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Abstract

We introduce a novel class of accelerated data-driven concurrent learning algorithms. These
algorithms are suitable for the solution of high-performance system identification and pa-
rameter estimation problems with convergence certificates in settings where the standard
persistence of excitation condition is difficult to guarantee or verify a priori. To achieve
(uniform) fast and fixed-time convergence, the proposed algorithms exploit the existence of
information-rich data sets, as well as certain non-smooth regularizations of dynamical sys-
tems that generate a family of non-Lipschitz systems modeled as data-driven ordinary dif-
ferential equations (DD-ODEs) and/or data-driven hybrid dynamical systems (DD-HDS).
In each scenario, we provide stability and convergence certificates via Lyapunov theory.
Moreover, to illustrate the practical advantages of the proposed algorithms, we consider an
online estimation problem in Lithium-Ion batteries where the satisfaction of the persistence
of excitation condition is in general difficult to guarantee.

Keywords: Concurrent learning, adaptive control, hybrid systems, Lyapunov theory.

1. Introduction

In this paper, we study efficient algorithms for online parameter estimation problems which
can be cast as uncertain linear parametric models of the form

y(t) = φ(t)>θ∗, (1)

where y : R≥0 → R is a measurable signal, φ : R≥0 → Rn is a uniformly bounded vector-
valued regressor function, and θ∗ ∈ Rn is an unknown parameter that we want to estimate.
This problem plays an important role in different areas, such as adaptive control Ioannou
and Sun (2012), model-free optimization of dynamical systems Poveda et al. (2020), and
reinforcement learning Kaelbling et al. (1996), to name just a few. To achieve online pa-
rameter estimation with convergence and robustness certificates, different feedback-based
algorithms have been proposed during the last three decades; see Boyd and Sastry (1986);
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Narendra and Annaswamy (1987, 2012). It is well-known that most of the adaptive es-
timation dynamics that achieve uniform convergence to the true parameter θ∗ require a
persistence of excitation (PE) condition in the regressor φ, of the form

∫ t+T

t
φ(s)φ(s)>ds � εI, ∀ t ≥ t0, where T, ε > 0. (2)

Indeed, in several adaptive estimation dynamics the PE condition has been shown to be
sufficient and necessary to achieve (uniform) exponential convergence. This includes, the
so-called gradient method Praly (2017):

˙̂
θ = −σφ(t)

(
φ(t)>θ̂ − y(t)

)
, σ ∈ R>0, (3)

which has been widely used in academic and industrial applications. To relax the PE condi-
tion, the works Chowdhary and Johnson (2010), Chowdhary et al. (2012b), and Chowdhary
et al. (2012a) introduced a class of concurrent learning (CL) adaptive dynamics that in-
corporate a sequence of recorded data {φ(tk)}Nk=1 that is “sufficiently rich”, resulting in a
data-driven ordinary differential equation (DD-ODE) of the form

˙̂
θ = −σφ(t)

(
φ(t)>θ̂ − y(t)

)
− ρ

N∑

k=1

φ(tk)
(
φ(tk)

>θ̂ − y(tk)
)
, (4)

where σ ∈ R≥0 and ρ ∈ R>0 are tunable gains. These types of algorithms have been ex-
tended in several directions to develop PE-free adaptive dynamics in the context of model-
reference adaptive control Chowdhary and Johnson (2010), reinforcement learning Kamala-
purkar et al. (2014), extremum seeking control Poveda et al. (2020), and general networked
estimation problems Javed et al. (2021), to name just a few examples. However, by remov-
ing (or relaxing) the PE condition, these types of data-driven algorithms can also suffer
from poor transient performance in terms of slow rates of convergence, especially when the
matrix of recorded data is ill-conditioned. This behavior stems from the fact that systems of
the form (3) or (4) can be cast as time-varying gradient flows for which the Hessian matrix
might be degenerate whenever the PE condition is relaxed. Indeed, the slow learning rates
that may emerge in CL have limited its application in practical engineering problems that
require fast adaptation and/or estimation.

