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Roland Tóth2,3 R.TOTH@TUE.NL

Hans Butler2,4 H.BUTLER@TUE.NL

Abstract
Growing demands in the semiconductor industry result in the need for enhanced performance of
lithographic equipment. However, position tracking accuracy of high precision mechatronics is of-
ten limited by the presence of disturbance sources, which originate from unmodelled or unforeseen
deterministic environmental effects. To negate the effects of these disturbances, a learning based
feedforward controller is employed, where the underlying control policy is estimated from exper-
imental data based on Gaussian Process regression. The proposed approach exploits the property
of including prior knowledge on the expected steady state behaviour of residual dynamics in terms
of kernel selection. Corresponding hyper-parameters are optimized using the maximization of the
marginalized likelihood. Consequently, the learned function is employed as augmentation of the
currently employed rigid body feedforward controller. The effectiveness of the augmentation is
experimentally validated on a magnetically levitated planar motor stage. The results of this paper
demonstrate the benefits and possibilities of machine-learning based approaches for compensation
of static effects, which originate from residual dynamics, such that position tracking performance
for moving-magnet planar motor actuators is improved.
Keywords: Gaussian Process, Motion control, Learning based feedforward

1. Introduction
In high-precision lithography, production of integrated circuits is realized by projecting extreme

ultraviolet light on a silicon wafer using projection optics. In order to achieve high throughput and
high reliability, the silicon wafer is positioned under the projection optics using the wafer stage
module, which is a planar motor system that is capable of achieving nanometer accuracy in position
tracking. The growing demands in the semiconductor industry result in the necessity to increase
throughput, while still maintaining accurate positioning. In order to meet the throughput demands,
highly aggressive acceleration profiles are required, which introduce high-frequent position tracking
errors due to the limited stiffness of the mechanical structure. The currently implemented state-of-
the-art planar stage configuration, which is based on the design proposed by Cho et al. (2001) and
further discussed by Compter (2004), relies on a double stroke mechanism, where a magnetically
levitated moving-coil motor is used for the coarse positioning of the mover. For fine positioning of
the mover, the short stroke motor is used, which is actuated by voice coils.

As an alternative, planar motors based on a moving-magnet configuration have been investigated
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MACHINE LEARNING BASED COMPENSATION OF STATIC EFFECTS OF RESIDUAL DYNAMICS

in recent years, see de Boeij et al. (2009). In contrast with the moving-coil configuration, the
moving-magnet configuration is comprised of a stator base and a freely floating magnet plate. The
absence of physical connections between the mover and the environment results in a significant
reduction of induced disturbances. Additionally, the moving-magnet configuration allows for a
smaller and lighter moving body, see Proimadis (2020) and Rovers (2013), such that high accelera-
tions can be achieved with relatively low power demands.

However, these advantages come at the cost of introducing additional complexity. Magnetically
levitated planar motors exhibit complex non-linear multi-physical effects and are subject to various
disturbances, which are machine specific in terms of the design of the magnet and coil arrays, see
Rovers (2013). The highly complex dynamics can only be approximately modelled based on first
principle knowledge and therefore the achievable position tracking performance is limited.

In order to achieve nanometer position tracking in magnetically levitated planar motor systems,
feedforward control plays a crucial role, see Clayton et al. (2009). However, for accurate design
of a feedforward controller, an accurate plant model is required, which, for moving-magnet planar
actuator systems, is not trivial to obtain due to the complexity of the moving-magnet configuration.
Therefore, standard feedforward control strategies do not provide the desired position tracking per-
formance due to model mismatch between the first-principle based model and the real system.

In order to improve position tracking performance, learning based strategies can be employed to
construct a feedforward policy, see Mooren et al. (2020), Goubej et al. (2019) and Proimadis (2020).
By such a learning-based approach, the steady state behaviour of residual dynamics is captured by
viewing it as a load disturbance. Then this load disturbance can be modelled using the Gaussian
Process (GP) framework, which is advantageous since it ensures uncertainty bounds, such that reli-
ability of the GP model is guaranteed.

Capturing the behaviour of unforeseen dynamics as a function of generalized coordinates allows
for augmentation of the currently employed rigid body feedforward controller, such that static ef-
fects of residual dynamics of the magnetically levitated planar motor system are compensated for.

