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Abstract
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dy-
namical systems from data for subsequent use in control design. While learning-based control has
the potential to yield superior performance in demanding applications, robustness to uncertainty re-
mains an important challenge. Since Bayesian methods quantify uncertainty of the learning results,
it is natural to incorporate these uncertainties into a robust design. In contrast to most state-of-
the-art approaches that consider worst-case estimates, we leverage the learning method’s posterior
distribution in the controller synthesis. The result is a more informed and, thus, more efficient trade-
off between performance and robustness. We present a novel controller synthesis for linearized GP
dynamics that yields robust controllers with respect to a probabilistic stability margin. The for-
mulation is based on a recently proposed algorithm for linear quadratic control synthesis, which
we extend by giving probabilistic robustness guarantees in the form of credibility bounds for the
system’s stability. Comparisons to existing methods based on worst-case and certainty-equivalence
designs reveal superior performance and robustness properties of the proposed method.
Keywords: learning-based control, Gaussian processes, probabilistic robust control

1. Introduction

The trade-off between performance and robustness is at the heart of any practical control design
(Boulet and Duan, 2007): do we seek an optimal controller for a particular system or one that
works well over a larger set of systems and conditions? It is possible to quantify this trade-off in
the various methods of robust control (Zhou et al., 1996). Robust control, however, is typically
based on a worst-case treatment of uncertainty sets and does not consider a distribution over the set
of possible model parameters. Control design based on probabilistic models learned from data is
less well established. Yet, for learned models, the performance-robustness trade-off is especially
relevant since uncertainty is inherent in any learning result.

When controllers are deployed on physical machines, practical robustness guarantees are essen-
tial to ensure the plant’s safe operation. Dealing with large uncertainties, worst-case controllers are
often highly conservative and require additional assumptions to retain their guarantees. Given the
learned probabilistic model, it is sometimes impossible to give deterministic stability guarantees if
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the set of possible model parameters is too large or even infinite. By relaxing deterministic guaran-
tees and allowing controllers to fail (with low probability), we can achieve a principled robustness-
performance trade-off. This relaxation and the information given by the distribution allow us to
improve the expected control performance while retaining practically useful stability guarantees.

Gaussian processes (GPs) are a state-of-the-art method to learn probabilistic dynamics models
that represent uncertainty as a distribution over functions. Even though the use of GPs to learn
dynamics is gaining popularity in recent years, subsequent robust controller synthesis based on
probabilistic models is less established. In their pioneering work in this direction, Berkenkamp and
Schoellig (2015) propose a robust controller synthesis for a linearized GP dynamics model. Therein
a worst-case robust synthesis method is presented where the uncertainty sets are derived from the
GP posterior variance.

This paper extends prior work by designing controllers that use a linearized GP model’s prob-
abilistic uncertainties. Instead of using the credible region as the bounds for the set of possible
system parameters, we leverage the GP’s distribution to design efficient controllers with, in effect,
the same robustness guarantees but superior performance. The proposed formulation results in a
Bayesian optimal controller design that uses the GP’s probabilistic information. In particular, the
desired properties are (i) probabilistic robustness (i.e., stable with high and predefined probability)
and (ii) optimal in expectation with respect to (w.r.t.) the posterior distribution. In summary, the
contributions of this paper are:

• a relaxation of the deterministic robust synthesis for GP error bounds proposed by Berkenkamp
and Schoellig (2015) with reduced conservatism and improved control performance;

• a synthesis yielding a probabilistically robust LQR for a linearized GP dynamics model;
• probabilistic robustness guarantees for the resulting controller, where the desired confidence

on the closed-loop stability can be chosen a-priori and is guaranteed by the algorithm.
The method describes an approximately optimal Bayesian robust stochastic control synthesis. In
numerical experiments, we demonstrate improved control performance compared to the worst-case
consideration proposed by Berkenkamp and Schoellig (2015).

