruise control
(ACC) setting. We further assume that state, input and disturbance constraints are not coupled, i.e.,
T = {(x, u, w)|x ∈ X , u ∈ U , w ∈ W} = X × U × W , where X represents the feasible set of
states and U is the control input set. We assume that a nominal control policy φ has been designed
for the system (1),

uφ = φ(x(k), xr(k), w(k), k), (2)

where xr(k) ∈ Rr denotes a reference signal for the system (1), which defines the control objective.
Note that there is no further assumption on the nominal control φ, and it can take any form, e.g.
nonlinear and time-varying. In particular, in this paper, φ represents the RL policy.

We assume that the system is subject to a safety requirement of the form

x(k) ∈ X = Rn \X0, ∀k ∈ Z≥0, (3)

3

SAFE RL WITH RAG

where the unsafe set X0 can be expressed as a finite union of polytopes, i.e.,

X0 =

ng⋃
i=1

{x ∈ Rn : Gix < gi}, (4)

where Gi ∈ Rng×n and gi ∈ Rng . Note that the expressions (3) and (4) can represent a broad range
of safety requirements, including box constraints, obstacle avoidance constraints, etc. In general,
the feasible set X can be non-convex.

As the safety requirement (3) may not be strictly handled by the nominal control policy (2)
(especially when (2) represents an RL policy), this motivates us to design an add-on scheme to
enforce (3). In particular, we exploit a supervisory solution, the RAG, to satisfy this requirement,
as illustrated in Figure 1b. The RAG monitors the nominal control input uφ and, if necessary,
minimally modifies uφ to guarantee that the system state can stay outside X0 for the present and all
future time instants even in the presence of disturbances.

In particular, at each time instant, the RAG solves the following constrained optimization prob-
lem to enforce the safety requirement (3),

u(k) = arg min
u∈U

‖u− uφ(k)‖2S (5a)

subject to Ax(k) +Bu+ Ew ∈ Xsafe,∀w ∈ W (5b)

where Xsafe ⊂ X is a “safe set” which will be introduced in the next section. The function ‖ · ‖S =√
(·)TS(·) is used to penalize the difference between the nominal control uφ and the modified

control u, where the matrix S ∈ Rm×m is positive-definite.

3.2. Safe Set and Unrecoverable Sets

To enforce both present and future safety, the safe set Xsafe is characterized by the following re-
quirements: There exists a state-feedback control u(x) such that

• u(x) ∈ U for all x ∈ Xsafe;

• Given x(0) ∈ Xsafe, this control can keep all future states {x(1), x(2), ...} within X in the
presence of disturbances {w(0), w(1), ...} ⊂ W .

The derivation of Xsafe relies on its complementary sets, termed unrecoverable sets, which are
recursively defined as follows,

Xk = X0 ∪ {x ∈ Rn : ∀u ∈ U , ∃w ∈ W, s.t. Ax+Bu+ Ew ∈ Xj

for some j = 0, ..., k − 1}

= X0 ∪

x ∈ Rn : Ax ∈
k−1⋃
j=0

Xj ⊕ ((−E) ◦W) ∼ (B ◦ U)

 ,

(6)

where ⊕, ∼, and ◦ represent the Minkowski sum, Pontryagin difference, and affine mapping oper-
ations of sets. Note that in the derivation of (6) we have used the fact that S = {v : ∀u ∈ U,∃z ∈
Z, s.t. v = z − u} = {v : ∀u ∈ U,∃z ∈ Z, s.t. z = v + u} = {v : v + u ∈ Z,∀u ∈ U} = Z ∼ U .

The unrecoverable set Xk in (6) has the following properties elaborated in Propositions 1 to 3.

4

SAFE RL WITH RAG

Proposition 1: 1) If x0 ∈ Xk, then for any state-feedback control sequence {u0(x0)..., uk−1(xk−1)
} ∈ U × ... × U , there exists a disturbance sequence {w0, ..., wk−1} ∈ W × ... × W such that
xj ∈ X0 for some 0 ≤ j ≤ k .
2) Let x0 be given. If for any state-feedback control sequence {u0(x0), ..., uk−1(xk−1)} ∈ U × ...×
U , there exists a sequence {w0, ..., wk−1} ∈ W × ...×W such that xj ∈ X0 for some 0 ≤ j ≤ k,
then x0 ∈ Xk.

