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Abstract
It has recently been shown that deep residual networks with sufficiently high depth, but bounded
width, are capable of universal approximation in the supremum norm sense. Based on these results,
we show how to modify existing training algorithms for deep residual networks so as to provide
approximation bounds for the test error, in the supremum norm, based on the training error. Our
methods are based on control-theoretic interpretations of these networks both in discrete and con-
tinuous time, and establish that it is enough to suitably constrain the set of parameters being learned
in a way that is compatible with most currently used training algorithms.
Keywords: Deep residual networks, uniform approximation bounds, universal approximation.

1. Introduction

Deep learning (LeCun et al., 2015) has profoundly changed the way in which many engineering
problems are solved, with computer vision being a particularly striking example. Deep neural net-
works can now perform complex tasks like gesture recognition (Oyedotun and Khashman, 2017),
obstacle detection for self driving cars (Ramos et al., 2017), and many more (Voulodimos et al.,
2018). Although similar benefits may be expected by integrating machine learning with control, we
must contend with the safety critical nature of many control applications. Unfortunately, the sta-
tistical guarantees typically provided in machine learning, such as probably approximately correct
learning bounds, cannot be directly used to establish formal guarantees of safety and performance of
control loops. Despite these difficulties, several research efforts are underway to tackle this problem.
For example, there are several recent papers studying control related tasks that employ data-driven
controllers or perception maps (Dean et al., 2020; Cheng et al., 2019; Abbasi-Yadkori et al., 2019),
and others that further study classical problems such as the Linear Quadratic Regulator (Dean et al.,
2019) or the Kalman Filter (Tsiamis et al., 2020) in settings where the underlying parameters are to
be learned as new information arrives, while still guaranteeing some level of performance. On the
other hand, control-theoretic techniques, particularly ideas from robust and optimal control theory,
have been useful in developing training algorithms for neural networks (Seidman et al., 2020; Li
et al., 2017).
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In this paper, we offer one additional contribution towards this effort. It was recently established
by Tabuada and Gharesifard (2020), using control-theoretic techniques, that deep residual networks
have the power of universal approximation with respect to the infinity norm. In other words, given
a continuous function f : E → Rn to be learned, defined on a compact set E ⊂ Rn, and given a
desired accuracy ε ∈ R+, there exists a deep residual network implementing the function φ satisfy-
ing supx∈E ‖f(x) − φ(x)‖∞ ≤ ε. Such a result has obvious relevance in the context of a control
loop since one can use well-established nonlinear control analysis techniques to study the effect of
using φ instead of f by using the upper bound ε on the mismatch between f and φ. Unfortunately,
the results of Tabuada and Gharesifard (2020) are not constructive and, in particular, they do not
provide training procedures for deep residual networks that guarantee such bounds. Moreover, the
results are established for the continuous limit of deep residual networks given by continuous-time
control systems. These shortcomings are addressed in this paper. We show that most training algo-
rithms, and gradient descent in particular, can be modified to offer similar approximation guarantees
without the need to take the continuous limit.

At the technical level, we make the following two contributions: 1) we show how to modify
training algorithms so that an upper bound on the infinity norm of the test error can be computed
from an upper bound on the training error; 2) we show the training error can be made as small as
desired by increasing depth (although we do not guarantee that any particular training algorithm can
achieve it, as the training of deep networks is known to be a non-convex problem).

Interestingly, the guarantees provided in this paper are deterministic which contrasts with the
mainstream approach in machine learning that typically only provides probabilistic guarantees
(Shalev-Shwartz and Ben-David, 2014; Anthony and Bartlett, 2009). Underlying this difference are
the assumptions made on the training data. Whereas classical learning theory assumes the training
data to be generated according to some distribution, we make no assumptions on how it is gener-
ated. However, our bounds are based on how well the data covers the domain of the function to be
learned. This is similar to robustness bounds in the Input to State Stability framework: nothing1 is
assumed about disturbances and the bound on the state depends on the concrete disturbance being
applied. In our case, nothing is assumed about the training data and the bound depends on the actual
data that was used for training.

2. Universal approximation in the uniform norm for deep residual networks

In this section we review the results of Tabuada and Gharesifard (2020) upon which the results of
this paper are based.

