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Abstract

Recurrent neural networks (RNN5s) incorporate a memory state which makes them suitable for time
series analysis. The Linear Antisymmetric RNN (LARNN) is a previously suggested recurrent
layer which is proven to ensure long-term memory using a simple structure without gating. The
LARNN is based on an ordinary differential equation which is solved using numerical methods
with a defined step size variable. In this paper, this step size is related to the sampling frequency of
the data used for training and testing of the models. In particular, industrial datasets often consist
of measurements that are sampled and analyzed manually or sampled only for sufficiently large
changes. This is usually handled by resampling and interpolating to gain a dataset with evenly
sampled data. However, in doing so, one has to apply several assumption regarding the nature of
the data (e.g. linear interpolation) and valuable information about the dynamics captured by the
actual sampling is lost. Furthermore, interpolation is non-causal by nature, and thus poses a chal-
lenge in an online setting as future values are not known. By using information about sampling
time in the LARNN structure, interpolation is obsolete as the model decouples the dynamics of the
sampled system from the sampling regime. Furthermore, the suggested structure enables predic-
tions related to specific times in the future, resulting in updated predictions regardless of whether
new measurements are available. The performance of the LARNN is compared to an LSTM on a
simulated industrial benchmark system.

Keywords: Recurrent Neural Network, Time-series Analysis, Unevenly Sampled Data

1. Introduction

Recurrent neural networks (RNNs) are commonly used for modeling sequential data Goodfellow
et al. (2016). Although standalone RNNs have fallen somewhat out of fashion in the recent years,
they are still keystones in modern architectures, such as models with attention mechanisms Graves
et al. (2014); Xu et al. (2015). Their ability to learn semi long-term dependencies is key in for
instance language modeling Jozefowicz et al. (2016) and learning physical systems with slow dy-
namics. The hidden state in a vanilla RNN is defined as

h; = f(Why_1 + Vx; +b), (D
where h; is the output and x; the input at time ¢, W and V are weight matrices, b is a bias
vector and f(-) is a nonlinear activation function. Hence, an RNN generates an output trajectory

T L . . T
[hl hy ... hN} from an initial condition hy and an input sequence [xl X9 ... xN] LA
wide variety of RNNs have been suggested, where the best known are gated recurrent units (GRUs)
and long-short-term memory networks (LSTMs).
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These RNN variations aim to handle what is known as the exploding and vanishing gradient
problem with vanilla RNNs. Large and small gradients indicate oversensitivity and insensitivity to
changes in the input and initial condition of the RNN, respectively. Oversensitivity is undesirable
as it can lead to input-output instability, while insensitive systems will yield similar trajectories in
spite of changes in input and initial condition.

The increasing interest in applying deep learning RNNs for dynamical system and control prob-
lems has prompted research on their stability properties and other theoretical guarantees. In Moe
et al. (2020) a new recurrent structure referred to as Linear Antisymmetric RNN (LARNN) was
presented. In short, the LARNN is based on an ODE which is marginally stable, thereby ensuring
what can be considered a consistent, long-term memory. Further details are presented in Section 2.

Relevant to this work are Neural ODEs Chen et al. (2018) and related follow up works Dupont
et al. (2019). Here, the the derivative of the hidden state is parameterized using a neural network
and the output of the network is computed using a black-box differential equation solver. However,
Neural ODEs are not designed to handle systems that are affected by an independent time sequence
input. Furthermore, Neural ODEs are suitable for solving continuous time problems, but it is unclear
whether they would be a wise choice when dealing with systems subject to conservative sampling
regimes.

The contribution of this paper is an extension to the previously suggested LARNN structure
to handle unevenly sampled input sequences, which is common for industrial datasets consisting
of manual measurements or conservative logging systems. This recurrent regression model is pre-
sented in Section 3. These extensions are tested on a simulated industrial benchmark process and
compared to an LSTM. Results and discussions are presented in Section 4 and Section 5, respec-
tively. Finally, conclusions are given in Section 6.

