Proceedings of Machine Learning Research vol 144:1-13, 2021

Exploiting Sparsity for Neural Network Verification

Matthew Newton MATTHEW.NEWTON @ENG.0X.AC.UK
Antonis Papachristodoulou ANTONIS @ENG.OX.AC.UK
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

Abstract

The problem of verifying the properties of a neural network has never been more important. This
task is often done by bounding the activation functions in the network. Some approaches are
more conservative than others and in general there is a trade-off between complexity and conser-
vativeness. There has been significant progress to improve the efficiency and the accuracy of these
methods. We investigate the sparsity that arises in a recently proposed semi-definite programming
framework to verify a fully connected feed-forward neural network. We show that due to the intrin-
sic cascading structure of the neural network, the constraint matrices in the semi-definite program
form a block-arrow pattern and satisfy conditions for chordal sparsity. We reformulate and imple-
ment the optimisation problem, showing a significant speed-up in computation, without sacrificing
solution accuracy.

Keywords: Chordal Sparsity, Neural Networks, Verification, Semi-definite Programming

1. Introduction

There has been a huge resurgence in interest in neural networks over the past decade, mainly due
to the increased computational power available alongside the creation of Alexnet (Krizhevsky et al.
(2012)) and Resnet (He et al. (2015)). The research community, along with industry, have re-
alised the significant potential that neural networks possess to perform complex tasks that were
once thought to be impossible to program by machine. The areas that they have been applied to
have been expanding and include image recognition, weather prediction and natural language pro-
cessing (Zhang and Ma (2012)). One of the most exciting applications of neural networks is in the
field of control theory. There were many works in this area in the 1990s e.g. Miller et al. (1990).
However, with the recent success of neural networks in many machine and reinforcement learning
applications, and the parallel developments in advanced robust control methods, there is significant
scope for research at their intersection. In particular, the field of reinforcement learning has pro-
vided a bridge to develop data-driven control methods, diverging away from traditional model-based
approaches (Recht (2019)). The intersection of these works could be the most useful to society, as
big data becomes more widely available. Neural networks have also shown to be useful in multiple
aspects of control systems, such as the work in Chen et al. (2020), which uses a neural network to
learn Lyapunov functions to show stability of a feedback system.

One of the biggest issues with neural networks is their sensitivity to adversarial attacks; works
from Madry et al. (2019) and Athalye et al. (2018) show how small changes to the input set can
lead to large fluctuations in the outputs of the neural network. The ‘black box’ approach to neural
networks is one of the limiting factors for their use in safety-critical applications; robustness guaran-
tees are essential to overcome this issue. One approach to provide these robustness certificates is to

© 2021 M. Newton & A. Papachristodoulou.

SPARSITY IN NEURAL NETWORKS

bound the non-linear activation functions in the neural network (Salman et al. (2020)). This method
has proved successful and is a rapidly developing field, with a large number of results aiming to
provide tighter and more efficient bounds on the neural network performance.

Works from Krishnamurthy et al. (2018) use a dual approach to help with the scalability issue.
The competition ARCH-COMP20 (Lopez et al. (2019)) was created to challenge researchers to ver-
ify control systems; the code from each contestant was made available online. Singh et al. (2019)
proposes a new parametric framework called ‘k-ReLLU’ that combines multiple activation functions
together. Similar work from Tjandraatmadja et al. (2020) considers the multi-variate input space on
the activation function to create tighter bounds for the linear program. In Raghunathan et al. (2018),
the authors form a semi-definite relaxation to certify the robustness. One scalable method to the
semi-definite relaxation is to use an iterative eigenvector approach to create an efficient algorithm
to verify large networks (Dathathri et al. (2020)). Quadratic constraints were proposed to bound
the activation functions in Fazlyab et al. (2019): it is this framework that will form the basis of this
paper. This formulation has also been used to conduct reachability analysis on control feedback sys-
tems (Hu et al. (2020)), as the quadratic constraints can be extended to integral quadratic constraints
and used to analyse the stability of a neural network controller (Yin et al. (2020)).