This paper is organized as follows. In Section 2, a brief description of the magnetically levi-
tated planar motor system is presented. Section 3 presents the GP-based modelling of steady state
behaviour of residual dynamics. Section 4 describes the experimental validation of the designed
feedforward augmentation, where the experiments are performed on a magnetically levitated planar
actuator. Lastly, in Section 5 the conclusions are drawn.

2. Magnetically levitated planar motor system
2.1. System overview

The Nanometer Accurate Planar Actuator System (NAPAS) prototype, which is based on a
moving-magnet configuration, is illustrated in Figure 1. The NAPAS prototype consists of three
separate coordinate frames: The stator base (C), the translator (T ) and the metrology frame (M).
The stator base is a double layer coil array, consisting of 160 coils of which 40 coils are simultane-
ously activated at every time instant using 40 power converters, depending on the relative position
of the translator. Proper actuation of the coils offers the means of both stabilization and propulsion
of the magnet plate in 6 Degrees of Freedom (DOFs). The metrology frame, which rests on air
mounts to suppress effects of any floor induced disturbances, is used as a global reference frame,
such that position tracking accuracy can be evaluated. On the metrology frame, 9 laser interferom-
eters (LIFMs) are mounted to measure the relative displacement of the translator with respect to the
metrology frame. Additionally, two sets of eddy current sensors (ECS) are mounted as auxiliary
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measurement systems, where one set of ECS is used for initialization of the NAPAS prototype and
the second set of ECS is used to capture the displacements between the stator base and the metrol-
ogy frame (C-M). In order to relate the coordinate frames to each other, rigid body coordinate
frame transformations are applied, see Murray et al. (1994).
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Figure 1: Schematic representation of the NAPAS setup, with a) ECSs used for initialization b)
LIFM devices . c) ECS used to capture displacements between C −M. x̄M, ȳM and z̄M
denote the metrology coordinate frame.

The dynamic behaviour of the planar motor is governed by both electromagnetic and mechanical
phenomena. The electromagnetic interaction describes the relation between the input currents in
the coils and the resulting magnet force distribution on the magnet plate of the translator. Moreover,
the mechanical model describes the relation between the aforementioned force distribution and the
resulting motion of the translator.

2.2. Electromagnetic interaction
The actuation of the electromagnetically-levitated planar motor is realized by 40 power amplifiers,

which independently control the current supplied to the corresponding 40 active coils. The relation
between the supplied currents, i ∈ R40, and the resulting force vector, is described by the Lorentz
force principle (Rovers et al., 2012). Under the rigid body assumption, the force distribution, exerted
on the magnet plate, is equivalently described as a force and torque vector around the center of mass
(Murray et al., 1994). Since the position of the plate is evaluated with respect to the metrology
frame, M, it is convenient to define the force/torque vector with respect to the same frame. This
force/torque vector is defined as

WM =
[
Fx Fy Fz τx τy τz

]>
, (1)

where Fx and τx are the force and torque acting on the x axis (similarly for the other axes), expressed
in the metrology frame. Then, the electromagnetic interaction is given by

WM = RMC M
r
(
qCT
)
i, (2)

where M r : R6 7→ R6×40 is a position dependent matrix, which depends on the relative position be-
tween the stator base and the mover, which is denoted as qCT =

[
xCM yCM zCM χCM ψCM ζCM

]>.
Moreover, since the force/torque vector is expressed with respect to the coil frame, the rotation ma-
trix RMC transforms the force and torque vector to the metrology coordinate frame.
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2.3. Mechanical system
The kinematics of the translator are derived using Euler-Lagrange modelling strategies, see Jelt-

sema and Scherpen (2009). To linearise the dynamics of the translator, a small angle approximation
is applied, since in lithographic equipment, rotational axes are actively steered to zero. Conse-
quently, rotation angles are neglectable during operation, see Butler (2011). The resulting state
space representation is expressed by (3), where qMT =

[
xMT yMT zMT χMT ψMT ζMT

]> de-
notes the relative position of the mover with respect to the metrology frame and GM denotes the
gravity compensation vector.[

q̇MT
q̈MT

]
=

[
0 I
0 0

] [
qMT
q̇MT

]
+

[
0
B

]
(WM −GM) (3)