2.1. Residual networks as control systems

One of the key insights exploited by Tabuada and Gharesifard (2020) is that residual neural networks
can be thought of as the forward Euler discretization of continuous-time control systems. This
observation, first made by E (2017); Haber and Ruthotto (2017); Lu et al. (2018), allows us to use
control theoretic techniques to analyze deep residual networks.

Let us consider a deep residual network modeled by the discrete-time control system:

z(k + 1) = z(k) + s(k)Σ(W (k)z(k) + b(k)) , (1)

1. Except for being essentially bounded.
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where k ∈ N0 indexes the layers of the network, z(k) ∈ Rn models the contents of the n neurons
in layer k, (s(k),W (k), b(k)) ∈ R × Rn×n × Rn are the weights (interpreted as inputs), and
Σ(z) = (σ(z1), . . . , σ(zn)) is defined by the scalar activation function σ : R → R. In particular,
we consider deep residual networks that have fixed width equal to n. To help the reader distinguish
between discrete-time models and continuous-time models, we reserve z for the state of discrete-
time models and x for the state of continuous-time models. Before introducing the continuous
analogue of (1), we recall the notion of flow. The flow Zk : Rn → Rn of (1) under the input
(s,W, b) : {0, 1, . . . , `} → R×Rn×n×Rn is the map Zk taking the state z ∈ Rn to the state Zk(z)
reached from z at time k ∈ {0, 1, . . . , `+ 1} by the solution of (1) under the input (s,W, b).

Discrete-time control systems of the form (1) can be viewed as the time discretization of the
continuous-time control system:

ẋ(t) = s(t)Σ(W (t)x(t) + b(t)) , (2)

where x(t) and (s(t),W (t), b(t)) take values in the same sets as in (1), except they are indexed by
t ∈ R+

0 modeling continuous time. The weights are now functions defined on [0, τ ] that we interpret
as open-loop inputs parameterized by time t ∈ [0, τ ]. Similarly to the discrete-time case, we define
the flowXt : Rn → Rn induced by (2) and by a choice of inputs (s,W, b) : [0, τ ]→ R×Rn×n×Rn
to be the function mapping the state x ∈ Rn to the state Xt(x) reached at time t ∈ [0, τ ] from x by
the solution of (2) under the input (s,W, b).

2.2. Controllability

The interpretation of deep residual networks as continuous-time control systems allows the problem
of training a network to be recast as the problem of designing an open-loop control input.

Let us assume that we seek to train a network so as to learn a continuous function f : E → Rn
where E ⊂ Rn is a compact set. We are given a collection of samples of this function, i.e., a
collection of d pairs (xi, f(xi)), with i ∈ {1, . . . , d}, and our objective is to choose a time τ ∈ R+

and a control input (s,W, b) : [0, τ ] → R × Rn×n × Rn so that the resulting flow Xt satisfies
Xτ (xi) = f(xi) for all i ∈ {1, . . . , d}. We emphasize that, independently of the number of
samples d, we seek a single control input. In other words, we seek a single input to concurrently
control d copies of the control system (2), each initialized at one of the points xi in the sample set.
To make this idea formal, we introduce the ensemble control system:

Ẋ(t) =
[
s(t)Σ(W (t)X•1(t) + b(t))|s(t)Σ(W (t)X•2(t) + b(t))| . . . |s(t)Σ(W (t)X•d(t) + b(t))

]
,

(3)
where X•i represents the i-th column of X(t) ∈ Rn×d. If we define X init =

[
x1|x2| . . . |xd

]
and

Xfin =
[
f(x1)|f(x2)| . . . |f(xd)

]
, we can express the network training problem as the design of a

time τ ∈ R+ and an input (s,W, b) : [0, τ ] → R × Rn×n × Rn so that the flow Xt of (3) satisfies
Xτ (X init) = Xfin. Note that the ensemble control system (3), is formed by d exact copies of (2)
whereas the literature on ensemble control, e.g., Li and Khaneja (2006); Helmke and Schönlein
(2014); Brockett (2007), mostly deals with ensembles of different control systems, with the excep-
tion of Agrachev and Sarychev (2020) where a setting similar to the one here is considered.

To summarize, the ability to train a network relies on the controllability of the ensemble control
system (3). Let us recall the notion of controllability.
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Definition 1 Control system (3) is said to be controllable on a submanifoldM of Rn×d if, given any
points X init, Xfin ∈M there exist τ ∈ R+ and a control input (s,W, b) : [0, τ ]→ R× Rn×n × Rn
so that the flow Xt of (3) under said input satisfies Xτ (X init) = Xfin.