However, a big issue with these methods is the limit on their scalability, especially in the
semi-definite program (SDP) formulation. One approach to improve the scalability of the SDP
is to exploit sparsity in the constraint matrices, in particular chordal sparsity. Chordal sparsity
has been used in many SDP-related problems such as finding Lypaunov functions (Mason and
Papachristodoulou (2014)) and the scalable design of structured controllers (Yang Zheng and Pa-
pachristodoulou (2018)). Since neural networks have a natural cascading structure it is possible to
use ideas from chordal sparsity to dramatically reduce the computational time to solve these neural
network verification problems. Sparsity patterns have previously been used in neural networks. The
authors in Latorre et al. (2020) use a polynomial optimisation framework to estimate the Lipchitz
constant of a neural network.

In Section 2 we outline the definition of the problem and in Section 3 we state how this can
be formulated into an SDP. Then in Section 4 we describe the ideas behind chordal sparsity and
how they can be used to improve the computational complexity of an SDP. In Section 5 we conduct
the analysis on the chordal sparsity of the SDP constraints. In Section 6 we provide the numerical
results of our work and provide a discussion on the findings. The paper is concluded in Section 7,
outlining plans for future work.

1.1. Our Contribution

In this paper we reformulate a semi-definite programming (SDP) approach that uses quadratic con-
straints to provide robustness certifications on a general non-linear feed forward neural network.
Through examining the formulation of the problem, we are able to show that there is a chordal
sparsity pattern in the SDP constraints, or that they can be extended easily to possess such a pat-
tern. We then use an SDP decomposition approach to significantly speed up the computational time
it takes to solve the optimisation problem. We compare the trade-off between conservatism and
computational time by using SeDuMi (Sturm (1999)), that uses interior point methods to solve the
optimisation problem. We show how the computational time varies with the structure of the neural
network. Finally, we propose ideas for future work and how this sparsity exploitation method can
be expanded to further improve the computational burden of this verification task.

SPARSITY IN NEURAL NETWORKS

2. Problem Definition

A multi-layer feed-forward neural network is described as a non-linear function f : R™* — R™,
where n is the number of inputs and n,, is the number of outputs. If we consider a set of all possible
inputs into a neural network X C R™, then the neural network will map these inputs to a set of
outputs) C R™ such that

Y=f(X):={yeR" |y = f(z), v X}

It is desirable to ensure that all possible inputs &X' map to a safe set of outputs, that we define as a
safety specification set S, and conversely the safe set of inputs are defined as S, := f~1(S,). The
network is said to be safe if the output lies within this safety region. It is computationally expensive
to check if the outputs lie in the S, set, since it is non-convex. A relaxation can be computed as a
conservative approximation of the set) denoted by), through checking the condition yc Sy.

2.1. Neural Network Model

Consider a feed-forward fully connected neural network f : R™ — R"v, with ¢ layers. This can be
defined by the set of equations:

X = T,
e = Wk 48, fork=0,...,0—1, M
f(x) = ‘/VZJZ‘Z + bza

where W € R™+1X" pF ¢ R™+1 are the weights matrix and biases of the (k + 1) layer
respectively and 2 € R™ is the input into the network. The number of neurons in the k" layer is
denoted by ny; the total number of neurons in the neural network is therefore n = Zi:l ng. The
non-linear activation function ¢ is applied element-wise to the v* = W¥*2* 4 b* terms such that

¢(*) = [p(vy), ..., p(vp)", o* € R™,

where p is the activation function. There are many different types of activation functions such as
ReL.U, tanh, sigmoid and ELU. In this paper we will focus on the ReL.U activation function.