1.1. Related work

While GPs are increasingly popular for learning dynamical systems (Nguyen-Tuong and Peters,
2011; Frigola et al., 2014; Svensson et al., 2016; Geist and Trimpe, 2020; Buisson-Fenet et al.,
2020) and have recently been used in many branches of reinforcement learning (Deisenroth and Ras-
mussen, 2011; Doerr et al., 2017; Vinogradska et al., 2018) and model predictive control (Ostafew
et al., 2016; Hewing et al., 2019; Jain et al., 2018; Koller et al., 2018), only a few approaches exist
for offline controller synthesis with formal stability guarantees. The approach in Berkenkamp and
Schoellig (2015), as well as other works such as Umlauft et al. (2017), use probabilistic uncertainty
to define error bounds, which are then treated in a worst-case fashion, while the underlying distri-
bution is ignored. A key difference between these prior works and ours is the formulation of the
objective: We demonstrate herein that leveraging the distribution yields better expected performance
while retaining Bayesian stability guarantees similar to the deterministic robust synthesis. In prac-
tice, we gain a significant increase in performance at the cost of a small additional but pre-defined
probability of being unstable.

Umlauft et al. (2018) propose to use a GP dynamics model to sample scenarios for a differential
dynamic program. Their method is applicable to non-linear systems, using an iterative LQR for-
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mulation, and includes probabilistic guarantees on the performance. In contrast to this approach,
our method does not require solving the scenario program online but is limited to a single operating
point in its current form. We derive explicit robustness properties for the linear, probabilistic setting.

Our synthesis method is primarily based on an LMI formulation for the upper bound on the
LQR problem in the presence of probabilistic uncertainties proposed by Umenberger and Schön
(2018). This formulation alleviates some of the conservativeness inherent in alternative worst-case
formulations and thereby provides a synthesis for the LQR problem in the presence of probabilistic
uncertainty. While the authors show empirically that the controller is robust w.r.t. the specified
uncertainty, they do not give theoretical stability guarantees for the presented approach. We extend
this work by a theoretical robustness analysis based on results from scenario optimization.

2. Problem formulation

Consider a stochastic, discrete-time and time-invariant dynamical system

xk+1 = f(xk, uk) + ωk, (1)

and a locally valid linear approximation around an a-priori known operating point x∗ = f(x∗, u∗)

xk+1 ≈ Āxk + B̄uk + ωk, (2)

where xk ∈ Rdx is the state, uk ∈ Rdu is the input and ωk ∼ N (0,Σω) is the process noise of
the system. For notational convenience, we define the state-action tuple qk =̇ (xk, uk) as well as the
parameters of the linearized system as S̄ = [Ā B̄]. We assume access to the state xk and the process
noise is i.i.d. with Σω = diag(σ2

ω,1, . . . , σ
2
ω,dx

).
Designing controllers for a-priori known operating points that have a locally valid linear ap-

proximation of their dynamics is a problem often considered in practice, as well as in Berkenkamp
and Schoellig (2015) and many industrial control processes.

2.1. Gaussian process dynamics model

The dynamics f and the parameters of the linear approximations Ā and B̄ are unknown, but we can
formulate a prior f̂ on (1) in the form of a GP. After observing a set DN = {qk, xk+1}Nk=0 of one
step transitions (usually as trajectories) of system (1), we compute the posterior for the dynamics f
as well as the linearized dynamics Ā and B̄. We get a Bayesian estimate for the system matrices
in (2) by taking the partial derivatives of the GP f̂ . The linearization of the GP dynamics model
requires that the covariance function is at least twice differentiable at the operating point. Since GPs
are closed under linear transformations, the resulting Jacobian at the point q∗ is distributed according
to a matrix normal distribution (cf. Rasmussen and Williams (2006, Chapter 9.4))MN (MS , U, V )
where MS is the mean and U and V are the covariances between rows and columns.1 We denote
the posterior probability distribution over system parameters as PS̄ and its support as Π. For the
synthesis problem, we define a truncated matrix normal distribution P c

S̄
with the same mean and

covariances, and its support Πc with

Πc = {S | (vec(S)− vec(MS))T (U ⊗ V )−1(vec(S)− vec(MS)) ≤ X 2
ds,c},

1. The matrix normal distribution and multivariate normal distribution are related by vec(Ŝ) ∼ N (vec(MS), U ⊗ V ),
where vec(M) is the (column-major) vectorization of M and ⊗ is the Kronecker product.
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where X 2
ds,c

is the c-quantile of the Chi-squared distribution with ds = d2
x + dxdu degrees of

freedom.