Motivated by this background, in this paper we introduce a novel class of concurrent
learning algorithms able to achieve acceleration and/or fixed-time convergence properties.
The dynamics make use of different types of regularization mechanisms that have been
explored during the last years to design optimization algorithms and feedback controllers
with high-transient performance, but which have never been studied in the context of CL.
Given that the proposed dynamics are non-smooth, they are modeled either as non-Lipschitz
ODEs Khalil (2002) or as hybrid dynamical systems Goebel et al. (2012). For these systems,
we exploit hybrid Lyapunov-based methods to establish suitable stability and convergence
properties. Moreover, to illustrate the performance of our algorithms, we study a battery
estimation problem where the satisfaction of the PE condition is usually difficult to verify
a priori, and where the standard concurrent learning algorithm of Chowdhary and Johnson
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(2010) can lead to prohibitively slow convergence rates. As evidenced by the numerical ex-
periments, the proposed fast algorithms significantly outperform the standard CL dynamics
in terms of transient performance and steady state error.

The rest of this paper is organized as follows: Section 2 introduces the notation used in
the paper, as well as some preliminaries on hybrid dynamical systems. Section 3 presents
the main results, Section 4 presents the numerical experiments, and Section 5 ends with
some conclusions. The proofs of the results are presented in the Appendix of the extended
technical report Ochoa et al. (2020).

2. Notation and Preliminaries on Hybrid Dynamical Systems

We define cn ∈ Rn as the vector with all entries equal to c ∈ R, and use | · | as the Euclidean
norm. We use |x|A := infy∈A |x− y| to denote the distance of a vector x ∈ Rn with respect
to a closed set A. To simplify notation, and given vectors x ∈ Rn1 , y ∈ Rn2 , and z ∈ Rn3 ,
we use (x, y, z) to denote the column vector [x>, y>, z>]>. We use In ∈ Rn×n to denote the
identity matrix, and Sn to denote the nth-Cartesian product of the set S.

2.1. Hybrid Dynamical Systems

In this paper, we will model our algorithms as Hybrid Dynamical Systems with time-varying
flows, of the form (see Goebel et al. (2012)):

(x, s) ∈ C × R≥0, ẋ = F (x, s), ṡ = 1, (5a)

(x, s) ∈ D × R≥0, x+ = G(x), s+ = s, (5b)

where x ∈ Rm is the main state of the system, s is an auxiliary state used to model
the evolution of the continuous time, F : R≥0 × Rm → Rm is called the flow map, and
G : Rm → Rm is called the jump map. The sets C and D, called the flow set and the
jump set, respectively, condition the points in Rm where the system can flow or jump
via equations (5a) or (5b), respectively. In this way, the HDS can be represented by the
notation H := {C,F,D,G}. Systems of the form (5) can be seen as generalizations of purely
continuous-time systems (D = ∅) and purely discrete-time systems (C = ∅). Solutions to
HDS of the form (5) are parameterized by both a continuous-time index t ∈ R≥0, which
increases continuously during flows, and a discrete-time index j ∈ Z≥0, which increments

by one during jumps. Thus, the notation ẋ in (5a) represents the derivative dx(t,j)
dt ; and x+

in (5b) represents the value of x after an instantaneous jump, i.e., x(t, j + 1). Naturally,
solutions (x, s) : dom(x, s)→ Rm to (5) are defined on hybrid time domains. For a precise
definition of hybrid time domains and solutions to HDS (5) we refer the reader to (Goebel
et al., 2012, Ch.2). In some cases, our models will not depend on the auxiliary state s.

2.2. Stability and Convergence Notions

To model the different convergence properties of our algorithms, we make use of class KL
functions β, which are continuous functions that satisfy limr→0+ β(r, ν) = 0 for each fixed
ν ∈ R≥0, limν→∞ β(r, ν) = 0 for each fixed r ∈ R≥0, and which are non-decreasing in its first
argument, and non-increasing in the second argument. Class KL functions are standard in
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the feedback control; see Khalil (2002); Goebel et al. (2012). Moreover, these functions can
model different types of convergence properties depending on the structure of β.