The proof of Proposition 1 can be constructed following similar steps as those in the proofs of
Propositions 1 and 2 in Li et al. (2021a). It is omitted here but will be included in our subsequent
publication Li et al. (2021b). Proposition 1 implies that for any state-feedback control sequence
{u0(x), ..., uk−1(x)} ∈ U × ...×U , there exists a disturbance sequence {w0, ..., wk−1} ∈ W× ...×
W that causes the state trajectory to enter X0 during the steps 0, ..., k if and only if x0 ∈ Xk. Or
equivalently, for any admissible disturbances {w0, ..., wk−1} ∈ W × ... ×W , there exists a state-
feedback control sequence {u0(x), ..., uk−1(x)} ∈ U × ...× U that can prevent the state trajectory
from entering X0 over steps 0, ...k if and only if x0 ∈ X \Xk.
Proposition 2: For each k = 0, 1, ..., we have Xk ⊂ Xk+1, i.e. Xk is an increasing sequence of
sets. In turn, X∞ = limk→∞Xk exists and satisfies Xk ⊂ X∞ for all k.

On the basis of the unrecoverable sets Xk, we define the safe set as Xsafe = X \ X∞ =
limk→∞(X \Xk).
Proposition 3: For any x ∈ Xsafe, it holds that (1) x ∈ X = Rn \ X0 and (2) there exists u ∈ U
such that Ax+Bu+ Ew ∈ Xsafe for all w ∈ W .

The proofs of the above Propositions 2 and 3 can also be constructed following proofs of the
Propositions 3 and 4 in Li et al. (2021a) and will be included in Li et al. (2021b). Note that one

needs to use the formula
k⋃
k=0

Xk ⊕W =
k⋃
k=0

(Xk ⊕W) to complete these proofs, which can be

easily shown to hold using the definitions of Minkowski sum and union of sets.
Proposition 3 ensures that if the RAG operates based on (5), then a feasible solution exists to

(5) for all k, and the safety requirement (3) is satisfied for all k in spite of disturbance w ∈ W . Note
that the exact determination of Xsafe relies on the set Xk iteratively computed according to (6) with
k →∞. In practice, we approximate Xsafe by Xsafe,k = X \Xk with k being sufficiently large. We
also note that according to Proposition 1, the safe set Xsafe used by RAG approach is maximal.

3.3. Offline and Online Computations

Proposition 4: Suppose A is invertible. Then, for each k = 1, 2, ..., we have (1) Xk can be

represented as the union of a finite number of polytopic sets, i.e., Xk =
rk⋃
j=1

Xk,j where Xk,j is a

polytopic set for each j = 1, ..., rk; and (2) Xk can be numerically computed using Algorithm 1.
The proof of Proposition 4 is similar to that of Proposition 6 in Li et al. (2021a). RAG operates

by solving the optimization problem in (5) at each time step. Using the fact that X\(Xk ⊕ (−E ◦

W)) = X\Xk ∼ E ◦ W , and Xk ⊕ (−E ◦ W) =
rk⋃
j=1

sj⋂
i=1
{x ∈ X : Gi,jx < gi,j}, (5) can be

transformed into a Mixed-Integer Quadratic Programming (MIQP) problem with the constraints as

5

SAFE RL WITH RAG

following

Gi,j(Ax(k) +Bu) ≥ gi,j −M(1− δi,j), (7a)

δi,j ∈ {0, 1},∀i = 1, ..., sj , ∀j = 1, ..., rk′ , (7b)
sj∑
i=1

δi,j = 1,∀j = 1, ..., rk′ , (7c)

where M > 0 is a sufficiently large number.

Algorithm 1 Offline computation of Xk for systems in (1)
Input: A,B,E,X0, Xk−1,U ,W
Output: Xk

1: H ← convhull(Xk−1 ⊕ ((−E) ◦W))
2: D ← H ∼ ((B) ◦ U))
3: E ← H \ (Xk−1 ⊕ ((−E) ◦W)))
4: F ← E ⊕ ((−B) ◦ U)
5: G ← D \ F
6: Xk ← X0

⋃
A−1G

4. Safe RL With RAG

Given the constraint enforcement property of RAG, in this section, we integrate RL with RAG to
achieve safe learning without violating system constraints. Indeed, the proposed safe RL framework
can be combined with any RL algorithms. In this paper, we consider the Neural-Fitted Q-learning
(NFQ) as the base RL module due to its ability to deal with continuous state and control spaces
(Riedmiller, 2005).

In NFQ, we use a neural network to approximate the Q-function, and we update this Q-function
approximation using the following formula,

Q(x(t), u(t))← λQ̃(x(t), u(t)) + (1− λ)
(
R(x(t), u(t)) + γṼ (x(t+ 1))

)
, (8)

where λ ∈ (0, 1) is the learning rate, γ ∈ (0, 1) is a factor to discount future rewards and avoid the
Q-values increasing to infinity, and

Ṽ (x) = max
u∈U

Q̃(x, u), (9)

where Q̃(x, u) represents the approximated Q-values extracted from the neural network. Note that
the data points used to update Q-function in (8) can be obtained through black-box simulations or
hardware experiments, which makes the NFQ a model-free method.