The complete neural network can be written in a matrix form. We denote the vector of all
the neurons as a concatenation of the respective activations such that z = [(z9)7, ..., (2)7]T ¢
R™+" Each layer can be described by the equation ¥ = E*xz, Vk = 0,...,¢, where EF ¢
R *(n0+1) §5 a matrix that extracts the relevant layer. The neural network can then be written as:

r = E'z,
Bx = ¢(Ax+D),
f(z) = W'E'z+1,

where
wo o 0 0 b0 0 In, 0 0
0o wt 0 0 bt :
A= . b= , B= '
: 0 0 I, O
0 0 wi=t o bt 0 0 I,

SPARSITY IN NEURAL NETWORKS

3. Formulation into Semi-definite Program

To verify the neural network, we can bound the activation function using a set of equality and in-
equality constraints. In this formulation we consider quadratic constraints as used in the formulation
in Fazlyab et al. (2019). In the full formulation there are slope constraints that consider the rela-
tionship between nodes. However, if these constraints are incorporated then the chordal structure is
broken, so we will not use them in the formulation. In the examples that we tested we noticed that
this simplification did not have a significant impact on the accuracy and still provides robustness
guarantees on the network, whilst greatly improving the scalability of the problem.

Definition 1 The input set is bounded by a hyper-rectangle with edges x and T defined by X =
{z € R"™ |z < x < T}. This satisfies the quadratic constraint defined by

Py = {P 2 NWF:C)] }

"= [<x +2)'T —22"T7
where I' € R™"=*"= s diagonal and non-negative.

Definition 2 The safe set is bounded by a polytope defined by S, = i~ {y € R™ |cl'y—d; <0}
which can be written as the intersection of quadratic constraints such that

m X T xr
3y=ﬂ{x€R”z fl@)| Si |[f(z) }
i=1 1 1
where
0 O 0
SZ': 0 0 C; ,fOl"iZl,...,Tﬂ.
0 ¢ —2d;

Definition 3 The hidden layers in the neural network are bounded with the quadratic constraints

Q=|QL Qn Qx

T T
13 Q23 Q33

{ i Qu Q2 Qi3 }
Q¢: QESn)

where
Qu = -—2diag(aocBol), Q2 =diag((a+B)oA), Qiz=—-Bov—aon, Qn =0,
Qa = v+n, Q=0 a=[141),...,17+(n)], B=[1+17-(1),...,1+ 17 (n)],

v; >0, fori ¢ It n; >0, fori ¢ T, \; € R,

17+ (i) and 17— (i) are vectors of ones if i € ZT ori € I~ respectively,
It = {i|z; >0, Vo € X CR"} (ReLU active),
- = {i]lz; <0, Vx € X CR"} (ReLU inactive).

SPARSITY IN NEURAL NETWORKS

Using the S-procedure the quadratic constraints can be combined together and the verification prob-
lem can be posed as an SDP.

minimize d; (2a)
SUbjeCt to Mm(P) + Mmzd(Q) + Mout(Si) j 07 (2b)
(P,Q,5;) € Px x Qg x S"=tmtl, (2¢)
where -
0 T 0 A b A b
Mo (P =2 % P|E Y @ =B o] @|B o,
0 1 0 1
0 1 0 1
E° 01" EY' 0
Mo (Si) = |[W'EN b 5 |[WIE" b
0 1 0 1

4. Chordal Graphs and Sparse Matrix Decomposition

In this section we provide an overview of the theory behind chordal graphs and how they can be used
to exploit the sparsity in positive semi-definite matrices, and hence how they can be used to speed
up the solve time of an SDP. As mentioned in Section 1, the neural network verification problem
has scalability issues, which motivates the use of chordal sparsity in this problem.

A graph G(V, £) is defined as a set of vertices V = {1,2,...,n} and aset of edges £ C V x V.
A vertex-induced subgraph G’ (V/, & ’) is a subset of the vertices of a graph G(V, £) together with
any edges whose endpoints are both in this subset. A clique C C V is a subgraph such that all
the vertices in the subgraph C form a complete graph - a complete graph is a graph such that any
two nodes are connected by an edge. A maximal clique is a clique that is not a subset of any
other clique. A graph can contain a cycle, which is defined by a set of pairwise distinct nodes
{v1,v9,..., v} C V such that (vg,v1) € € and (v;,vi+1) € Efori =1,...,k — 1. A chord that
lies on the graph G(V, £) is an edge that joins two non-adjacent nodes in a cycle (Kakimura (2010)).