Definition 1 Let A ⊂ Rm be a closed set, and suppose every solution of (5) satisfies
|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), ∀ (t, j) ∈ dom(x). Then, the set A is said to be:

(a) Uniformly Globally Asymptotically Stable (UGAS) if β is of class KL.

(b) Uniformly Globally Exponentially Stable (UGES) if β(r, s) = c1re
−c2s, c1, c2 > 0.

(c) Uniformly Globally Finite-time Stable (UGFS) if it is UGAS and there exists a con-
tinuous function T : R≥0 → R≥0 such that lims→T (r) β(r, s) = 0.

(d) Uniformly Globally Fixed-time Stable (UGFXS) if it is UGFS and there exists T ∗ > 0
such that T (r) < T ∗ for all r ∈ R≥0.

Note that all the properties listed in Definition 1 are stronger than standard convergence
notions used in offline optimization or estimation algorithms. In particular, UGAS implies
not only convergence in the standard limiting sense, but also uniform global stability (in
the sense of Lyapunov) and uniform global attractivity.

3. Accelerated Adaptive Concurrent Learning Dynamics

To describe the dynamics considered in this paper for the estimation of θ∗ in (1), let the
mappings Ψ : R→ Rn and B : Rn → Rn be defined as

Ψ(t) =
φ(t)

(1 + φ(t)>φ(t))
2 , and B(θ̂) :=

N∑

k=1

Ψ(tk)
(
φ(tk)

>θ̂ − y(tk)
)
. (6)

Using (6) and (1), the DD-ODE (4) can be written as a time-invariant dynamical system
of the form

(θ̂, s) ∈ Rn × R≥0,
˙̂
θ = −σA(s, θ̂)− ρB(θ̂), ṡ = 1, (7)

where A(s, θ̂) := Ψ(s)(φ(s)>θ̂ − y(s)). Taking system (7) as a benchmark, we will con-
struct four different data-driven CL dynamics that will achieve (uniform) global asymptotic
convergence, exponential convergence, finite-time convergence, and fixed-time convergence,
respectively, to the true parameter A0 := {θ∗}. The convergence of these dynamics will de-
pend on the “richness” properties of the available recorded data, a notion that is captured
by a finite-time version of persistence of excitation; see Astrom and Wittenmark (1989).

Assumption 3.1 Let {φ(tk)}Nk=1 be a sequence of recorded data. Then, the matrix D :=
[φ(t1), φ(t2), · · · , φ(tN )] ∈ Rn×N satisfies rank(D) = p.

Sequences of data satisfying Assumption 3.1 are said to be sufficiently-rich (SR). The
following lemma provides an equivalent (and instrumental) characterization of SR data.

Lemma 2 Let {φ(tk)}Nk=1 be a sequence of recorded data, and let P :=
∑N

k=1
φ(tk)φ(tk)>

(1+φ(tk)>φ(tk))
2 .

Then {φ(tk)}Nk=1 is SR if and only if there exists γ ∈ R>0 such that P � γIn.

We call the constant γ the level of richness of the data {φ(tk)}Nk=1.
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3.1. Data-Driven Accelerated Hybrid Dynamics with Periodic Restarting

The first dynamical system that we consider is inspired by Nesterov’s ODEs studied in
the context of accelerated optimization; see Su et al. (2016) and Wibisono et al. (2016).
Such algorithms can induce suitable acceleration properties by incorporating dynamic mo-
mentum, emulating in continuous time the acceleration properties of Nesterov’s accelerated
optimization algorithm; see Nesterov (2004). However, unlike the results of Su et al. (2016)
and Wibisono et al. (2016), in the setting of CL we are also interested in establishing suit-
able robustness properties that are relevant in applications where noisy measurements are
unavoidable. Such robustness properties can be obtained by endowing the dynamics with
discrete-time restarting mechanisms that persistently reset the momentum coefficient/state
of the dynamics. The combination of continuous-time and discrete-time dynamics leads to
a hybrid regularization of the Nesterov’s discrete-time algorithm which, for time-invariant
problems, has been modeled as a HDS of the form (5) in Poveda and Li (2019), Ochoa et al.
(2019), and Ochoa et al. (2021). Based on this setting, the hybrid accelerated concurrent
learning (HACL) dynamics that we consider in this paper are modeled by a HDS with state