Remark 1 Learning a non-linear GP model for (1) instead of directly estimating a linear model
for (2) using, for example, Bayesian linear regression, can be advantageous since the data DN is
collected from the non-linear system. The linear model will be biased if the data is collected outside
the local region where (2) is a good approximation. Modeling f directly can avoid this bias.

2.2. Bayesian optimal linear quadratic regulator

We want to design a linear and static state-feedback controller uk = Kxk for (2) that is optimal, in
expectation, w.r.t. the truncated posterior distribution given by the GP model

min
K

J(K) =

∫
Πc

J(K,S)P cS̄(S) dS, (3.1)

J(K,S) = lim
T→∞

1

T

T∑
k=0

Eω
[
xTkQxk + uTkRuk

]
(3.2)

s.t. xk+1 = (A+BK)xk + ωk, S = [A B],

whereQ andR are user defined, positive semi-definite and positive definite weight matrices respec-
tively and x0 = x∗. This formulation is different from the standard LQR problem with known A
and B matrices. The case where uncertainty about Ā and B̄ is small and can be ignored, certainty
equivalence (CE), is investigated by Mania et al. (2019). Due to optimization of the expected cost
w.r.t. the posterior belief the Bayesian optimal formulation may yield a different controller, even if
the CE controller can stabilize all systems in Πc (see Sec. 4).

In (3.2) we consider the (usual) expectation over the states and time, given a fixed system.
Additionally, we take the expectation over model uncertainty (3.1). If (3.1) exists for some K,
this K will almost surely stabilize any system in Πc, since any unstable systems will have infinite
expected cost. Conversely, if (3) is infeasible, there exists no K that is robustly stable.

Assumption 1 There exists at least one K such that (3.1) is finite on the support of P c
S̄

.

Assumption 1 excludes any distributions containing systems that cannot be stabilized with the same
controller. Distributions with unbounded support, such as the non-truncated normal distribution,
are excluded since these will always contain unstable systems for every K. As a practical way of
dealing with the unbounded support of a GP, we approximate PS̄ by a truncated distribution P c

S̄
over

a bounded subset given by the credible interval c.
Depending on the prior distribution, likelihood, and data, the support of P c

S̄
might contain un-

controllable/unstabilizable systems. Non-controllable pairs of A, B are sets of measure zero w.r.t.
the Lebesgue measure (Sontag, 1998, Prop. 3.3.12), meaning a sample of the GP linearization is
almost surely controllable. Assumption 1 also excludes distributions that concentrate around an
uncontrollable system as all of these systems are hard to control, i.e., the controllability matrices
have small singular values, which will lead to exploding costs for every K.

3. Synthesis for linearized Gaussian processes

In this section, we introduce the synthesis algorithm by which we approximately optimize (3.1), and
we prove a probabilistic stability property for the resulting controller.
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3.1. Controller synthesis

To find a controller that minimizes the expected quadratic cost, it would be necessary to solve the
integral in (3.1), for which no analytic solution exists (Umenberger and Schön, 2018). Umenberger
and Schön (2018) developed a synthesis algorithm that optimizes a tight and convex upper bound
for a Monte Carlo approximation to (3) by improving an initial common Lyapunov solution using a
majorize-minimize algorithm.

Since the chosen GP model yields a point estimate for the process noise Σω we can slightly
modify the LMI formulation of Umenberger and Schön (2018),

min
L,Z∈S,Y ∈S++

tr Z

s.t.