The proposed safe RL framework based on RAG is formally presented as Algorithm 2. We first
initialize a neural network to approximate Q-function for the continuous state and action spaces. The
action space U is discretized with step ds to reduce the computational cost of selecting the optimal
control action u(t) based on currently approximated Q-function in (9). The nt is the collected
trajectory number in one episode, and T is the length of one trajectory. We use a replay buffer B to
store the experience collected in the most recent episode.

6

SAFE RL WITH RAG

The RL agent balances exploration and exploitation using an ε-greedy action selection rule in
Lines 5-9. Line 10 is the control modification step. By solving (5), any action that may lead to
constraint violation will be modified to usafe. Note that we only discretize the action space U in
Line 8, (5) is solved on the continuous action space.

Lines 11-16 collect experience and store it into replay buffer B for later use in training the Q-
function NN Q̃(x, u). In particular, we update the Q-value of the current state x(t) and nominal con-
trol u(t), Q(x(t), u(t)), with the reward R(x(t), usafe(t)) brought by safe action usafe(t). Further-
more, we store the tuple of current state, nominal control and updated Q-value, (x(t), u(t), Q(x(t),
u(t))), to the replay buffer. This way, the action modification by RAG is not perceived by the
agent, and the agent will explore all actions. This may be beneficial as this will potentially improve
convergence to the optimal control policy.

Algorithm 2 Safe RL algorithm

Input Initialized Q-value NN Q̃(x, u), empty replay buffer B, discretized action space Ud, and
the maximum trajectory number within a training episode N .

1: for each training episode do
2: while nt < N do
3: Pick a safe initial state x(0) ∈ Xsafe
4: while t < T do
5: if rand() < ε then
6: u(t) takes a random value within Ud . Exploration
7: else
8: u(t) ∈ arg maxu∈Ud Q̃(x(t), u) . Exploitation
9: end if

10: Solve (5) to modify u(t) to usafe(t) . RAG
11: Apply usafe(t) to system
12: Observe next state x(t+ 1) and reward R(x(t), usafe(t))
13: Update Q value:
14: Ṽ (x(t+ 1)) = maxu∈Ud Q̃(x(t+ 1), u)
15: Q(x(t), u(t))← λQ̃(x(t), u(t)) + (1− λ)

(
R(x(t), usafe(t)) + γṼ (x(t+ 1))

)
16: Store (x(t), u(t), Q(x(t), u(t))) to replay buffer B
17: end while
18: end while
19: Train Q-value NN Q̃(x, u) using sampled data from replay buffer B
20: nt ← 0
21: end for

Note that the proposed RAG approach can be combined with an arbitrary RL algorithm to
achieve safe RL. The discretization step of action space U is only for reducing the computational
complexity and is not a necessary step of the proposed safe RL framework. Furthermore, although
in Algorithm 2 the Q-learning algorithm produces a nominal control input that takes values in the
discretized space Ud, the modified safe control input usafe after RAG takes values in the original
continuous space.

7

SAFE RL WITH RAG

5. Safe RL for Adaptive Cruise Control

In this section, we apply the proposed safe RL framework to the Adaptive Cruise Control (ACC)
problem for an automated vehicle, to demonstrate the major advantage of the proposed safe RL
approach over conventional RL in terms of guaranteed constraint satisfaction both during and after
training. The dynamics of relative motion between the lead vehicle and the following ego vehicle
are represented as∆s(k + 1)

∆v(k + 1)
vego(k + 1)

 =

1 Ts 0
0 1 0
0 0 1

∆s(k)
∆v(k)
vego(k)

+

−T 2
s
2

−Ts
Ts

u(k) +

T 2
s
2
Ts
0

w(k), (10)

where ∆s[m] and ∆v[m/s] are the longitudinal distance and relative speed between the lead and ego
vehicles, respectively. The state vego[m/s] represents the ego vehicle’s velocity. The control input
u[m/s2] represents the ego vehicle’s acceleration, and to improve the driving comfort, we impose
the following input constraints u ∈ U = {u : −3 ≤ u ≤ 3}. Ts = 0.5s is the sampling period. We
treat the lead vehicle’s acceleration w ∈ W = {w : −1.5 ≤ w ≤ 1.5} as a disturbance. The upper
and lower bounds of the lead vehicle’s acceleration are derived based on the FTP75 driving cycle,
which represents the typical city driving behavior.