2. Linear Antisymmetric RNNs

In Moe et al. (2020), the authors suggest a recurrent network structure based the following linear-
in-the-state ordinary differential equation (ODE):

h=W,h+ f(Vx+b), W,=W_-W7 )

Here, W}, is an antisymmetric matrix, which has eigenvalues on the imaginary axis and a complete
set of eigenvectors. As shown in Moe et al. (2020), (2) is stable, such that solutions of the ODE
with different initial conditions, but subject to the same input sequence, will neither diverge from
each other, nor converge into one another, thereby infinitely conserving the initial condition. This
also holds when the solutions have the same initial condition, but are subject to input sequences that
differ only in the first time step.

The ODE (2) can be numerically solved using implicit numerical methods, and as the ODE is
linear in the state h, the resulting equations can be solved explicitly. In particular, the backward
Euler method and the implicit midpoint method are numerically stable for all W}, and step size
€ > 0. Consequently, these methods inspire the following RNN structures:

(I — €Wh)ht+1 = ht + Ef(VXt + b) (3)

(1= 5Wa) Beer = (14 S W) B+ 2f (Vi + D) “
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As demonstrated in Moe et al. (2020), the LARNNSs perform better than, or as well as, LSTMs on
simulated data, while having stronger stability guarantees. For practical purposes, this ensures a
long term memory using a simple network structure without gating.

The step size € is a parameter in the numeric integration of (2) and can be viewed as a hyper-
parameter which weighs the effects of previous versus current inputs. In Moe et al. (2020), this
parameter is tuned in line with other hyperparameters. However, another possible interpretation is
that € represents the time step in the integration. Backward Euler and the implicit midpoint method
are traditionally applied with a fixed step size ¢, but other commonly used numerical ODE-solvers
such as Dormand-Prince and Adam can adjust the step size throughout the calculation to ensure that
the per-step error remains at a given relative and absolute tolerance. Based on this, we suggest an
extension to the LARNN structures (3)-(4) suited for analysis of time sequences which are sampled
at varying intervals by relating the step size ¢ to sampling time.

3. Variable step size

Industry data is often sampled in uneven intervals, either because measurements are performed
manually by operators or because only sufficiently large changes are logged due to data storage
considerations. This is usually handled by resampling and interpolating to gain a dataset with evenly
sampled data. However, in doing so, one has to apply some assumption regarding the nature of the
data (e.g. linear interpolation) and valuable information about the dynamics captured by the actual
sampling is lost. In this work, we show how the LARNN can handle datasets with varying sampling
frequency by introducing a varying, time-dependent step length ;. Furthermore, we demonstrate
that the LARNNS can exploit the inherent information in such datasets to better learn the dynamics
of the underlying system.

The step size € can be interpreted as how far into the future the ODE solver makes a prediction.
As discussed in Moe et al. (2020), (3)-(4) are stable for all € > 0, which means that the step size of
the LARNNS can be adjusted to an appropriate size when making predictions. To accommodate for
variable step size, the previously proposed LARNN structures (3) and (4) are modified as follows:
In addition to the input sequence x = [z1 =2 ... = N}T, the LARNN is also fed a time step
sequence:

E:[EQ €3 ... €N+1]T:[t2—t1 tg—tg tNJr]__tN]T. (5)

This yields the following, updated versions of (3) and (4):

(I — et 1Wh)heyr = hy + e f(Vxe + b) (6)
Et+1 Et+1

( — TWh)hH-l = (I + TWh)ht + Et+1f(VXt + b), (7)
where €; can be viewed as the time we are forecasting into the future based on the most recently
sampled data. Thus, this modified network structure enables us to choose the exact prediction time
at every time step. This approach is particularly interesting as it allows for updated, time-specific
predictions ahead in time given the same input sequence, by choosing € x4 freely. This approach is
relevant for time series regression, where the goal is to predict some yn41(X1,...,Xx), as well as

time series forecasting, i.e. predict x 41 from X1, ..., x. The last case is illustrated in Figure 1.
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Figure 1: A signal x is sampled at times t;, to, ..., tg with varying sample time. The mod-

ified LARNN structures in (6) and (7) enable predictions related to specific times

in the future, e.g. ¢, or t,, based on the same previous measurement sequence
T
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4. Implementation and Results

The LARNN structures with varying step size presented in the above section have been imple-
mented in Tensorflow and can be used in line with existing Keras layers and architectures. This
section presents results based on a simulated industrial benchmark process and compares training
and performance of the LARNN and an LSTM.