In order to state one of the key results of Tabuada and Gharesifard (2020), showing that control-
lability holds on an open, dense, and connected subset of Rn×d, we introduce a mild assumption on
the activation function σ stated in terms of its derivative denoted by Dσ:

Assumption 1 We assume that Dσ ≥ 0, Dσ := supx∈RDσ < ∞, and that there exists k ∈ N0

such that ξ = Dkσ is injective and satisfies a quadratic differential equationDξ = a0 +a1ξ+a2ξ
2

with a2 6= 0.

Assumption 1 is quite mild. It is satisfied, e.g., by the logistic function, hyperbolic tangent, tangent,
and soft plus. Moreover, it also holds for the ReLU by regarding this function as the limit of the soft
plus function, see (Tabuada and Gharesifard, 2020) for more details.

Theorem 2 (Tabuada and Gharesifard (2020)) Let N ⊂ Rn×d be the set defined by:

N =

F ∈ Rn×d |
∏

1≤i<j≤d
(F`i − F`j) = 0, ` ∈ {1, . . . , n}

 . (4)

Suppose that Assumption 1 holds. If n > 1, then the ensemble control system (3) is controllable on
the submanifold M = Rn×d\N .

Theorem 2 shows that given any finite set of samples defining X init and Xfin, as described above,
only two situations can occur: 1) either X init, Xfin ∈ M and Xτ (X init) = Xfin or; 2) X init /∈ M or
Xfin /∈M and ‖Xτ (X init)−Xfin‖ ≤ ε for any chosen norm ‖ · ‖ and accuracy ε ∈ R+. The latter
case holds in virtue of M being an open and dense subset of Rn×d. In other words, deep residual
networks can memorize exactly almost any finite set of samples. Moreover, those finite sets that
cannot be exactly memorized can be approximated to an arbitrary accuracy.

2.3. Uniform approximation

The second main result of Tabuada and Gharesifard (2020) extends Theorem 2 from finite sets to
the whole domain of the function to be learned. This is done by using a deep residual network with
n+ 1 neurons to learn a function f : E → Rn, with E ⊂ Rn a compact set. The additional neuron
allows non-monotone functions to be approximated while using a monotone flow. The monotonicity
property is crucial to the L∞ norm approximation result, and is the main ingredient behind our
results in Section 3. To recall this result more precisely, since f and the flow Xt have different
domains and co-domains, we introduce a linear injection α : Rn → Rn+1, a linear projection
β : Rn+1 → Rn, and measure the error between f and the learned function β ◦Xτ ◦ α by:

‖f − β ◦Xτ ◦ α‖L∞(E) := sup
x∈E
‖f(x)− β ◦Xτ ◦ α(x)‖∞.

Theorem 3 Let n > 1 and suppose that Assumption 1 holds. Then, for every continuous function
f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time τ ∈ R+,
a linear injection α : Rn → Rn+1, a linear projection β : Rn+1 → Rn, and an input (s,W, b) :
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[0, τ ] → R × R(n+1)×(n+1) × Rn+1 so that the flow Xt : Rn+1 → Rn+1 of (2) with state space
Rn+1 under the said input satisfies:

‖f − β ◦Xτ ◦ α‖L∞(E) ≤ ε.

By interpreting α and β as linear layers, the first and last, respectively, we conclude that deep
residual networks can approximate any continuous function arbitrarily well with respect to the
supremum norm. Tabuada and Gharesifard (2020) select α as the fixed function α(x) = (x,111Tx)
and β as the linear function β(x, y) = x + κ111y where κ ∈ R has to be appropriately chosen for
each f being approximated, and 111 ∈ Rn is the vector whose entries are all one.

3. Main results

3.1. Approximation bounds for training algorithms

In this section, we show how the approximation error between a function to be learned and the func-
tion implemented by a deep residual network can be bounded by the training error. Monotonicity
plays a key role in our approach and thus we start by reviewing this concept.

Definition 4 (First-orthant partial order on Rn) The first-orthant partial order � on Rn is de-
fined by x � y if and only if xi ≤ yi for all i ∈ {1, . . . , n}, where ≤ denotes the usual total order
on R.