Definition 4 A connected undirected graph G(V, £) is a chordal graph if every cycle of length four
or greater has at least one chord.

The properties of chordal graphs have been exploited in many problems, however there are also
different classes of chordal graphs that have additional properties. For this reason it can be useful to
extend a non-chordal graph to a chordal graph by adding additional edges to the non-chordal graph.

Definition 5 The chordal extension of a graph G(V, £) is denoted as G(V, £), where £ C Eand G
is chordal.

Consider now a symmetric matrix X € S™ with a sparsity pattern represented by an undirected
graph G(V, £), such that X;; = X;; = 0, Vi # jif (i,j) ¢ €. This means that the matrix X
has a zero in elements that correspond to the nodes that are not connected by edges on the graph.
Just as a chordal graph can be decomposed into its maximal cliques, a matrix X with a chordal
sparsity pattern can be split up into smaller sub-matrices, with the sub-matrices corresponding to
the maximal cliques of the chordal graph. An important result relates matrices X that are positive
semi-definite, to such a decomposition.

SPARSITY IN NEURAL NETWORKS

Theorem 6 (Agler et al. (1988)) Consider the chordal graph G(V, E) that is made up of maximal
cliqgues {C1,Ca,...,Cy}. Then Z € S} (€,0) if and only if there exist Zj, € S'_Ek‘ fork=1,....n
such that

n
Z =Y E} ZyE,,
k=1

where S} (£,0) :={X €S" | X = 0| X;; = X;; =0, if i # jand (i,5) ¢ £}, |Ci| is the number

of vertices in that clique and
1, if Cp(i) =
(Eck)ij = {

0, otherwise.

This is useful as it means that testing positive semi-definiteness of a large matrix with chordal
sparsity can be done in a distributed way. This idea can also be extended to sparse block matrices
(Zheng (2019)).

The above ideas have been extended to SDP, and different solvers have been developed to exploit
this chordal sparsity property. One example is sparseCoLo (Kim et al. (2011)), which uses four
conversion methods via positive semi-definite matrix completion. It uses both the primal and dual
forms of linear, semi-definite and second-order cone programs with both equality and inequality
constraints. The first conversion method utilizes domain space sparsity using clique trees, the second
still in the domain space uses a basis representation. The third also uses clique trees but in the range
space, this is combined with the fourth conversion method, which uses matrix decomposition to
exploit the range space sparsity in a linear matrix inequality. Another is CDCS (Zheng et al. (2017))
which uses a first order splitting method called alternating direction method of multipliers (ADMM).

5. Chordal Analysis of Constraints

In this section we investigate the sparsity pattern of the constraints in our problem (2) and show that
they possess a natural aggregate chordal sparsity structure, with the degree of sparsity depending on
the size of the neural network. To show this we write the constraints out in full and consider each
constraint separately before combining them together.

5.1. Input Constraint

The overall input constraint can be written as

—2T 0 ... 0 Iz +7)
0 0 ... 0 0
Min = : Do :
0 0 ... 0 0
[(z+2)'T 0 ... 0 (z+7)'T(z+7))

Recall that T is a diagonal matrix and (z 4+) is a column vector. Hence it can be seen that this
matrix has an arrow pattern and is therefore chordal.

SPARSITY IN NEURAL NETWORKS

5.2. Output Constraint

The overall output constraint can be written as

0 0 0 0
0 0

Mout = : .. 0 0
0 0 0 wWHTe
0 0wt 2(cTv —d)]

Since (W*)Tcis a column vector and 2(c”b* — d) is a scalar, the matrix is entirely zeros apart from

the bottom right corner which contains an arrow - this constraint is therefore also chordal.