x := (θ̂, p, τ), where θ̂ is the estimation state, p ∈ Rn is the momentum state, and τ ∈ R>0

is a resetting state. The dynamics are given by

x ∈ C :=
{
x ∈ R2n+2 : τ ∈ [δ,∆]

}
,

(
ẋ
ṡ

)
=




˙̂
θ
ṗ
τ̇
ṡ


 = F (x, s) :=




2
τ

(
p− θ̂

)

−2kτ
(
σA(s, θ̂) + ρB(θ̂)

)

1
2
1



,

(8a)

x ∈ D :=
{
x ∈ R2n+2 : τ = ∆

}
,

(
x+

s+

)
=




θ̂+

p+

τ+

s+


 = G(x) :=




θ̂

(1− q)p+ qθ̂
δ
s


 , (8b)

where k ∈ R>0 is a tunable gain, ∞ > ∆ > δ > 0 are tunable parameters that describe
how frequently the algorithm resets, and q ∈ {0, 1} is a Boolean variable that characterizes
the resetting policy of the algorithm. In particular, when q = 0 the HACL only resets
the coefficient τ , whereas when q = 1 the algorithm also resets the momentum state p.
By construction, the discrete-time updates of the system are periodic and separated by
intervals of flow of duration 2(∆−δ). To guarantee suitable convergence properties, we will
impose the following “data-driven” condition on the parameters (δ,∆) and the gains (k, ρ).

Assumption 3.2 The tunable parameters (δ,∆, k) satisfy 2kρ(∆2− δ2) > 1
γ , where γ > 0

is given by Lemma 2.

The following theorem, which is the first main result of this paper, characterizes the con-
vergence properties of the HACL dynamics. Throughout the paper, we use θ̃ := θ̂ − θ∗ to
denote the estimation error.

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold. Then, every maximal solution
of system (8) has an unbounded time domain, and the closed set A := A0×A0× [δ,∆]×R≥0

is UGAS. Moreover, for each compact set of initial conditions K ⊂ C ∪ D, the following
convergence properties hold for all (t, j) ∈ dom(x, s):
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(a) If q = 0, then for each j ∈ Z≥0 there exists βj ∈ R>0 such that each trajectory of the
system satisfies the bound

|θ̃(t, j)|2 ≤ βj
kρτ(t, j)2

. (9)

(b) If q = 1, the set A is UGES, and each trajectory of the system satisfies the bound

|θ̃(t, j)| ≤ k0γ̃
j |θ̃(0, 0)|, where γ̃ =

√
1

kρ∆2

(
1

2γ
+ kρδ2

)
∈ (0, 1), k0 =

∆

δ
. (10)

The result of Theorem 3.1 establishes two main convergence properties: item (a) estab-
lishes that the estimation error decreases at a rate of approximately O(1/τ2) during flows,
where τ increases linearly with time. On the other hand, item (b) establishes exponential
convergence with a convergence rate adjustable via the values of (δ,∆, k, ρ). In this case,
information-rich data sets (γ � 1) lead to faster rates of convergence. Optimal restarting
periods, similar to those studied in O’Donoghue and Candes (2013) and Poveda and Li
(2021), can also be derived for system (8).