2.4. Control Principles
The control architecture of the NAPAS prototype, which is based on the standard motion control

design for wafer scanners, is depicted in Figure 2. In order to apply SISO control strategies for first-
principles feedback control design, the system is rigid body decoupled (Steinbuch et al. (2010)),
where the commutation Γ̂(qCT ) =

[
RMC M

r(qCT )
]† denotes the actuator decoupling (mapping from

control forces to required currents, ŴM ∈ R6 7→ i ∈ R40) and the state reconstruction Ψ(qMT )
denotes the sensor decoupling (mapping from independent LIFM measurements to the estimated
physical axes, yL ∈ R9 7→ q̂MT ∈ R6). By applying rigid body decoupling strategies, the equivalent
plant, as seen by the feedback controller, is expected to be diagonal up until the desired bandwidth
(van de Wal et al., 2002).

For construction of a first-principle model-based feedback controller, a combination of a PID con-
troller and a low-pass filter is considered for all six physical axes. Additionally, a standard rigid
body feedforward is employed to the control system for further enhancement of position tracking
performance.

Since the feedback controller, including the rigid body decoupling matrices, is based on the
first-principles model, position tracking performance is limited by the neglected complex electro-
mechanic phenomena which are present in the real system, but are very difficult to model from
a first-principle view point. In order to improve position tracking performance, the steady state
solution of the residual dynamics is viewed as load disturbance, which is modelled using the GP
framework. Consequently, the control policy to compensate for the neglected dynamics is estimated
from experimental data using Gaussian regression, which allows for augmentation of the identified
GP model in the currently employed rigid body feedforward controller as illustrated in Figure 2.

Figure 2: Schematic representation of the control architecture of the NAPAS prototype.
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3. Gaussian-Process based learning of disturbances
3.1. Disturbance characteristics and experiment design

This section describes the modelling of static behaviour of residual dynamics using the GP frame-
work. The main focus of this work is directed towards the suppression of disturbances acting on
the z axis, which exhibits the largest deviations from the desired position in the investigated planar
motor due to effects of residual dynamics, see (Proimadis, 2020). Apart from cancelling the known
non-linear effects associated with the rigid-body dynamics, the commutation algorithm, presented
in Section 2, further facilitated the control design by decoupling the system and reducing the num-
ber of inputs from 40, i.e. the number of active coils, to 6, i.e. the rigid-body of force and torque
components. For similar reasons, it is desirable to view the static effect of residual dynamics acting
on the z axis as load disturbances acting on the output F̂z of the RB decoupled feedback controller.
Using the Gaussian Process modelling framework, the disturbance force model is described by

y(i) = F dist
z (w (i)) + e(i), (4)

where i is the time index and e is the noise source, modelled as i.i.d. white Gaussian noise, e(i) ∼
N
(
0, σ2e

)
(Dekking et al., 2005), while y ∈ R is the measured output. The disturbance force F dist

z

is assumed to be dependent on the input vector w ∈ Rnu and will be modelled by a Gaussian
Process (Rasmussen and Williams, 2005),

F dist
z (w) ∼ GP

(
0, k (w(i),w(j))

)
, (5)

i.e. its covariance is fully characterized by the kernel function k. The Gaussian Process framework
exploits the assumption of Gaussian distribution of both the function to be estimated and the in-
volved noise process, in order to arrive at an analytically computed predictor, which is based on the
posterior predictive distribution of F dist

z conditioned on a training set of input-output observations.
The mean of the predictive distribution is also the maximum a posteriori estimate

F̄ dist
z (w∗) = k (w∗,WN )

(
K (WN ,WN ) + σ2eIN

)−1
y, (6)

where w∗ ∈ Rnu is a test input, and WN with y contain the training input and output data, re-
spectively, at the N training points. For the vector k (w∗,WN ) ∈ R1×N , its ith element is equal to
k (w∗,w (i)), and in a similar fashion, for the matrix K (WN ,WN ) ∈ RN×N the element on the ith

row and jth column is equal to k (w (i) ,w (j)).
Based on the discussion so far, three main questions have to be answered towards the modelling

of the disturbance via the Gaussian Process framework. First, in spite of the model postulated in
(4), the static effects of the residual dynamics cannot be directly measured. Consequently, we need
a methodology to infer the non-measurable values of these static effects from measurable data. Sec-
ondly, the relevant inputs have to be defined. Thirdly, the kernel function has to be chosen.