5.3. Middle Constraint

This constraint is more involved, as the matrix has to be expanded out in full to determine the

structure. The M, ;4 matrix takes the form

M, .=
mid b Q1A+ QLA +b'Q1B + QLB

which can be split into four sub-matrices

Mid 12
M:id,22

M id 11

Mg =
™6 Moniao1

ATQ A+ BTQT,A+ ATQ;:B + B"QB ATQu1b+ BTQLb+ ATQ13 + BT Qo3
b7 Q116+ QTb + b7 Q13 + Q33

i

Note that M,,;4 22 is a scalar and that M,,,;4 12 and M,,;4 21 are column and row vectors respectively.

Investigating each of the M,,;4 11 matrix terms separately gives

(WO)TQY, WO 0 0 ;
0 (WHTQLW! 0 0
ATQuA = : - .. , BTQ2B =0,
0 . 0 (Wl—l)TQlﬁlWl_l 0
0 0 0 0 0
0 (WO)T (1)2 0 0 .)
1 0 (WhHTQi, 0 0
ATQuB+BTQuA=| ° QW0 (T, -
:) 0
0 0 0 0 (Wl—l)TQzl51
L 0 0 0 Qllglwl,1 0 |

The Q¥ and Q¥, terms represent the sub-matrices of Q17 and Q1o respectively, corresponding to

the k' layer of the neural network. The sum of all these terms gives

Wworeh,we — (worQl, 0 0 0

QLW (wWhHrQuw' (WhHTQj, 0 0

0 QiW! (WHTLwW? (W)TQi, 0

Myiain = : - - N . .
0 0 QAW (WEhTQ Wt (WEHTQ!

0 0 0 QLtwit 0

SPARSITY IN NEURAL NETWORKS

The general structure of the M,,,;4 matrix is not necessarily chordal, as this structure may be broken
if some nodes within the hidden layers are not connected. However to create a chordal extension,
the intra-connections in the hidden layers can be assumed to be nonzero. This can be framed by
considering the constraint matrix in its densest form. If all of the (J1; and ()15 terms are full along
the diagonal then the matrix forms a block arrow pattern, which is known to be chordal (Sun et al.
(2013)). This pattern can be shown visually in Figure 1.

When all of the constraints are combined to form (2b) in the SDP, the constraint keeps this block
arrow pattern. This is because M;, and M,,; only have terms which will overlap with the terms
in M,,;q. Since the sum of the constraints has the same pattern as the M,,,;; matrix, the constraint
will be chordal or have a simple chordal extension that can be created. This block arrow pattern is
shown in Figure 2. This result is significant as it shows that the neural network structure is inherited
in the algorithm formulation and should be exploited in computation for scalability.

j" Layer

'\Q//

1
X4l

Figure 1: Graph showing the chordal structure of the constraint matrices in the SDP. x; represents
the term in the constraint matrices corresponding to the j** layer with :** hidden unit. The solid
lines between layers represents that all of the nodes in that layer are connected to all of the nodes in
the adjacent layer. The dots represent that this pattern continues to the ¢/ layer in the network.

6. Numerical Results

In this section we compare the computational aspects of solving this optimisation problem with and
without exploiting chordal sparsity. The solve time and solution accuracy are compared for different
SDP solvers using YALMIP (Lofberg (2004)) as the SDP parser. The solvers we will be comparing
are sparseCoLo (Kim et al. (2011)), which will exploit the sparsity of the problem and SeDuMi
(Sturm (1999)), which is an SDP solver that uses interior point methods. All experiments were run
on a 4-core processor with 16GB of RAM. We used code provided from the authors of Fazlyab et al.
(2019) called ‘Deep-SDP’ that creates the matrices that are used in the SDP. The weights and biases
of the neural network are randomly generated with the dimensions specified with the number of
inputs, number of hidden layers, size of each hidden layer and number of outputs. Our main focus
is on the classification problem, to verify a static feed-forward neural network. For all examples,
we set the dimension of the inputs and outputs to two for consistency; it was observed that changing
these dimensions modestly had a small effect on the computational time. In all examples we also

SPARSITY IN NEURAL NETWORKS

consider the input set as an ¢, ball with radius ¢ = 0.5 and a center of 2* = (1, 1) for comparison
purposes to benchmark against previous results.