Y ∗ ∗ ∗

AiY +BiL Y ∗ ∗
Q1/2Y 0 I ∗
L 0 0 R−1

 < 0

[
Z Σω1/2

Σω1/2 Y

]
< 0

∀ Si = [Ai Bi] ∈ ΠM
c ,

(4)

min
K,Xi∈S++

tr
1

M

∑
i

XiΣ
ω

s.t.

 Xi −Q ∗ ∗
Ai +BiK TX̄i

(Xi) ∗
K 0 R−1

 < 0

∀ Si = [Ai Bi] ∈ ΠM
c ,

(5)

where S and S++ denote the set of symmetric or positive definite matrices. For the initial solution
(4) X = Y −1, K = LX , and Z is a slack variable. For the improvement step (5) TX̄i

(Xi) denotes
the linear approximation of X−1

i around X̄i, the solution to (5) for the previous iteration.
Let K∗ denote the solution of (5) after a stopping criterion has been fulfilled. We are interested

in the probability that K∗ will stabilize the true linear system xk = (Ā+ B̄K∗)xk + wk. As a first
step we establish an a-priori bound on the probability that the controller result of the initialization
step (4) Kinit = LX will be stable w.r.t. to the set of probable systems Πc. We use the probabilistic
knowledge about the system parameters to express the system’s stability as a Bernoulli distribution.
We define a stability indicator variable for the true linear system (2) and a fixed K as

φK =

{
1, if ρ(Ā+ B̄K) < 1

0, otherwise.
(6)

Further, we define the probabilistic robustness property as VK(ε) = (E[φK ] ≥ 1− ε). By this
definition, we accept a (small) probability ε that the feedback control destabilizes the system.

Theorem 1 Let Assumption 1 hold and letKinit be the solution to (4). Let ε and β > 0 be given and
nk = 2d2

x + dxdu the number of optimization variables in (4). Let P c
S̄

be the posterior probability
over S = [Ā B̄]. If we draw M ≥

⌈
2
ε ln( 1

β ) + nk

⌉
samples according to P c

S̄
, then it holds that

P (VKinit(ε)) > 1− β. (7)

Proof The optimization problem (4) is a convex scenario program and therefore we can apply
Campi et al. (2009, Theorem 1).

Theorem 1 states that, according to our current (truncated) belief over the system parameters, if
we sample M scenarios from P c

S̄
, we can be confident that with probability of at least 1 − β the
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desired robustness property VKinit is fullfilled. Part of the robustness property is a risk parameter
that describes the upper bound for the probability that Kinit will destabilize the system.

Since Kinit is highly conservative due to the common Lyapunov approximation, we improve
the controller by iteratively solving (5). Due to the averaging over all solutions, (5) is not a sce-
nario program and Theorem 1 does not hold for the improvements. We therefore validate the final
controller in an a-posteriori analysis which we describe in the next subsection.

3.2. Controller validation

After iteratively solving (5) for a particular set of samples, we validate the success of synthesis,
i.e., that the controller will stabilize (2) with high probability, before deploying the controller to the
system. The validation ensures that the robustness properties that provably hold for the initialization
(4) will also hold after the iterative improvement. At the same time we can improve our initial
guarantees regarding the probability of a successful synthesis P (VK∗(ε)).

The validation is done on the learned distribution but for samples not seen by the synthesis
method. For the validation procedure, we approximate the expectation E[φK∗ ] by sampling systems
from P c

S̄
. The sample-based approach avoids conservativeness in our analysis at the cost of some

approximation error. Since sampling and checking the spectral radius are computationally relatively
cheap, we can use a lot of samples and make this approximation error small enough for most prac-
tical purposes. Sample-based robust analysis is a simple method that does not rely on a specific
uncertainty structure (cf. Ray and Stengel (1993)).

