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Abstract

Nowadays, data are ubiquitous in control design and data-driven approaches are in constant evolu-
tion. By following such trend, in this paper we propose an approach for the direct data-driven design
of switching reference governors for nonlinear plants within a brake-by-wire application. The brak-
ing system is assumed to be pre-stabilized via a simple unknown controller attaining unsatisfactory
performance in terms of output tracking and actuator effort. Hence, the reference governor is used
to improve the overall closed-loop behavior, resulting into smoother maneuvering. Preliminary re-
sults on a simulation setup show the effectiveness of the proposed strategy, thus motivating further
investigation on the topic.

Keywords: Hierarchical control, data-driven control, braking control

1. Introduction

Anti-locking brake systems (ABS) have become a standard active safety feature in modern vehicles,
see Kiencke and Nielsen (2000a), and, as a consequence, braking control is widely studied within
the control community. Approaches proposed to the tackle braking control range from heuristic
threshold-based rules (see, e.g., Wellstead and Pettit (1997)), to model-based techniques, see, e.g.,
Martinez and Canudas-de-Wit (2007); Yi et al. (2000); Drakunov et al. (1995). The latter approaches
mainly rely on a model for the wheel slip dynamics, which is strongly nonlinear and uncertain, due
to the lack of reliable information on the road-tire condition. Despite several methods have been
proposed to estimate models for the wheel slip dynamics, they usually require time consuming and
expensive road tests to be reliable, see Canudas-de-Wit et al. (2003). To cope with this limitation of
model-based strategies, in recent years, braking control techniques have been proposed that use road
tests data to directly design the controller, without first identifying a model for the plant, see, e.g.,
Radac et al. (2017); Formentin et al. (2015, 2011). The approach proposed in Radac et al. (2017)
relies on Q-learning (Watkins and Dayan (1992)), while in Formentin et al. (2015), a two-degree
of freedom architecture is exploited to cope with the system nonlinearity. Instead, in Formentin
et al. (2011), a data-driven controller learned via the Virtual Reference Feedback Tuning (VRFT)
approach Campi et al. (2002) is paired with a data-driven nonlinear compensator Fliess and Join
(2009), which, in turn, relies on a simpler ultra-local model for the braking system.

In this work, we assume that the braking system is already stabilized via a simple, yet unknown,
controller (see Savaresi and Tanelli (2010)), which is not specifically designed by accounting for
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the two operating conditions (stable and unstable) of the wheel. Since it is known that optimal
performance can be achieved at the boundaries of stability, see again Savaresi and Tanelli (2010),
we propose to directly use data collected in closed-loop to design a reference governor to improve
performance in terms of output tracking and reduce the effort required by the actuators. Differently
to data-based approach already presented in the literature to learn reference governors (see, e.g., Liu
et al. (2019); Chakrabarty et al. (2020)), in this work we present a fully offfine technique to design
a switching reference governor, that allows us to explicitly account for the two possible operating
conditions of the braking system. Specifically, we rely on the approximation power of piecewise
affine maps Breiman (1993), thus designing a Piecewise Linear (PWL) reference governor from data
given some desired closed-loop performance, that, in turn, is dictated by a user-defined reference
model as in Campi et al. (2002); Formentin et al. (2019, 2016). Thanks to this design choice,
we propose an optimization-based approach inspired by the main idea employed for direct control
design in Breschi and Formentin (2020). The advantage of this approach relies upon the possibility
of retrieving both the local governors and the logic dictating switches from one mode to the other
directly from data, thus requiring little to no knowledge on the inner loop.

The paper is structured as follows. The problem is formally stated in Section 2. The proposed
data-driven approach for the direct design of switching reference governors is presented in Section 3,
while Section 4 reports some simulation results showing the potential of the proposed strategy. The
paper is ended by some concluding remarks.

2. Problem setting

Consider the longitudinal wheel slip control problem during longitudinal braking in a road vehicle.
As done in Savaresi and Tanelli (2010), we assume the wheels of the vehicle to be decoupled and
the longitudinal speed of the vehicle to be practically constant as compared to the slip dynamics.
Under these assumptions, a braking system G can be modeled as follows:

A+ 1) = FA®), n(A(®)), u(t)) e))

where f : [0,1] x R? — [0, 1] is an unknown nonlinear function of the longitudinal slip of the wheel
A(t) € [0,1], the longitudinal friction coefficient ;1 (A(t)) € R, and the braking torque u(t) € R
[Nm]. As shown in Burckhardt (1993); Kiencke and Nielsen (2000b), the friction coefficient non-
linearly depends on A, typically as shown in Figure 1. Moreover, for constant braking torques, the
system exhibits at most two equilibria, one before and one after the peak of the friction coefficient
() of Figure 1. Such equilibria establish two different operating regions, with the system being
either locally asymptotically stable (before the peak) or unstable (after the peak).