Monotonicity of a map can now be introduced by making use of the preceding partial order. Al-
though monotonicity can be defined with respect to other orders, the first-orthant order will simplify
the analysis.

Definition 5 (Monotone map) We say that a function φ : Rn → Rm is monotone if for any
x, y ∈ Rn:

x � y =⇒ φ(x) � φ(y) .

We say that a flow Zk is monotone if the map Zk : Rn → Rn is monotone for each k ∈ N.

Given a set E ⊂ Rn, we denote, respectively, by supE and inf E the least upper bound of all the
elements in E and the greatest lower bound of all the elements in E with respect to the order �.
Moreover, given two points x, z ∈ Rn with x � z, we denote by [x, z] the set defined by:

[x, z] = {y ∈ Rn | x � y � z}.

Flows of deep residual networks can be made monotone by enforcing certain constraints on the
inputs.

Proposition 6 Consider the discrete-time control system (1) modeling a deep residual network and
assume Assumption 1 holds. Any flow Zk induced by (1) using an input (s,W, b) : {0, 1, . . . , `} →
R× Rn×n × Rn satisfying:

s(k)wij(k) ≥ 0, 1 + s(k)wii(k)Dσ ≥ 0, ∀i, j ∈ {1, 2, . . . , n}, i 6= j, k ∈ {0, 1, . . . , `},
(5)

is monotone.
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Proof Let k ∈ N0 and consider the map φk : Rn → Rn defined by

φk(z) = z + s(k)Σ(W (k)z + b(k)) .

Note that for all i, j ∈ {1, 2, . . . , n} with i 6= j, we have that

∂φki
∂xj

(x) = s(k)Dσ(W (k)x+ b(k))wij(k) .

Since Dσ ≥ 0 and s(k)wij(k) ≥ 0, by assumption, we have ∂φki
∂xj
≥ 0 for all i 6= j. Moreover, for

i = j we have:
∂φki
∂xi

(x) = 1 + s(k)Dσ(W (k)x+ b(k))wii(k) .

It now follows from the assumption 1 + s(k)wii(k)Dσ ≥ 0, alongside with the fact that Dσ ≥ 0,

that ∂φ
k
i

∂xj
≥ 0 holds for i = j. Hence, by Hirsch and Smith (2006, Lemma 5.1), we conclude that φk

is monotone.
Finally, since:

Zk = φk−1 ◦ φk−2 ◦ · · · ◦ φ0 ,

and the composition of monotone functions is monotone, Zk is monotone.

We now prove one of the main results of this paper, a deterministic bound for the approximation
error based on the training error. Although reminiscent of a generalization bound that holds for any
set of sample points, the bound in the following result depends on the specific set of samples.

The result makes use of a discrete-time control system of the following form, representing
a residual neural network, where the state z(k) ∈ Rn+1 is a tuple z(k) = (z1(k), z2(k)) with
z1(k) ∈ Rn and z2(k) ∈ R, whose dynamics are described by:

z(k + 1) = (z1(k + 1), z2(k + 1)) = (z1(k) + s(k)Σ(W (k)z1(k) + b(k)), z2(k)) . (6)

The dynamics are split into two independent parts. The first is a control system of form (1), while
the second has no dynamics and just propagates the initial value of z2 through the layers. We denote
by Zk1 and Zk2 the flows of the first and second part of (6), respectively.

Theorem 7 Consider the discrete-time control system (6), modeling a deep residual network, and
suppose that Assumption 1 holds. Let f : Rn → Rn be a continuous function, and let E ⊂ Rn be a
compact set. For any finite set Esamples ⊂ Rn satisfying E ⊆ [inf Esamples, supEsamples], let δ ∈ R+

be the smallest number satisfying:

∀x ∈ E, ∃x, x ∈ Esamples, ‖x− x‖∞ ≤ δ and x � x � x.