In order to answer the aforementioned questions, in Figure 3, the total force command on z axis
on a selected grid of positions in the xMT − yMT plane is shown, after the dynamic behaviour has
settled. The two plots correspond to two independent measurements. At steady state, due to the
integral action in the feedback controller, the resulting total control effort in each DOF is equal to
the feedforward effort, minus the constant disturbances that act on the same DOF, i.e.

F̂z = F̂FF
z − F dist

z , (7)

with F̂FF
z denoting the feedforward effort. By making use of (7), it becomes apparent that the

measurements in Figure 3 can be directly used to estimate the magnitude of the disturbance.
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Figure 3: Two different measurements of F̂z on the x̂MT − ŷMT plane.

Figure 3 can be used further to draw conclusions, which are important for inferring which signals
are affecting the static behaviour of residual dynamics, which are viewed as load disturbances. As
a starting point, due to the position-dependent characteristics of the planar motor behaviour, it is
natural to assume that the disturbances exhibit position-dependent characteristics as well. Secondly,
it is asserted that the load disturbance exhibits a sinusoidal behaviour over the xMT − yMT plane.
This is verified by computing the 2D Fourier transform of the measured F̂z with respect to the latter
coordinates, shown in Figure 4, where it becomes evident that a sinusoidal behaviour with a spatial
frequency of approximately 2.5 − 3 cm is dominant. This value is related to the expected magnet
pitch, see Custers (2019). Thirdly, the differences in the two measurements, presented in Figure 3,
reveal that the residual dynamics cannot be solely described as a function of x̂MT , ŷ

M
T . The deviation

per grid point is on average equal to 0.46N, which is approximately equal to 0.5% of the total mass
feedforward control force F̂FF

z . Equation (2) reveals a plausible source of residual dynamics; the
vector ŴM depends on the relative position between the coil, metrology and translator frame.
Consequently, any unforeseen, neglected or inaccurately modelled dynamics will depend, to some
extent, on the relative distance between the aforementioned frames. Consequently, at least six input
variables are required in order to relate the coordinate frames to each other.

20

40

60

80

100

Figure 4: Spatial Fourier transform with respect to the x̂MT , ŷ
M
T coordinates.

The attenuation capabilities of the resulting feedforward control depend on how well the input
space has been explored. The variables q̂MT are actively controlled, therefore it is straightforward
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to define the excitation region with respect to them. The experiments have been performed on a
x̂MT − ŷMT grid, with x̂MT , ŷ

M
T ∈ [0.01, 0.1] m. The position difference between two consecutive

measurement points is approximately equal to 2 mm. On the other hand, the ẑMT as well as the
rotation of the translator with respect to the metrology frame are kept constant during operation.
Regarding the qCM coordinates, the mounting of the metrology frame on passively controlled air
mounts, as explained in Section 2, means that the relative displacement between the coil and the
metrology frame cannot be actively controlled. Hence, the input space exploration is limited to
the variability of the experiments, which is affected by environmental or other, unforeseen physical
phenomena. For this reason, the experiment on the aforementioned x̂MT , ŷ

M
T grid has been repeated

six times and the corresponding q̂CM have been estimated. In total, the input vector is defined as

w(i) =
[
x̂MT (i) ŷMT (i) x̂CM(i) ŷCM(i) ẑCM(i) χ̂CM(i) ψ̂CM(i) ζ̂CM(i)

]>
, (8)

with w(i) ∈ R8 and i = {1, . . . , Np}, where Np denotes the number of data points. Moreover,
wν(i) denotes the ν th element of the vector. Based on these inputs, an appropriate kernel selection
is sought next.

3.2. Kernel design and validation
In the Gaussian Process framework, the kernel structure constitutes an important aspect, since it

specifies the hypothesis space for the resulting estimator. As such, it is beneficial to incorporate any
observations to specify the structure of the expected function class. To this end, the aforementioned
load disturbance characteristics can be inscribed in the kernel structure, thus facilitating the fitting
of an appropriate GP model to the experimental data. Based on the experimental observations in
Section 3.1, the kernel is defined as the product of a periodic kernel (MacKay, 1998), which captures
the coil array characteristics, a Radial Basis Function (RBF) kernel (Neal, 2012), which captures
inconsistencies in the magnetic force distribution and a linear kernel, which explores linear trends
with respect to the x̂MT - ŷMT frame, which would cause ẑMT to vary as a function of x̂MT , ŷMT . The
resulting kernel is mathematically described by