4.1. Continuous Stirred Tank Reactor

The Continuous Stirred Tank Reactor (CSTR) is a simulated process which is often used as a bench-
mark system in the literature Maiworm et al. (2018); Manzano et al. (2018). It describes an industrial
process of a chemical reaction where a reactant is changed from A — B Seborg et al. (2010). The
CSTR is illustrated in Figure 2 and the dynamics are given in (8). Numeric values for the model
parameters are summarized in Table 1.

The process has two states, namely the concentration of reactant A (C4) and the temperature
(T'). The tank has a continuous inflow of concentration C'4 y and temperature 1’s. Furthermore, the
reaction in the tank can be affected through a cooling jacket of temperature 7.. Concentrations are
given in [mol/l] and temperatures in [K]. Note that in the results presented here, 7, is kept constant
at 330 K.

Ca(t) = B (Cast) ~ Calt) ~ hoexp (R‘T]fﬂ) Calt) N

7(0) = .10~ 70) ~ & exn (07 ) Calt) + e (T0) = T(0)
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Figure 2: Illustration of the CSTR process and variables.

Param. Definition Value
Qo Reactive input flow 10 I/min
v Liquid volume in the tank 1501
ko Frequency constant 6-10' 1/min
E/R Arrhenius constant 9750 K
—AH, Reaction enthalpy 10000 J/mol
) Density 1100 g/1
Cp Spesific heat 0.3 J/(gK)
UA Heat transfer coefficient 70000 J/(minK)
Te Temperature of tank cooling jacket 330K

Table 1: CSTR process parameters as used in Maiworm et al. (2018); Manzano et al. (2018).
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4.2. Simulation Data

Simulations of the CSTR process (8) form the datasets used in this paper. The entire data base
consists of 200 individual simulations of the tank. Each simulation spans 50 hours and consists of
180 000 data points of the inflow variables C'4 y and T'f, and the corresponding tank variables C' 4 and
T The initial condition of the tank variables are uniformly distributed according to C'4(0) € [0.3, 2]
and T'(0) € [335,380]. The inflow variables C'xy and T’y change throughout a simulation in a
manner similar to a step response. The time between steps is given by a Gaussian distribution
N (120 min, 30 min) and the numeric values of the inflow variables are uniformly distributed within
the same intervals as the initial condition of the tank. To incorporate a more realistic input, the step
response is lowpass-filtered using a 4** order Butterworth filter. Data for a single simulations is

shown in Figure 3. Note that the first hour for each simulation is discarded to allow the Butterworth
filter to stabilize.
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Figure 3: Example of a simulation of the CSTR with inflow variables in blue solid line and tank
variables in red dashed line. Concentration to the left and temperature to the right. The

inflow variables change according to a smoothened step response at a Gaussian distributed
time interval.

4.3. Test Scenarios

Three datasets are created based on the simulated CSTR data. Dataset 1 consists of evenly sampled
data with a fixed sampling period of 10 min, while in Dataset 2, the samples are taken unevenly
anywhere between every 5 min and every 20 min. Dataset 3 is a linear interpolation of Dataset 2,
which resamples the data to an even sampling period of 5 min. All datasets are divided into 70%
training, 20% validation and 10% test data. The scaled input and output data € [0, 1] is denoted
C_’Af, Tf, Cyand T.