Theorem 2 Let Assumption 1 hold. If we draw Mval ≥ 1
2εval

log( 1
α) samples from P c

S̄
, Algorithm 1

will return a probabilistically stable controller K∗ where

P (E[φK∗ ] ≥ 1− εpr)) > 1− α, (8)

with εpr = c− (ε+ εval) and according to the posterior distribution PS̄ .

Proof Algorithm 1 returns a controller only if the empirical expected value of φ, φ̂ is at least 1− ε.
We can directly apply the one sided Hoeffding inequality P (φ̂− E[φ] ≥ εval) ≤ exp (−2Mvalε

2
val).

By choosing Mval ≥ 1
2εval

log( 1
α) it follows that exp (−2Mvalε

2
val) ≤ α and φ̂ ≥ 1− ε, thus

P (1− ε− E[φ] ≥ εval) ≤ α⇒ P (E[φ] ≤ 1− ε− εval) ≤ α. (9)

Since we sample scenarios from the truncated distribution P c
S̄

as opposed to PS̄ , we do not account
for systems in a set with probability mass 1− c. It follows that P

(
E[φ] ≤ εpr

)
≤ α.

If Assumption 1 does not hold, Algorithm 1 will return no controller with high probability, giving
a certificate of infeasibility for the problem approximated by the scenario program. In this case, we
can either improve the prior distribution by adding additional knowledge or collect more data. The
choice of β in Algorithm 1 does not influence the a-posteriori stability, but it determines how often
we need to run the synthesis on a new sample set before we find a controller that satisfies φ̂ ≥ 1− ε.
Consequently choosing a high β will increase the expected runtime of Algorithm 1.

When compared to the synthesis by Berkenkamp and Schoellig (2015) the problem is relaxed
since we allow a (small) probability α that the controller does not robustly stabilize the credible
region of the model. Otherwise, we can achieve the same stability guarantees by setting εpr = 95%,
the credible region chosen therein. Keeping the similar robustness properties in mind, we now
compare both approaches in the next section.
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Algorithm 1 Probabilistic robust LQR synthesis

1: Input: Posterior distribution P c
S̄

of Ŝ, risk parameter ε and εval, confidence parameter β and α,
cost matrices Q and R.

2: do
3: Generate at least M =

⌈
2
ε ln( 1

β ) + nk

⌉
samples from P c

S̄
(Theorem 1).

4: Find K∗ by solving first (4) and than (5) iteratively.
5: if (4) is infeasible return
6: Draw at least Mval = exp( 1

2εval
log( 1

α)) samples from P c
S̄

. (Theorem 2)

7: φ̂K∗ = 1
Mval

∑Mval
i=0

{
1, if ρ(Ai +BiK

∗) < 1

0, otherwise

8: while φ̂K∗ < 1− ε
9: return K∗.

4. Empirical results

In this section, we apply the results from Sec. 3 to a synthetic benchmark problem to illustrate
and empirically verify the performance of the proposed synthesis and its robustness properties. We
compare performance and robustness of the proposed probabilistic robust (PR) synthesis described
in Algorithm 1 with the robust (R) method to solve the LQR problem based on linearized GP models
in Berkenkamp and Schoellig (2015). Additionally, we compare against the certainty equivalence
(CE) setting in which the mean of PS̄ is used to solve the standard Riccati equations.

In the second subsection, we use GPs to learn a given system from data and synthesize a con-
troller based on the distribution over linearized systems. We numerically compare the stability and
performance properties of the discussed methods. We want to remark that the primary goal here
is not to evaluate how well GPs learn the given dynamics. Instead, our focus is to compare how
different approaches use the given uncertainty and how the resulting controller performs.

We collect the confidence and risk parameters for Algorithm 1 in the tuple ψ = (c, ε, β, εval, α).
The source code for all experiments, including all parameters, is available online2.