k (w (i) ,w (j)) =σ21 exp
(
−

RBF kernel︷ ︸︸ ︷
8∑

ν=1

(wν (i)− wν (j))2

2λ2ν,rbf
−

Periodic kernel︷ ︸︸ ︷
8∑

ν=1

sin2
(
π(wν(i)−wν(j))

psin

)
2λ2sin

)
+

2∑
ν=1

σ2ν,2 (wν (i)− cν,lin) (wν (j)− cν,lin)︸ ︷︷ ︸
Linear kernel

,

(9)

where σν,2, cν,lin is the ν th element of the vector σ2, clin respectively. In total, there are 16 hyper-
parameters to be optimized, including the noise variance σe. Additionally, variations of the kernel
structure, given by (9) have been investigated. More specifically, the kernel structure in (9) without
the sinusoidal term, i.e. linear plus RBF, has been investigated, as well as a standalone RBF ker-
nel. These two kernel structures are comprised of 14 and 10 hyperparameters, respectively. For all
the aforementioned kernels, the hyperparameters have been computed by maximizing the marginal
likelihood with respect to the hyperparameters (Rasmussen and Williams, 2005), using the collected
training set.

For the validation of the results, 5 data sets with sufficient variations in qCM are used for training
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purposes, where in total 3600 training points have been used. The predicted output ŷ is compared
to the measured output y on a fresh data set using the Best Fit Ratio (BFR)

BFR = 100% ·max

(
1−
||y − ŷ||2
||y − ȳ||2

, 0

)
, (10)

where ȳ denotes the sample mean of y. The BFR criterion delivers an estimate between 0% for
no match and 100% for the perfect match between the estimated and the measured output. The
corresponding BFR results are presented in Table 1.

Table 1: Validation of the estimated GP compensator on the validation data set
Kernel Linear + RBF × Sinusoidal Linear + RBF RBF
BFR % 85.77 77.60 77.62

A few conclusions can be drawn from Table 1. First of all, it is evident that the employed ker-
nels manage to efficiently capture the major characteristics of the disturbances that act on the motor
prototype. Among the three kernels, the kernel containing the sinusoidal term leads to the high-
est accuracy, thus verifying the physics-based intuition for selecting such a kernel. However, the
remaining two kernels also manage to predict the steady state behaviour of residual dynamics in
a satisfactory manner, which highlights the flexibility of the RBF kernel in capturing non-linear
trends. Finally, it is observed that any linear trend can be captured by the RBF kernel alone, thus
explaining the similarity in results for the Linear+RBF and RBF kernels. In total, the results show
that the GP framework is a powerful tool for modelling highly complex, position-dependent static
effects of residual dynamics, which can severely limit the positioning accuracy of planar motors.

4. Experimental results
In this section, the GP-based predictor is used for compensation of static disturbances, which

are induced by residual dynamics that the feedback controller must compensate. Real-time im-
plementation of the feedforward augmentation on the experimental prototype requires additional
consideration. First of all, for x̂MT , ŷMT , the corresponding reference signals are used in the predic-
tor instead of their measurement-based estimates. This selection is justified by the fact that for these
two controlled variables, the error in this high-precision motor is relatively small compared to the
sensitivity of the GP with respect to these variables. Moreover, introduction of additional feedback
control loops is avoided, which could otherwise endanger stability. Additionally, the total control
effort, shown in Figure 3, contains the feedforward control effort, i.e. the gravity compensation
term. Therefore, in order to only compensate for the disturbance, the gravity compensation term is
subtracted from the predicted disturbance force.