For any flow Zk induced by (6) and by an input (s,W, b) : {0, 1, . . . , `} → R × Rn×n × Rn
satisfying the constraints (5), we have:

‖f − β ◦ Z`+1 ◦ α‖L∞(E) ≤ 3‖f − β ◦ Z`+1 ◦ α‖L∞(Esamples) + 2ωf (δ) + 2n|κ|δ, (7)

where ωf is the modulus of continuity of f , α : Rn → Rn+1 is given by α(x) = (x,111Tx),
β : Rn+1 → Rn is given by β(x, y) = x + κ111y, 111 ∈ Rn is the vector whose entries are all 1,
and κ ∈ R.
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Proof Observing the structure of (6) we can write for any x ∈ E:

β ◦ Z`+1 ◦ α(x) = β ◦ (Z`+1
1 (x), Z`+1

2 (111Tx)) = Z`+1
1 (x) + κ111Z`+1

2 (111Tx) = Z`+1
1 (x) + κ111111Tx .

Then:

‖f − β ◦ Z`+1 ◦ α‖L∞(Esamples) = ‖f − Z`+1
1 − κ111111T ‖L∞(Esamples) = ‖f̃ − Z`+1

1 ‖L∞(Esamples), (8)

where f̃ = f − κ111111T . Then, since f̃ is a continuous function and Z`+1
1 is monotone, we can apply

Lemma A.3 of Tabuada and Gharesifard (2020) to obtain:

‖f − β ◦ Z`+1 ◦ α‖L∞(E) = ‖f̃ − Z`+1
1 ‖L∞(E)

≤ 3‖f̃ − Z`+1
1 ‖L∞(Esamples) + 2ωf̃ (δ)

≤ 3‖f − β ◦ Z`+1 ◦ α‖L∞(Esamples) + 2ωf̃ (δ).

To conclude the proof, it remains to be shown that ωf̃ (δ) ≤ ωf (δ) + n|κ|δ. This can be seen by
observing that for any x, y ∈ Rn, we have:

‖f̃(x)− f̃(y)‖∞ = ‖f(x) + f(y)− κ111111T (x− y)‖∞
≤ ‖f(x) + f(y)‖∞ + |κ|‖111111T ‖∞‖x− y‖∞
≤ ωf (‖x− y‖∞) + n|κ|‖x− y‖∞ ,

yielding the claim.

Note that the bound (7) can be used as a stopping criterion for the training. Since ‖f − β ◦
Z`+1 ◦ α‖L∞(Esamples) is known, some knowledge of an upper bound for ωf will directly give us an
upper bound for the approximation error. Hence, the question arises as to how to train deep residual
networks so that the assumptions of Theorem 7 hold. This can be done by training a deep residual
network with any of the usual iterative optimization techniques (such as gradient descent), as long
as the parameters s,W are suitably constrained to satisfy (5). We now make this idea precise.

Consider a deep residual network described by (6) with n+1 neurons and `+1 layers enhanced
with a layer implementing the linear map α(x) = (x,111Tx) functioning as layer 0, and another layer
implementing the linear map β(x, y) = x+κ111y functioning as layer `+2. Note that while layer 0 is
fixed, the parameter κ in layer `+2 will also be learned. If we denote by θ(k), k ∈ {1, 2, . . . , `+2}
the parameters of each layer, we have:

θ(k) = (s(k),W (k), b(k)) ∈ R× Rn×n × Rn, k ∈ {1, 2, . . . , `+ 1}

θ(`+ 2) = κ ∈ R.

To ensure that the parameters θ(k), k ∈ {1, 2, . . . , `+ 1}, satisfy the constraints (5), we project
them to the closest point in the set defined by (5) using the projection proj : Rn2+n+1 → Rn2+n+1

defined by the solution of a quadratic optimization problem:

proj(θ(k)) =


arg min

θ′∈Rn2+n+1 ‖θ′ − θ(k)‖2

s.t. s′w′ij ≥ 0, i, j ∈ {1, . . . , n}, i 6= j

1 + s′w′iiDσ ≥ 0, i ∈ {1, . . . , n}
, (9)
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where θ′ = (s′,W ′, b′) is the variable we optimize over (note that b′ does not appear in the con-
straints, so can always be taken as b′ = b(k)). Since the constraints (5) are independent for each
layer, the parameters of each layer can be independently projected. Although problem (9) is non-
convex, many efficient heuristics exist for solving quadratic programs, see Park and Boyd (2017)
and references therein. Furthermore, we note that the optimal W ′ can be computed explicitly for
a given fixed s′, so that the projection can be recast as a single-variable non-linear optimization
problem.