3.2. Data-Driven Accelerated Hybrid Dynamics with Adaptive Restarting

The HACL dynamics (8) implement a periodic restarting mechanism that is coordinated by
the state τ . In this subsection, we now consider an alternative approach based on adaptive
restarting, where the momentum state is reset whenever a certain state-dependent condition
is satisfied. Such type of mechanisms have been studied in the optimization literature; see
Su et al. (2016), O’Donoghue and Candes (2013), Teel et al. (2019). However, in the context
of CL, these types of mechanisms have remained mostly unexplored. To study this case, we

introduce the function H(θ̂, p) =
|θ̃|2P

2 + 1
2 |p|2, where θ̃ := θ̂−θ∗, and where | · |P : Rn → R≥0

is a data-induced norm defined as |u|2P := u>Pu for all u ∈ Rn, with P as defined in Lemma
2. We then consider the Hybrid Hamiltonian Concurrent Learning (HHCL) algorithm, with
x = (θ̂, p, τ) ∈ Rn × Rn × R≥0, and dynamics given by

x ∈ C := C0 × [0, ∆],




˙̂
θ
ṗ
τ̇


 =




0 kρIp 0
−kρIp 0 0

0 0 kρ







∂H
∂p
∂H
∂θ̂
1


 , (11a)

x ∈ D := (C0 × {∆}) ∪ (D0 × [0,∆]) ,



θ̂+

p+

τ+


 =




Ip 0 0
0 0 0
0 0 0





θ̂
p
τ


 , (11b)

where ∆ := nπ
2kρ
√
γ , γ is the level of richness of the data, and where

C0 :=
{

(θ̂, p) : 〈B(θ̂), p〉 ≤ 0
}
, D0 :=

{
(θ̂, p) : 〈B(θ̂), p〉 = 0 & |p|2 ≥

∣∣∣B(θ̂)
∣∣∣
2
/λ

}
,

with λ ≥ λmax(P ). Given that ∂H
∂θ̂

= B(θ̂) and ∂H
∂p = p, the construction of the sets C0

and D0 indicate that system (11) is allowed to flow whenever there is no increase in the
potential energy of the data-induced Hamiltonian function H.
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Remark 3.1 The role of the timer τ in system (11) is to guarantee the existence of an
initial reset after an interval of flow of duration ∆ > 0. Once this reset has occurred, the
update p+ = 0 will guarantee that the next reset of the system will happen before τ = ∆, i.e.,

due to the condition |p|2 ≥
∣∣∣B(θ̂)

∣∣∣
2
/λ for all x ∈ D. Such types of bounds on the reset times

have also been used in Teel et al. (2019) for standard optimization problems. However, in
the context of CL, their application is new. In particular, note that the parameter ∆ in the
jump set D is now data-dependent.

The following theorem is the second main result of this paper.

Theorem 3.2 Suppose that Assumption 3.1 holds. Then, system (11) renders the set
AH = A0 × {0} × [0,∆] UGES, and every solution has an unbounded time-domain and
satisfies the bound

|θ̃(t, j)| ≤
√

2c0

γ
min

{
1, e−

α
2

(t−∆)
}
|θ̃(0, 0)| (12)

for all (t, j) ∈ dom(x), where α = 1
∆ ln

(
1 + γ

λ̄

)
, c0 > 0.

3.3. Finite-Time and Fixed-Time Concurrent Learning Dynamics

While the hybrid CL dynamics (8) and (11) can induce sublinear and linear convergence
rates, the convergence properties of the algorithms are still of asymptotic nature, i.e., θ(t)→
θ∗ only as t→∞. In this subsection, we consider a different class of learning dynamics able
to achieve exact convergence to the true parameter θ∗ in a finite amount of time. Moreover,
in some cases this finite time can be upper bounded by a constant independent of the initial
conditions of the estimate θ̂, which leads to fixed-time convergence guarantees.

In particular, to achieve finite time convergence we consider the Finite-Time Concurrent
Learning (FTCL) dynamics modeled by the following non-smooth DD-ODE with s ∈ R≥0:

θ̂ ∈ C := Rn, ˙̂
θ = −kσA(s, θ̂) + ρB(θ̂)

|ρB(θ̂)| 12
, ṡ = 1, (13)

where (k, σ, ρ) ∈ R>0×R≥0×R>0 are tunable gains, and where the pair (A,B) is defined in
(6) and (7). Note that this system is not Lipschitz continuous. However, under Assumption
3.1 and the uniform boundedness of the regressor φ, the vector field is everywhere continuous
in θ̂ due to the structure of A and B. Thus, existence of solutions is guaranteed. For this
system we establish the following result, which is the third main contribution of the paper.