Assume that the system is stabilized by an available low-performing (possibly unknown) con-
troller C, so that we can safely carry out closed-loop experiments with tracking reference p(t) €
[0, 1] and collect data in both its operating conditions.

Let the measured slip be corrupted by an additive zero-mean white noise v(k), i.e.,

y(t) = At) +v(t). (2)

The purpose of this work is to use the available data Dy ={p(t),y(t)}._; to design a data-driven
reference governor R that boosts the performance of the braking system up to a target closed-loop
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Figure 1: Longitudinal friction coefficient i as function of the longitudinal slip A. The blue part of
the curve corresponds to an asymptotically stable linearized dynamics of (1), whereas the
red part denotes the values of A corresponding to an unstable linearized behaviour.

behavior, by differently addressing the two illustrated operating conditions. In particular, the desired

closed-loop behavior is here dictated by a user-defined Linear Time Invariant (LTT) reference model:

. wM(t—i-l) :AM$M(t)+BMT(t), (3)
Ydes(t) = Crrznr (t) + Dar(t),

where 7(t) € [0, 1] is the slip set-point and yg.s() is the corresponding output we aim at attaining
in closed-loop. We stress that the reference model in (3) is chosen before the design of the reference
governor R and, thus, it is known throughout the leaning phase.

Thus, our final braking control scheme has the hierarchical structure in Figure 2, with the data-
driven reference governor R imposing the reference to the unknown inner-loop.

r(t) 5 p(t) o : u(t) p y(t)

Figure 2: Hierarchical architecture of the considered control scheme.

3. Data-driven design of switching reference governors

Given the different linearized dynamics of the system (1) in the two operating conditions, according
to the scheme in Figure 2 we design a fixed-order switching reference governor described by the
following input-output model:

A(Oy1), @)p(t) = B(Oyp), @) (r(t) — y(t)), (4a)
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Figure 3: Data-driven method for reference governor design. The block in gray denotes the un-
known inner feedback loop, including the plant G and the (possibly unknown) controller

C.

with A(O4(), q) and B(O), q) being the following polynomials in the shift operator q':

Ng ng+np+1
A(@s(t)a Q) =1+ Z gf(t)q_la s(t) q Z QS(t) _j
i=1 J=nge+1

whose orders n,, np € N are fixed by the designer a-priori. The switching signal s(t) € {1,2,..., K}
dictates which of the K € N modes is active at time ¢, with K being an additional design parameter
also fixed beforehand. Let x () € X C R"x be a collection of the past inputs and outputs:

X(0)=[p(t=1) -+ plt—na) ylt—=1) - ylt—m)]".

In this work, the switching signal s(t) is determined by a polyhedral partition { X} }}_; of the space
X CR™, ie., X := {xs.t. Hix < Fr}, k=1,..., K, and, thus, it is defined as:

s(t)=k <= x(t)e Xk, k=1,...,K. (4b)

We remark that priors on the number of possible operating conditions of G (like in the braking
applications, where a qualitative description of the dynamics suggests K = 2) are likely to improve
the overall performance. Nonetheless, cross-validation can be used to infer the order and the number
of modes of the reference governor, whenever no priors on the inner loop are available.

The direct design of a fixed-order reference governor R, like the one in (4a), thus involves: ()
learning the parameters O =[67 - Gﬁﬁnbﬂ | of each local governor (see (4a)), k = 1,..., K, and
(41) finding a polyhedral partition { X} }X | driving the switching dynamics, according to (4b).