All neural network models consist of a recurrent layer with 20 units, followed by a dense layer
with 18 units and ReL.U activation, and an output dense layer with two units and linear activation.
In the experiments, the goal is to predict C'4 and T at some time ¢ 1, given an input sequence
XN = [[C’Af(tl) Tf(tl)] [CAf(tQ) Tf(tg)] [C’Af(t]v) Tf(tN)H- In the fixed step
case (Dataset 1), ¢ = t9 — t; = t; — t;—1 = 10 min, while in the variable step case (Dataset 2),
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e=le2 &1 ENt1] = [ta—t1 t3—1to tN41 — tn]. Werefer to N as the number of
recurrent steps. Details about the training are summarized in Table 2. To evaluate the performance
of the various network structures, each model is trained 10 times and the average mean squared
error (MSE) is reported for the two scaled target variables CyandT.

Table 2: Training parameters for the LSTM and LARNN models. *All models were trained until
the validation loss did not decrease for 20 epochs, at which point the model with the lowest
validation loss was kept.

Param. Definition Value
f Activation function ReLU
N Number of recurrent steps 10
L Loss function Mean squared error
0 Learning rate 1x1073
Np Training batch size 196
Ng Training epochs* 1000

First, an LSTM and the two LARNN models (3)-(4) are trained on Dataset 1, i.e with fixed
sampling rate. The results in Table 3 confirm the observation from Moe et al. (2020), that the
LSTM and LARNN perform quite equally well.

In the next experiment, the variable step LARNN models (6)-(7) are trained on the unevenly
sampled data in Dataset 2. Since existing recurrent structures are designed with evenly sampled
data in mind, an LSTM is trained on resampled, linearly interpolated data in Dataset 3 to ensure
a fair comparison. When measuring the performance of the LSTM, only the predictions at the
non-interpolated times are considered, i.e. the error is calculated based on actual samples and not
interpolated values. Results are summarized in Table 4. Note that in order to emulate an online pre-
diction setting during testing, linear interpolation is applied causally, such that the last input value,
if not sampled, cannot be interpolated from a future input value. Instead, forward fill is applied
to the last available sample. Thus, if at time /N a new sample is not available, the input sequence
becomes XN = [[éA(tg) T(to)] [C’A(t]\[,l) T(thl)} [CYA(thl) T(t]\[,l)“.

One of the strengths of the LARNNSs (6)-(7) is the ability to handle varying step lengths explic-
itly and exploit this to make predictions related to specific times. Thus, we explore their performance

Table 3: Test MSE for an LSTM and the LARNN models (3)-(4) trained on Dataset 1, i.e. on evenly
sampled data. The error is an average of the error of 10 models for each model type.

Test datset | Model MSE Cy4 MSE T

Dataset | | LSTM 1.167 x 107° | 2.469 x 10~°
LARNN midpoint | 1.885 x 1075 | 4.080 x 107°
LARNN backward | 1.763 x 107> | 4.325 x 107

Dataset 2 | LSTM 8.490 x 1072 | 2.443 x 102
LARNN midpoint | 6.663 x 1072 | 5.864 x 1072
LARNN backward | 1.747 x 1073 | 9.621 x 104
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Table 4: Test MSE for an LSTM trained on Dataset 3 and the LARNN models (6)-(7) trained on
Dataset 2. The error is an average of the error of 10 models for each model type. *When
testing the LSTM on Dataset 2, the sampled data is linearly interpolated causally, i.e.
only based on samples taken up to the time of prediction. Forward fill is applied to the
last available sample to emulate an online prediction scenario where future values are not

known.

Test dataset | Model MSE Cy4 MSE T

Dataset | LSTM 2.250 x 1072 | 5.086 x 1073
LARNN midpoint | 1.441 x 107* | 1.970 x 10~
LARNN backward | 1.030 x 10=% | 1.630 x 10~4

Dataset 2 LSTM* 2.967 x 1072 | 1.663 x 1073
LARNN midpoint | 3.038 x 107* | 4.203 x 1074
LARNN backward | 5.679 x 10~% | 5.582 x 10~*

on Dataset 2 with the goal of making a prediction every 2 min in an online setting. During training,
the LARNNSs have only been exposed to time steps between 5 min and 20 min. During testing, the
prediction step length at the last recurrent step, 41, 1S changed such that a prediction is made
every 2 min following an input measurement. A visualization of these results is shown in Figure 4.