Theorem 3.3 Suppose that Assumption 3.1 holds. Then, system (13) renders the set
A0 UGFTS, every solution has an unbounded time domain, and the settling time function

satisfies T (θ̂(0)) ≤ 2
kργ |P |

√
|θ̂(0)− θ∗|.

The result of Theorem 3.3 guarantees that θ̂(t) = θ∗ for all t ≥ T (θ̂(0)), where T (θ̂(0))
depends on the initial conditions of the estimate θ̂(0), as well as the level of richness γ of
the data. To remove the dependence on θ̂(0) we can further consider a class of Fixed-Time
Concurrent Learning (FXCL) dynamics, modeled by the following nonsmooth DD-ODE:

θ̂ ∈ C := Rn, ˙̂
θ = −kσA(s, θ̂) + ρB(θ̂)

|B(θ̂)|a
− kσA(s, θ̂) + ρB(θ̂)

|B(θ̂)|−a
, ṡ = 1, (14)
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where (k, σ, ρ) ∈ R>0 × R≥0 × R>0 are tunable gains, and a ∈ (0, 1) is a tunable exponent.
System (14) is not Lipschitz continuous. However, under Assumption 3.1 and the uniform
boundedness of the regressor, it is everywhere continuous in θ̂. The following theorem is
the fourth main result of this paper.

Theorem 3.4 Suppose that Assumption 3.1 holds. Then, system (14) renders UGFXS
the set A0 with T ∗ = π

2aγρk , and every solution has an unbounded time-domain.

Remark 3.2 Note that the fixed-time T ∗ is independent of the initial estimate θ̂(0), but
dependent on the level of richness of the data of the regressor, i.e., dependend on γ > 0.

3.4. Discussion

The results of Theorems 3.1-3.4 establish new convergence bounds for CL algorithms that
explicitly show the dependence on the richness of the data, i.e., the constant γ. In particular,
while the standard CL dynamics of Chowdhary and Johnson (2010) achieve exponential
convergence with rate of convergence proportional to the level or richness of the matrix P
(cf. Lemma 2), under suitable tuning of the restarting parameters the data-driven hybrid
dynamics introduced in this paper can achieve rates of convergence proportional to the
squared root of the level of richness of the matrix P , see Poveda and Li (2019), Teel et al.
(2019) and Poveda and Li (2021). This acceleration property is induced by the addition of
momentum to the dynamics, and the design of the flow set and the jump set. Similarly,
for the non-smooth DD-ODES (13) and (14), our results establish finite and fixed-time
convergence bounds that are similar to those obtained in Poveda and Krstic (2021) for
adaptive model-free optimization, but which are new in the context of CL, with an explicit
characterization of the convergence time in terms of the level of richness of the data. Finally,
note that for applications where γ is small the bound (9) establishes a desirable “semi-
acceleration” property for estimation problems that lead to convex optimization problems
that are not necessarily strongly convex.

4. Numerical Experiments: Li-ion battery parameter estimation

To illustrate our algorithms in a practical context, we apply the methods to solve an estima-
tion problem related to the characterization of the impedance parameters of an equivalent
circuit model of a Lithium-Ion (Li-Ion) battery. These types of batteries have strict re-
quirements to achieve a reliable life-time operation, see (Reddy and Linden, 2011, Part 4)
and (Plett, 2016, Volume II, Chapter 1). In this setting, it is customary to design real-
time algorithms that control the charge and estimate internal states based on a dynamic
model of the battery. Under limited computational capability, circuit based models are
typically used in battery management systems. A first order equivalent circuit model of a
Li-ion battery is described below Feng et al. (2015); Liaw et al. (2004): ż = I