Our goal is to achieve a safe and efficient car-following performance. We use headway time
as the metric and set its target value to 1.5s. The reward function of the RL agent is design as
following:

R =

{
−(∆s

vego − 1.5)2 if vego ≥ 5,

−(∆s− 7.5)2 if 0 ≤ vego ≤ 5.
(11)

Also, we consider the following constraints on the headway time to enforce safety:

1 ≤ ∆s

max(vego, 5)
≤ 2. (12)

As the set defined by (12) is the region where the system state is supposed to be in, X0 is its
complement and can be expressed in the form of (4).

The nominal control uφ (before training) is a state-feedback control policy tracking the desired
headway time of 2.5s, which is different from the target, i.e. 1.5s. Two RL schemes, namely,
conventional RL and safe RL, as shown in Figure 1, are employed to train the nominal control
policy uφ. During training, we randomly sample segments (with length of T = 30s) within the
FTP75 driving cycle as the lead vehicle’s speed trajectory. The unrecoverable set Xk and safe
set Xsafe,k are computed with the MPT3 toolbox offline (Herceg et al., 2013). The online MIQP
optimization problem in (5) is solved by OPTI with SCIP (Currie and Wilson, 2012; Achterberg,
2009). We compute Xk according to Algorithm 1 with k = 10.

The training histories of conventional and safe RL algorithms are illustrated in Figure 2. As
the nominal feedback control policy tracks the headway time of 2.5s before training, which is not
within the range of constraints in (12), the constraint violation rate of conventional RL is high at the
beginning of training. In contrast, no constraint violation is exhibited for safe RL during the entire
training process. With RAG, the RL agent can learn the control policy safely without any constraint
violation. Moreover, with RAG the headway time of ego vehicle is always within the range of
[1, 2]s, leading to a smaller reward variation and faster learning compared with conventional RL, as
shown in Figure 2b.

8

SAFE RL WITH RAG

0 50 100 150 200 250
Episode

-10000

-5000

0

A
ve

ra
ge

 re
w

ar
d RL

RL+RAG

0 50 100 150 200 250
Episode

0

0.5

1
C

on
st

ra
in

t v
io

la
tio

n
ra

te
RL
RL+RAG

(a) (b)

Figure 2: Training histories of conventional RL and safe RL. (a) Constraint violation rates of each
episode. (b) Average reward values of each episode. Solid lines represent average values
and shaded areas represent the standard deviation values over 20 experiments.

The validation results of trained policies are shown in Figure 3. The policy trained with safe
RL is implemented with RAG. As shown in Figure 3a, 3b and 3c, the velocity and headway time
tracking performances of conventional and safe RL policies are both satisfactory. However, under
the control of conventional RL policy, there are still occasional constraint violations in ∆s, as shown
in Figure 3d. In comparison, there is no constraint violation with the control of safe RL policy,
which is attributed to the fact that the RAG monitors and modifies the control input to guarantee the
constraint satisfaction as illustrated in Figure 3f.

We remark that the fact that our safe RL algorithm based on the use of RAG guarantees no safety
constraint violation during both the training and the operating phases yields that it can be used for
onboard applications. For instance, it can be used to continuously improve the performance of a
controller during its onboard operation.

The computational time performances are shown in Figure 4. The simulations are performed
on the Matlab R2019b platform using an Intel Xeon E5-1650 3.50 GHz PC with Windows 10 and
16.0 GB of RAM. As the optimization problem (5) needs to be solved at each time instant, safe RL
takes around 130 s on average to complete an episode, which is longer compared with the one with
conventional RL. Furthermore, we can observe that the average online solving time for (5) is around
30 ms, which is feasible for real-time control scenarios.

6. Conclusions and Future Work

In this paper, we developed a safe RL framework based on RAG that integrates model-based safety
supervision and model-free learning. We exploited the underlying dynamics and exclusion-zone
requirement to construct a safety set for constraining learning exploration using set-theoretic tech-
niques and online optimization. We applied the proposed safe RL framework to an Adaptive Cruise
Control system and showed that we could conduct the online learning with no safety constraint vi-
olations. Future work will include the investigation into the computational complexity, scalability,
and approaches to improving the exploration efficiency of the proposed safe RL framework.