For comparison, we show the corresponding setup for the LSTM trained on Dataset 3. In this
case, the neural network bases its prediction only on the input variables and not the corresponding
sampling times. As when testing the LSTM on Dataset 3 before, we apply linear interpolation in
a causal fashion. As the predictions can only be made every 5 min, predictions are reused once or
twice to achieve a resolution of one prediction every other minute, as shown in Figure 5.

5. Discussion

As seen in Table 3, both the LSTM and LARNN models trained on fixed step data experience a
decrease in performance when tested on unevenly sampled data. This is particularly true for the
midpoint LARNN. This indicates that when training on evenly sampled data, the models become
more biased, as they do not differentiate between the sampling scheme and the underlying dynamics.
In this sense, the LARNN with variable step length decouples the dynamics of the sampled system
from the sampling regime, and hence, learns more of what we are actually interested in learning.

The results presented in the previous section prove that the LARNN architecture is flexible and
has the ability to learn based on unevenly sampled data. Table 4 reveals that when the LARNN
models are trained on unevenly sampled data, they are still capable of generalizing and making
predictions on evenly sampled data, and in fact do so with a higher performance than on the un-
evenly sampled data. In particular, Figure 4 illustrates how the trained LARNNS are able to make
predictions that reflect the behaviour of the underlying system as the prediction step length ey is
varied beyond what the model has seen during training. This shows that the models have learned
the dynamics of the system and the effect of varying time between input samples.

In general, all models achieve a low mean squared error during testing. However, the LARNN s
achieve lower mean squared errors on the unevenly sampled data than the LSTM trained on interpo-
lated data. Interpolation and the chosen resolution for resampling introduces bias. In addition, time
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Figure 4: A demonstration of online predictions on Dataset 2 made by the backward and midpoint
LARNN, respectively. The scaled target variables C'4 and T are shown in the black line
and the blue and orange dots are the LARNN predictions. For every input sequence X,
we make predictions every 2 min into the future by increasing €41 by 2 at a time. Each
orange dot marks the times where the input variables for the LARNN prediction model
are sampled and xy is updated. The LARNN is able to accurately predict the target
variables ahead in time based on the last NV samples.
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Figure 5: A demonstration of online predictions on Dataset 2 made by the LSTM trained on
Dataset 3. As the LSTM cannot be reused for different step lengths, we resample
the dataset with linear interpolation in a causal manner, such that it coincides with the
€ = 5m the LSTM has seen during training. In addition, as € = 5 min and we are inter-
ested in making predictions every 2 min, each prediction must be repeated once or twice
in order to achieve the desired resolution.

series regression is often intended for online use, as in the case of a soft sensor, which sabotages the
interpolation scheme. In such a case, one must default to reuse the last sample until a new sample
can be made. The strength of the LARNN is not in achieving a low prediction error compared to an
LSTM, but the ability to change its prediction based on the prediction time step.

6. Conclusion

The flexible structure of the LARNN enables learning on unevenly sampled data, without intro-
ducing the bias of interpolation and choice of resolution. In addition to using the sampled values,
the LARNN uses the sampling times both during training and testing. This additional information
enables higher generalization as is it independent of a particular sampling scheme. Furthermore,
the LARNN models can be used for making predictions online, as the prediction time step can be
varied freely. The LARNN achieves better or equal performance to the LSTMs in terms of mean
squared error on the test sets, and is vastly more flexible in its application. In the experiments we
demonstrated that the LARNNSs with variable step length differentiate between the learned dynam-
ics and the prediction step length, indicating that they learn more of the underlying distribution of
the continuous system, than when learning with a fixed step length.
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