Let now Θ be the full set of parameters of the network Θ = (θ(1), . . . , θ(`+ 1), θ(`+ 2)). Any
iterative training algorithm can be written in the form:

Θi+1 = ψ(Θi),

for a suitably defined ψ (that we assume here to encode all the information about the problem, such
as the available training data), and modified to:

Θ̃i+1 = ψ(Θi)

Θi+1 = (proj(θ̃i+1(1)), proj(θ̃i+1(2)), . . . ,proj(θ̃i+1(`+ 1)), θ̃i+1(`+ 2)),

so that the parameters θ at each iteration satisfy the constraints (5). Even though we do not plan to
dwell on this topic here, it is worth pointing out that the projected gradient descent has convergence
properties similar to those of normal gradient descent (Attouch et al., 2013). In fact, constraining
the weights in neural networks is a recurring idea in the literature, see, e.g., Chorowski and Zurada
(2014); Daniels and Velikova (2010).

As a concluding remark, it is interesting to note that penalizing the magnitude of κ during
training, (that would typically be done for purposes of regularization), can be justified on the basis
of Theorem 7, where |κ| appears in the final approximation guarantee, indicating a potential tradeoff
between training and test errors.

3.2. Revisiting the universal approximation properties of deep residual networks

The bound (7) provided in Theorem 7 provides information about the approximation error based
on the training error. However, we do not know if low training error is achievable when the con-
straints (5) on the inputs are enforced. We will show this to be the case by building upon the results
of Tabuada and Gharesifard (2020).

In analogy with (6), we present the following control system, where x(t) ∈ Rn+1, x1(t) ∈ Rn,
and x2(t) ∈ R:

ẋ(t) = (ẋ1(t), ẋ2(t)) = (s(t)Σ(W (t)x1(t) + b(t)), 0) . (10)

Like in the discrete case, the dynamics are split into two independent parts, with the first a control
system of form (2), while the second has no dynamics. We denote respectively by Xt

1 and Xt
2 the

flows of the first and second part of (10).
We first introduce a variant of Corollary 4.5 of Tabuada and Gharesifard (2020).

Theorem 8 Let n > 1 and suppose that Assumption 1 holds. Then, for every continuous function
f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time τ ∈ R+ and
an input (s,W, b) : [0, τ ]→ R× Rn×n × Rn satisfying:

s(t)wij(t) ≥ 0 ∀i, j ∈ {1, 2, . . . , n}, i 6= j, t ∈ [0, τ ], (11)
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so that the flow Xt : Rn+1 → Rn+1 of (10) under the said input satisfies:

‖f − β ◦Xτ ◦ α‖L∞(E) ≤ ε,

where α : Rn → Rn+1 is given by α(x) = (x,111Tx), and β : Rn+1 → Rn is given by β(x, y) =
x+ κ111y as in Theorem 7.

Note that this result differs from Theorem 3, as it places additional constraints (11) on the inputs,
and assumes that the flow Xτ obeys (10). However, the proof of Theorem 3 only requires minor
modifications to account for (10) and (11).
Proof We first consider the flow of the first component Xτ

1 only. Proposition A.4 and Theorem 4.4
of Tabuada and Gharesifard (2020) will still hold for Xτ

1 , provided that there exist choices of inputs
(s,W, b) satisfying the constraints (11) that induce the same set of vector fields used in their proofs.
The vector fields used in Proposition A.4 are:{

X+
i = σ(c) ∂

∂xi
, X−i = −X+

i

Y +
i = σ(xi)

∂
∂xi
, Y −i = −σ(xi)

∂
∂xi

, i ∈ {1, 2, . . . , 2n},

for some c such that σ(c) 6= 0. Respectively, these can be realized in our case by the choices
(s,W, b) = (±1, 0, cei) and (s,W, b) = (±1, Eii, cei), where ei is the vector with 1 in its i-th entry
and 0 in every other entry, and Eij is the matrix with 1 in its ij-th entry and 0 in all other entries
(note that the constraints (11) only apply to off-diagonal entries). An additional class of vector fields
that is used in Theorem 4.4 of Tabuada and Gharesifard (2020) is given by

Zij = σ(xj)
∂

∂xi
, i, j ∈ {1, . . . , 2n}.