(a) Original constraint matrices. (b) Chordal extension of constraint matrices.

Figure 2: Diagram comparing the sparsity pattern of the M, + M ;4 + My matrix constraints of
a 10-layer neural network with 10 hidden units in each layer.

6.1. One layer with varying hidden units

Consider a single layer neural network with n; hidden neurons in the layer. From Figure 3 we can
observe a significant speed up in computational time using sparseCoLo over SeDuMi. After 100
neurons we can see the computational time significantly change, with sparseCoLo able to solve the
problem with n; = 10,000 neurons where SeDuMi fails at n; = 5,000 neurons. The bounds in
each solver were identical, showing no loss of accuracy from the sparse solver.

6.2. Two hidden units with varying layers

In this case the neural network has two nodes in each layer and ¢ layers. Figure 4 shows that
sparseCoLo becomes faster after 50 layers and scales well. Similarly to the experiment in Section
6.1, there is no loss in the solution accuracy between the two solvers.

In some instances that we experimented on it was noticed that sparseColLo was slower than
SeDuMi. This happens when there is not much sparsity in the SDP. An example of this would be
a two layer network with 100 hidden units in both layers. Analysing the constraint matrix of this
case reveals that there is not much sparsity, although the chordal block arrow pattern is still present.
If we were to increase the number of layers then the sparsity in the constraint would increase and
hence sparseCoLo would become more effective.

SPARSITY IN NEURAL NETWORKS

10 —sparseCoLo
—SeDuMi

Solve Time (s)
Solve Time (s)

3 ! 102 10° 10

0 10° 102 10

Number of Hidden Units Number of Layers
Figure 3: Graph comparing the computational Figure 4: Graph comparing the computational
time to solve a one-layer network with a vary- time to solve an ¢-layer network with two hid-
ing number of hidden units. den units in each layer.

7. Conclusion

In this paper we considered the robustness analysis problem for a fully-connected feed forward
neural network using a semi-definite programming (SDP) framework. Due to the intrinsic cascad-
ing structure of the neural network there is a naturally arising sparsity pattern in the linear matrix
inequality constraints, which can be taken advantage of in computations. We applied theory from
chordal graphs and semi-definite matrices to decompose the resulting SDP. Our numerical results
show how exploiting the chordal structure can significantly speed up the computational time to solve
the optimisation problem and verify the properties of neural network classifiers. The computational
time to solve the problem depends on the neural network structure.

This paper opens up many areas for future work. The first is expanding these ideas to the stability
of feedback systems with neural network controllers (Yin et al. (2020)). It would be interesting to
do a more in-depth investigation into how to trade accuracy to computation. This analysis has only
focused on ReL.U activation functions, however this can be expanded to many others. First order
methods such as CDCS (Zheng et al. (2017)) can be used to improve scalability further with the trade
off of a less accurate solution. Finally, this paper has assumed a fully-connected network, which is
intrinsically dense; if the network could be shaped in a way during training then the optimisation
problem could become even sparser. In this case there are methods such as neural network pruning
that can be used to simplify the network (Blalock et al. (2020)). A combination of these methods
will lead to more accurate and efficient algorithms to verify neural networks.

Acknowledgments

The authors would like to thank Dr Yang Zheng for his valued discussions on this topic and Prof
Mahyar Fazlyab for making their code available on GitHub. This work was supported by EPSRC
grants EP/LL015897/1 (to M. Newton) and EP/M002454/1 (to A. Papachristodoulou).