9

SAFE RL WITH RAG

(a) (b)

(c) (d)

(e) (f)

0 500 1000 1500 2000 2500
Time [s]

0

10

20

30
v

[m
/s

]
RL
FTP75

0 500 1000 1500 2000 2500
Time [s]

0

10

20

30

v
[m

/s
]

RL+RAG
FTP75

0 500 1000 1500 2000 2500
Time [s]

0

10

20

30

40

 s
[m

]

RL
RL+RAG
Constraint

500 1000 1500 2000 2500
Time [s]

1

1.5

2

he
ad

w
ay

 ti
m

e
[s

]

RL RL+RAG Constraint

0 500 1000 1500 2000 2500
Time [s]

-2

0

2

u

RL Constraint

0 500 1000 1500 2000 2500
Time [s]

-2

0

2
u

unominal uRAG Constraint

Figure 3: Validation results of conventional RL and safe RL. (a, b) Speed tracking performances.
(c) headway time tracking performances (target value: 1.5s). (d) Relative distance be-
tween lead vehicle and ego vehicle. (e, f) Control inputs.

0 500 1000 1500 2000 2500
Time [s]

0

0.02

0.04

0.06

C
om

pu
ta

tio
n

tim
e

[s
] RL RL+RAG

0 50 100 150 200 250
Episode

50

100

150

Tr
ai

ni
ng

 ti
m

e
[s

]

RL RL+RAG(a) (b)

Figure 4: Comparison of computational times. (a) Training time of each episode. (b) Compu-
tational time of each step during validation. Solid lines represent average values and
shaded areas represent the standard deviation values over 20 experiments.

10

SAFE RL WITH RAG

Acknowledgments

This work is supported by Ford Motor Company. We also thank Mr. Xintao Yan for helpful discus-
sions about implementing reinforcement learning algorithm in the ACC example.

References

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of reinforcement
learning to aerobatic helicopter flight. In Advances in neural information processing systems,
pages 1–8, 2007.

Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Com-
putation, 1(1):1–41, Jul 2009. ISSN 1867-2957. doi: 10.1007/s12532-008-0001-1. URL
https://doi.org/10.1007/s12532-008-0001-1.

Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. Provably safe and robust
learning-based model predictive control. Automatica, 49(5):1216–1226, 2013.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3387–3395, 2019.

Jonathan Currie and David I. Wilson. OPTI: Lowering the Barrier Between Open Source Optimizers
and the Industrial MATLAB User. In Nick Sahinidis and Jose Pinto, editors, Foundations of
Computer-Aided Process Operations, Savannah, Georgia, USA, 8–11 January 2012.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under
constraints. Journal of Artificial Intelligence Research, 24:81–108, 2005.

M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In Proc. of the
European Control Conference, pages 502–510, Zürich, Switzerland, July 17–19 2013. http:
//control.ee.ethz.ch/˜mpt.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Rie B Larsen, Andrea Carron, and Melanie N Zeilinger. Safe learning for distributed systems with
bounded uncertainties. IFAC-PapersOnLine, 50(1):2536–2542, 2017.

N. Li, K. Han, A. Girard, H. E. Tseng, D. Filev, and I. Kolmanovsky. Action governor for discrete-
time linear systems with non-convex constraints. IEEE Control Systems Letters, 5(1):121–126,
2021a. doi: 10.1109/LCSYS.2020.3000198.

11

https://doi.org/10.1007/s12532-008-0001-1
http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

SAFE RL WITH RAG

Y. Li, N. Li, H. E. Tseng, A. Girard, D. Filev, and I. Kolmanovsky. Robust action governor for
discrete-time piecewise affine systems with additive disturbances. IEEE Control Systems Letters,
2021b.

Zhaojian Li, Uroš Kalabić, and Tianshu Chu. Safe reinforcement learning: Learning with super-
vision using a constraint-admissible set. In 2018 Annual American Control Conference (ACC),
pages 6390–6395. IEEE, 2018.

Zhaojian Li, Tianshu Chu, and Uroš Kalabić. Dynamics-enabled safe deep reinforcement learning:
Case study on active suspension control. In 2019 IEEE Conference on Control Technology and
Applications (CCTA), pages 585–591. IEEE, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. arXiv
preprint arXiv:1205.4810, 2012.

Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pages 317–328. Springer,
2005.

Christoffer Sloth, George J Pappas, and Rafael Wisniewski. Compositional safety analysis using
barrier certificates. In Proceedings of the 15th ACM international conference on Hybrid Systems:
Computation and Control, pages 15–24, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of
constrained mdps using gaussian processes. In AAAI, pages 6548–6556, 2018.

12

	Introduction
	Conventional RL and Safe RL
	Robust Action Governor
	Problem Formulation
	Safe Set and Unrecoverable Sets
	Offline and Online Computations

	Safe RL With RAG
	Safe RL for Adaptive Cruise Control
	Conclusions and Future Work