Note that these vector fields are realizable in our case by the choice (s,W, b) = (1, Eij , 0).
This ensures that Proposition A.4 and Theorem 4.4 hold for Xτ

1 . Consequently, Corollary 4.5
of Tabuada and Gharesifard (2020) will hold for the complete flow Xτ establishing this result.

We can now establish that the training error can be made as small as desired, provided that the
network depth is large enough, by Euler discretization of the continuous-time input from Theorem 8.

Theorem 9 Consider the discrete-time control system (6), modeling a deep residual network, and
suppose that Assumption 1 holds. Then, for every continuous function f : Rn → Rn with n > 1,
for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time ` ∈ N and an input
(s,W, b) : {0, 1, . . . , `} → R × Rn×n × Rn satisfying (5), so that the flow Zk : Rn+1 → Rn+1

of (6) under the said input satisfies:

‖f − β ◦ Z`+1 ◦ α‖L∞(E) ≤ ε, (12)

whereα : Rn → Rn+1 is given byα(x) = (x,111Tx), and β : Rn+1 → Rn is given by β(x, y) = x+ κ111y
as in Theorem 7.

Proof . According to Theorem 8, there exist a β : Rn+1 → Rn and a piecewise constant control
input2 (s,W, b) for (10) satisfying (11) inducing a flowXt so that ‖f−h‖L∞(E) ≤ ε

2 with h defined

2. The controllability results of Tabuada and Gharesifard (2020) only rely on being able to switch between a finite set
of vector fields which is achieved by piecewise constant inputs.
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by h(x) = β ◦ Xτ ◦ α(x). Consider now the function g(x) = β ◦ Z`+1 ◦ α(x), where Zk is the
flow induced by (6) under some input. Then, for any x ∈ E:

‖f(x)− g(x)‖∞ ≤ ‖f(x)− h(x)‖∞ + ‖h(x)− g(x)‖∞
≤ ε

2
+ ‖Xτ

1 (x) + κ111111Tx− Z`+1
1 (x)− κ111111Tx‖∞

≤ ε

2
+ ‖Xτ

1 (x)− Z`+1
1 (x)‖∞ . (13)

Let (s,W, b) be the continuous-time input for (10) that results in the continuous-time flow Xt.
We now construct a discrete-time input (s′,W ′, b′) for (6), so that the resulting flow Zk satisfies:

‖Xτ
1 (x)− Z`+1

1 (x)‖∞ ≤
ε

2
. (14)

By Euler forward integration (see Atkinson (2008)), there exists a sufficiently small T ∈ R+,
so that the flow of (1) under the input (s′(k),W ′(k), b′(k)) = (Ts(kT ),W (kT ), b(kT )), k ∈
{1, 2, . . . , bτ/T c} satisfies (14) with ` = bτ/T c, provided the solution of (2) has bounded second
derivative and the right-hand side of (2) is Lipschitz continuous in the state variable. Since the input
(s,W, b) is piecewise constant, the solution of (2) can be seen as the composition of analytic flows
(the right-hand side of (2) is analytic for constant inputs in virtue of Assumption 1), one per each
constant component of the input. Since the solution is defined on the compact [0, τ ], its second
derivative is bounded.

By combining (13) with (14) we obtain inequality (12), and hence to conclude the proof it
suffices to show that the inputs (s′,W ′, b′) satisfy (5). The first requirement in (5):

s′(k)w′ij(k) ≥ 0,

is immediately satisfied, since ∀t ∈ [0, τ ] we have that s(t)wij(t) ≥ 0. In order to show that the
second requirement in (5) is satisfied, we first let:

s̄ = max
[0,t]
|s(t)|, w̄ij = max

[0,t]
|wij(t)| ,

and select T such that:
T ≤ min

i,j∈{1,...,n}
(s̄w̄ijDσ)−1 .

Therefore, we have that:

1 + Ts(kT )wii(kT )Dσ = 1 + s′(k)w′ii(k)Dσ ≥ 0 .

4. Conclusions

In this paper we showed how to modify existing training algorithms for deep residual networks so
that approximation bounds can be given in the supremum norm. These results are different from the
typical approximation guarantees in the literature in that they are deterministic and are based on the
sample set used for training. They are applicable to scenarios where the domain of the function to
be learned is known and can be appropriately sampled. Although not all applications satisfy these
requirements, we regard these results as useful first steps to obtain hard guarantees with a view
towards integrating deep networks within a control loop.
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