10

SPARSITY IN NEURAL NETWORKS

References

Jim Agler, William Helton, Scott McCullough, and Leiba Rodman. Positive semidefinite matrices
with a given sparsity pattern. Linear Algebra and its Applications, 107:101 — 149, 1988.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples, 2018.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv, 2020.

Shaoru Chen, Mahyar Fazlyab, Manfred Morari, George J. Pappas, and Victor M. Preciado. Learn-
ing Lyapunov Functions for Piecewise Affine Systems with Neural Network Controllers. 2020.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, and Pushmeet
Kohli. Enabling certification of verification-agnostic networks via memory-efficient semidefinite
programming. (NeurIPS):1-22, 2020.

Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Safety Verification and Robustness Anal-
ysis of Neural Networks via Quadratic Constraints and Semidefinite Programming. 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Haimin Hu, Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Reach-SDP: Reachability
Analysis of Closed-Loop Systems with Neural Network Controllers via Semidefinite Program-
ming. pages 1-15, 2020.

Naonori Kakimura. A direct proof for the matrix decomposition of chordal-structured positive
semidefinite matrices. Linear Algebra and its Applications, 433(4):819 — 823, 2010.

Sunyoung Kim, Masakazu Kojima, Martin Mevissen, and Makoto Yamashita. Series b: Operations
research exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite
matrix completion. Math. Program., 129:33-68, 09 2011.

Krishnamurthy, Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, volume 25,
2012.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization, 2020.

J. Lotberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

11

SPARSITY IN NEURAL NETWORKS

Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Taylor J. Carpenter,
Radoslav Ivanov, and Taylor T. Johnson. Arch-compl9 category report: Artificial intelligence
and neural network control systems for continuous and hybrid systems plants. In ARCHI19. 6th

International Workshop on Applied Verification of Continuous and Hybrid Systems, volume 61,
pages 103-119, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2019.

Richard P. Mason and Antonis Papachristodoulou. Chordal sparsity, decomposing SDPs and the
Lyapunov equation. Proceedings of the American Control Conference, pages 531-537, 2014.

W. Thomas Miller, Richard S. Sutton, and Paul J. Werbos, editors. Neural Networks for Control.
MIT Press, Cambridge, MA, USA, 1990.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying ro-
bustness to adversarial examples, 2018.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):253-279, 2019.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks, 2020.

Gagandeep Singh, Rupanshu Ganvir, Markus Piischel, and Martin Vechev. Beyond the single neu-
ron convex barrier for neural network certification. Advances in Neural Information Processing
Systems, 32(NeurIPS):14-16, 2019.

Jos F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, 11(1-4):625-653, 1999.

Yifan Sun, Martin S. Andersen, and Lieven Vandenberghe. Decomposition in conic optimization
with partially separable structure, 2013.

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan Pablo
Vielma. The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for
Neural Network Verification. 2020.

Richard P. Mason Yang Zheng and Antonis Papachristodoulou. Scalable Design of Structured Con-
trollers Using Chordal Decomposition. I[EEE Transactions on Automatic Control, 63(3):752-767,
2018.

He Yin, Peter Seiler, and Murat Arcak. Stability Analysis using Quadratic Constraints for Systems
with Neural Network Controllers. 2020.

Cha Zhang and Yunqian Ma. Ensemble Machine Learning: Methods and Applications. Springer
Publishing Company, Incorporated, 2012.

Yang Zheng. Chordal sparsity in control and optimization of large-scale systems (phd thesis). uni-
versity of oxford., 2019.

12

SPARSITY IN NEURAL NETWORKS

Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn.
Chordal decomposition in operator-splitting methods for sparse semidefinite programs. 2017.

13

	Introduction
	Our Contribution

	Problem Definition
	Neural Network Model

	Formulation into Semi-definite Program
	Chordal Graphs and Sparse Matrix Decomposition
	Chordal Analysis of Constraints
	Input Constraint
	Output Constraint
	Middle Constraint

	Numerical Results
	One layer with varying hidden units
	Two hidden units with varying layers

	Conclusion