4.1. Empirical results on a synthetic distribution

As a benchmark problem, we create a synthetic distribution PS̄ asMN ([Ā B̄], U, V ) that highlights
the benefits of the proposed method. As the covariance matrices we choose a sample E = U ⊗ V
from a Wishart distribution with (d2

x + dxdu) degrees of freedom and a scale matrix σ2(0.5 · I18 +
0.5·118), where 118 denotes a 18×18 all-ones matrix. This allows for correlations in the uncertainty
between system parameters. By changing σ2 we can compare the synthesis methods over multiple
levels of uncertainty.

As the mean for the synthetic distribution we choose the LQR benchmark problem proposed by
Dean et al. (2020)

Ā =

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

 B̄ = I3 Q = 10−3I3 R = I3 Σω = 10−3I3, (10)

2. https://github.com/Data-Science-in-Mechanical-Engineering/prlqr
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where I3 denotes the 3-dimensional identity matrix. The credible region for the robust synthesis
is chosen as 95% and the parameters for the proposed method are set correspondingly to ψ =
(0.98, 0.02, 0.20, 0.01, 0.001). While the distribution of risk over the parameters εpr = c − (ε +
εval) is arbitrary, it does influence the numbers of samples for the scenario program as well as
the validation. In practice, we set the parameters via trial and error, such that the run-time of the
algorithm is reasonable. Stability and performance are evaluated on a sample of 10.000 systems
drawn from the non-truncated matrix normal distribution. We calculate the expected cost for each
sampled system over a finite horizon of 200 (cf. Schlüter et al. (2020, Eq. 20)). We report the cost
for all sampled and stable closed-loop systems as well as the frequency of unstable systems in Fig. 1.

The empirical results clearly show a reduced level of conservativeness in the problem formu-
lation when comparing the proposed PR synthesis to the R synthesis. The PR synthesis problem
is feasible with higher levels of uncertainty in the model and, additionally, the expected cost of
the resulting controller is lower for all levels of uncertainty. The trade-off is that the PR synthesis
yielding an unstable controller for up to 0.3% of samples of the non-truncated distribution. As to be
expected, having the different optimization goals in mind, the worst case costs for the controller of
the PR synthesis is higher, but only for high levels of uncertainty and in rare cases. Similar empirical
results for the PR synthesis have been shown previously by Umenberger and Schön (2018), albeit
without sample requirements for probabilistic robustness guarantees. In contrast to the previous
results we increased the sample size to M ≥ 188 according to Theorem 1 from M = 50 used by
Umenberger and Schön (2018).

Compared to the robust synthesis methods, the CE synthesis yields a controller that stabilizes
at least 95% of the samples for very low uncertainties in the system parameters. It can, therefore,
not be used in settings with significant uncertainties where we require probabilistic performance
guarantees. Even at low model uncertainty, the cost’s variance of the CE controller remains high,
which might be undesirable in practice. Starting from a σ2 of 1e-4, the controller resulting from the
PR synthesis is able to outperform the CE controller in expectation. This suggests that robustness
properties do not need to come at the cost of performance in the considered setting with probabilistic
uncertainties. To summarize the findings of Fig. 1: the proposed Algorithm 1 outperforms the
robust controller in expectation, has higher worst-case costs only in very unlikely cases, and can
find controllers with significantly higher model uncertainty.

4.2. Synthesis using GP models trained in simulation

In this subsection, we apply our framework to stabilize two non-linear systems, namely the Furuta
or rotary pendulum and a synthetic system inspired by the problem proposed in Dean et al. (2020).
As a comparison baseline, we show the controller based on the linearization of the true system (T).
We add this comparison to show how the learning-based methods perform versus perfect model
knowledge. The parameters ψ for the PR synthesis are identical to the previous subsection with
ψ = (0.98, 0.02, 0.20, 0.01, 0.001) and the credible region for the robust method is again set to
95%. We use a standard GP with a squared exponential kernel and fixed hyperparameters for all
our experiments. A dataset DN for the GP model is generated by starting each system close to
the operating point and sampling random control inputs from a normal distribution. The system is
reset after n samples, and Nt rollouts are recorded, giving a total sample size of N = nNt. We
evaluate the performance by applying the controller to the true non-linear system, initialized in the
operating point, and record the cost for 200 time steps. We repeat the performance measurement
200 times and report the mean of these runs as the cost for the given state feedback controller. Each
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Figure 1: Synthetic example (Sec. 4.1). Distribution over LQR costs (top) and frequency of unsta-
ble closed-loop systems (bottom) for a model with different levels of uncertainties based
on 10.000 samples. A missing boxplot indicates the problem was infeasible for the given
uncertainty. The empirical mean of each distribution is shown as a black dashed line.