C0
, i̇1 = I−i1

R1C1
,

V = Φ(z) + IR0 + i1R1, where C0[As] denotes the battery capacity, R0[Ω],R1[Ω],C1[F ]
denote the battery impedance parameters, z denotes the state of charge (SOC) of the bat-
tery, i.e. the relative capacity, I[A] denotes the input current, i1[A] is the current through
the parallel resistor R1, and Φ is mapping from state of charge to open circuit voltage.
The impedance parameters R0, R1, C1 are typically functions of the state of charge Hannan
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Figure 1: Battery model simulation with nominal value of R0

et al. (2017). For ease of presentation, we make some simplifying assumptions regarding the
estimation problem. We note that the methods described here can be extended to the case
without such assumptions, whereas standard methods like Recursive least squares are not
suitable due to the form of the parameter dependency on the battery state of charge. The
capacity C0 evolves on a slower time scale, and it is typically estimated using rest voltage
measurements Subbaraman et al. (2019), which decouples it from the battery impedance pa-
rameter estimation which can change over a single charge/discharge cycle due to variations
of state of charge, temperature, etc. If C0, the initial SOC, and the OCV-SOC relation are
known at least over a cycle, the battery SOC can be calculated accurately using Coulomb
counting. Thus, we assume that the battery capacity and the initial SOC are known, and
the estimation is restricted to battery impedance parameters, for which the functional de-
pendency of SOC is restricted to R0, whereas R1 and C1 are constant. Thus, we write R0

as R0(z) =
∑N

i=0 αiz
i, and we define the parameter vector w = [α0, ..., αN , R1]. Then, the

system’s model can be rewritten as (V − Φ(z)) = [I, .., zNI, i1]w. The initial SOC is 1.0,
C0 = 3.4Ah, and R1C1 = 100. A sample drive-cycle behavior and the nominal value of R0

as a function of the SOC are illustrated in Figure 1.

Simulation Results: We select the regressor vector as φ =
[
I, Iz, · · · , IzN , i1

]>
, with N =

7, where I and i1 are the input-current and the current through resistor R1, respectively.
To achieve good numerical performance, in addition to being compliant with Assumption
3.1, we pay special attention to the convergence rates of the different dynamics and how
they are closely related to the magnitude of the minimum eigenvalue of the matrix P . With
this in mind, we aim to select data that is both SR, and which at the same time maximizes
said eigenvalue. To do this, we follow the procedure presented in Chowdhary and Johnson
(2011), and we find a subset of 50 data points from the battery sample drive-cycle behavior.
We highlight that the resulting λmin(P ) ≈ 10−6, and even though this value can increase
slightly when larger data-sets are considered, the size is kept small in order to facilitate
faster computation, specially for the FTCL and FXCL algorithms which involve calculating
the norm of B. With the selected data-set we implement the different methods presented
in Section 3 and compare them with the standard concurrent learning dynamics (4). The
results are presented in Figure 2. All the proposed algorithms outperform the standard CL
approach for the number of iterations considered.
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Figure 2: Estimation of parameter R0 in a Li-Ion battery using the proposed algorithms.

5. Conclusions

In this paper, we introduced a new class of concurrent learning algorithms with acceleration
and finite/fixed-time convergence properties. The algorithms are suitable for identification
and parameter estimation problems that arise in the context of adaptive control, model-free
optimization, and reinforcement learning. The proposed algorithms are modeled as non-
smooth ODEs or hybrid dynamical systems, for which suitable stability, convergence, and
robustness properties can be established via Lyapunov-based tools and invariance principles.
We illustrated the advantages of the methods via numerical examples in a Lithium-Ion
battery estimation problem where standard concurrent learning dynamics can generate
prohibitively slow rates of convergence. Future research directions will consider data-driven
accelerated adaptive controllers for dynamical systems, as well as extensions to multi-agent
problems and algorithms based on multi-time scale stochastic hybrid dynamics.
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