In order to evaluate the attenuation capabilities of the proposed feedforward controller in the NA-
PAS prototype, its performance is tested under both diagonal as well as straight motion profiles with
respect to the x̂MT -ŷMT plane. For experimental validation of the designed feedforward augmenta-
tion, a low bandwidth feedback controller (≈ 9.5 Hz) is applied to obtain a better visualization of
the effects of the designed feedforward augmentation on the position tracking performance. The se-
lected plane is defined as x̂MT ,ŷMT ∈ [0.015, 0.055]m. The employed 4th order reference trajectory
is generated based on the method by Lambrechts et al. (2005). The designed reference trajectory is
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illustrated in Figure 5.
For the real-time implementation of the GP-based feedforward augmentation, the computational

complexity of the predictor has to be taken into consideration. For demonstration purposes, the
linear plus RBF kernel is implemented in the experimental prototype, which, in practice, offers a
good balance between prediction accuracy and required real-time calculation time. To further re-
duce the computation time, the initial predictor, which is formulated using the 3600 training points,
is further approximated using a subset of 200 points. To accomplish this approximation, the Subset
of Regressors (SR) (Wahba, 1990) method is applied, for which is empirically shown (Rasmussen
and Williams, 2005, Chapter 8) that it offers a good balance between approximation error and com-
putation time. For the selection of the subset of training points, a heuristic approach is considered
(Proimadis, 2020). First, 200 samples are randomly selected for which the corresponding kernel is
constructed. Secondly, the prediction capability of the resulting predictor is validated on a fresh data
set by computing the BFR value. The heuristic approach is repeated 1000 times, after which the
predictor with the highest BFR is kept. Using this approach, the approximated predictor achieved a
BFR value of 65.37%, compared to the original BFR value of 77.60%.

The experimental results are shown in Figure 5. The trajectory consists of a motion on the +yMT
direction, followed by a diagonal motion on the +xMT ,−yMT direction, another +yMT motion and
finally the magnet plate returns to the starting point. Moreover, the error on the ẑMT axis is plotted
for two cases, namely when the GP-based feedforward augmentation is active and inactive. Due to
the coupling between the various DOFs, it is observed that the motion in the xMT and/or yMT axes
leads to higher error in ẑMT , too, compared to steady-state intervals. As a consequence, attenuat-
ing the disturbances in the former intervals is more imperative, especially in the constant velocity
part, for which scanning takes place in the lithography process. Indeed, it can be directly observed
in Figure 5 that the GP-based feedforward augmentation leads to significant improvement both in
position tracking performance during steady-state, as well as position tracking performance during
motion.

Finally, in order to quantify the resulting improvement with the GP-based feedforward augmen-
tation, the `2 norm, scaled by the square root of the number of data points, and the `∞ norms of
the ẑMT error are computed. In Table 3 the constant velocity results are presented, while in Table 2
the results for the whole trajectory are presented. Based on the results shown in both tables, it
is asserted that the improvement is approximately 50%, thus highlighting the effectiveness of the
proposed approach towards achieving higher positioning accuracy.

Table 2: Experimental results of the feedforward augmentation.
No compensation Kernel-based FF Relative reduction

`2/
√
N 6.4 · 10−6 3.39 · 10−6 47.03%

`∞ 2.19 · 10−5 9.97 · 10−6 54.47%

9



MACHINE LEARNING BASED COMPENSATION OF STATIC EFFECTS OF RESIDUAL DYNAMICS

Figure 5: From top to bottom: Reference trajectory in terms of position [m] ( ), velocity [ms ] ( )
and scaled acceleration [m

s2
] by a factor of 10 ( ) for x̂MT . Reference position [m] ( ),

velocity [ms ] ( ) and scaled acceleration [m
s2

] by a factor of 10 ( ) for ŷMT . Error in
z-direction [m] with ( ) and without ( ) kernel-based feedforward compensation for
static disturbance rejection. The yellow areas represent the time intervals for which the
velocity is constant.

Table 3: Experimental results of the feedforward augmentation during constant velocity.
No compensation Kernel-based FF Relative reduction

`2/
√
N 1.02 · 10−5 4.38 · 10−6 57.06%

`∞ 2.19 · 10−5 9.97 · 10−6 54.47%

5. Conclusions
This paper presents a kernel based modelling approach that is able to successfully capture the

steady state behaviour of residual dynamics for moving-magnet planar actuator systems as a func-
tion of the generalized coordinates associated to the coil - metrology and the translator - metrology
reference frames. Additionally, capturing the static behaviour of residual dynamics using the GP
framework allows for augmentation of the feedforward controller, such that unforeseen static ef-
fects of residual dynamics are timely attenuated for. Consequently, position tracking error in zMT
direction is reduced by more than 50 % during application.

Finally, in order to further improve position tracking performance of a planar motor stage, the
kernel based modelling strategy can be extended, such that the full dynamic residual model is con-
sidered for feedforward compensation.
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