experiment, i.e., data collection, GP regression, and controller synthesis, is repeated with a different
random seed 25 times, and the results for each experiment are plotted.

4.2.1. SYNTHETIC SYSTEM

The locally linear synthetic system is a variant of the linear system proposed as a challenging LQR
benchmark by Dean et al. (2020)

xk+1 =

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

xk +

0.3 0.0 0.0
0.3 0.3 0.0
0.3 0.3 0.3

xk
◦3 + Iuk + ωk, (11)

were ◦ denotes the Hadamard power. We set Q = I3 and R = I3. One rollout for this system
consists of six samples. Due to the added non-linearity, a linear estimator might fail to identify the
system. We evaluate the stability by checking the spectral radius w.r.t. the linear part of (11) and
check that all states are smaller than 1000. The results are shown in Fig. 2(a). The PR synthesis
outperforms the R synthesis in expectation and is feasible more often at 3 and 5 rollouts. All feasible
cases lead to a stable controller. In this experiment, the CE controller performs better than the robust
methods, suggesting that our GP model might overestimate the uncertainty. For 8 rollouts the PR
and CE controller are on par with a controller designed for the linearization of the true non-linear
system (T).

4.2.2. ROTARY PENDULUM

The rotary pendulum dynamics are based on the equations of motion derived by Iwashiro et al.
(1996) and discretized with a sample time of 20 ms. The state-space of the rotary pendulum is
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4-dimensional and consists of the angle and angular velocity of the rotary arm and the pendulum.
The operating point is the unstable upright position. We collected 30 samples per rollout. Since our
contribution is not focused on model learning, we reduced the difficulty of the learning task. The
data is recorded around the operating point using an a-priori stabilizing controller, which allowed
us to have a relatively accurate GP posterior with comparatively little data.

The results are shown in Fig. 2(b). The PR synthesis yields a controller that performs better, on
average, than both the controllers from the CE and R synthesis. In this setting, the PR controller
performs better than the CE controller, which we attribute to the more informative data-set and a
better tuned GP model, in contrast to the synthetic system.

We want to remark that if we use a Bayesian uncertainty estimate, the performance critically
depends on the chosen prior, especially in the low data regime. However, the robustness properties
hold as long as the prior contains the true system with sufficient probability. In principle, the same
results apply to uncertainties obtained from frequentist methods.
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(b) Rotary pendulum simulation

Figure 2: Synthesis on GP model learned from data Sec. 4.2. Distribution over (stable) LQR costs
(top) on the true system. We plot the frequency of feasibility for each method (bottom).
All feasible problems resulted in stable controllers. We conducted 25 experiments for
each number of rollouts.

5. Conclusion

We introduce a novel probabilistic robust control method for linearized GP models that leverages
posterior distributions over model parameters. Instead of optimizing for the worst-case, we optimize
the controller for the specific distribution. Thus, we achieve significantly better performance while
still ensuring comparable robustness guarantees.

From a theoretical point of view, our method only requires a posterior distribution over potential
system parameters. Here, we obtain these by linearizing a GP, a model class with a lot of recent
attention for dynamics modeling. While this is already relevant for many applications, we want to
address more general problems, also beyond set-point control, in future work. Additional research
is required to use the framework of probabilistic controller synthesis for partial state observations,
where one would like to design an observer alongside the controller, both based on data.
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