Since the desired behavior is specified using a reference closed-loop model (3), according to
the matching scheme shown in Figure 3 we want to minimize the mismatch (¢) between the actual
closed-loop behavior and the desired one, namely:

e(t) = y(t) — M(g)r(t), (5)

L. ¢'u(t) = u(t + i) foralli € Z
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where M (q) is a shorthand for the transformation expressed by M. Accordingly, we formulate the
reference governor design problem as:

T
min Z e%(t)

edOn Xl =1
s.it. A(Og), @)p(t) = B(Og), q)e(t),
s(t)=k <= x(t)e Xy, ke{l,...,K},

(6)

where the constraints originate from the structure of the controller in (4) and they must hold for
allt € {1,...,T}, with e(t) = r(t) — y(t) being the tracking error: Despite the problem in (6)
explicitly depends on the available data, the reference 7(t) has to be fixed beforehand to solve it,
which might result into a less general governor. Inspired by Campi et al. (2002), to overcome this
problem we introduce the virtual reference

F(t) =M~ (q)(y(t) — (1)), )

where M ~1(q) is the inverse of M (q), that, in turn, depends on the unknown mismatch error £(t).
The reader is referred to Breschi and Formentin (2020) for further details on the computation of the
inverse map M ~!(q).
Let é(t) = 7(t) — y(t) be the fictitious tracking error. The minimization problem in (6) thus
can be recast as .
. 2
min e=(t)
67{@’€7X’€}11€<:1 ;
s.it. A(Og1), 9)p(t) = B(Og1y, q)é(t),
s(t) =k <= x(t)e Xx, ke{l,...,K},
Problem (8) only depends on the available data {p(t),y(t)} € Dr and on the user-defined

reference model. However, due to the features of the fictitious reference in (7), the constraint on the
controller dynamics makes the problem non-convex. Indeed, it holds that:

®)

B(O41), 9)é(t) = B(Oy), Q)M (q)y(t) — B(Oyy, )M ' (q)e(t), )

and, thus, the controller dynamics features a biconvex term. As explained in detail in Breschi and
Formentin (2020), problem (8) can be convexified by introducing the residual

eu(Os(t): t) =B(Oy1), ¢ )M (@)e(t)=B(O5y. ) M (q)y(t) —A(O5ry, Q)p(t),  (10)

witht = 1,..., T, which can be minimized instead of {s(t)}L_;.
This yields a slightly different optimization problem, which still leads to the optimal solution
achieving M (if this is possible):

T K
min Zai(es(t),t) +5ZH9kH§
k=1

5u7{®k7Xk}£-<:1 t=1

st.s(t) =k <= x(t) e X, ke{l,...,K},

an
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Algorithm 1: Reference governor design
Input: Dataset Dr; initial sequence SY; 3, Bp > 0.

1. fort=1,...do
1.1. {01} | argmingg yx JIV{ 0K |, S

1.2 {wk,’yk}k_1<—argmm{wkvk}kK:IJg({wk,’yk}szl,Siil)
1.3. Si—argming J1 ({01, 8) + Jo({wi, v HE |, S)

2. until a (customizable) stopping criterion is satisfied.

Output: Local controller parameters {©% }X | ; PWA separator {w}, v} HE .

where Tikhonov regularization is used to better condition the problem, with 5 > 0 being a parameter
to be selected by the user.

The optimization problem in (11) is still constrained to the switching dynamics of the system,
that, in turn, depends on a polyhedral partition of space X'. To remove this constraint, in this work we
search for a Piecewise Affine (PWA) separator of such a space, that naturally enforces a polyhedral
partition on X. Specifically, we look for a function ¢ : X — R, defined as

¢(x) = max ¢dr(x), (12)

k=1,.. K

where ¢, = wx — vk, for k = 1,..., K, and the parameters w, € R™ and 7, € R have to be
estimated from data. Accordingly, each polyhedron X; C X can be defined as

Xp={X €X' (W)X~ > (wj)'x =75, Vi€{l,..., K}, j#k},
fork =1,..., K. Thus, we cast our data-driven reference governor problem as

min J1({0r}E L, 8) + Jo({wr, m L, S), (13a)

{@k,wkﬁk}f:l,ems

where S = {s(t)}_, is the sequence of active local governors. Based on (11), the first term in the

cost is
T

J{O 11, 8) =) en(O4), +ﬁZ 1©13, (13b)

t=1

while, by incorporating the convex loss function introduced in Breschi et al. (2016), J2 ({wg, v }_;, S)

is given by
T K 2 K
wj — Wy
>3 |(wer-nfz 20 en) | 43 o
t=1 j=1 Vi s +1l2 k=1
J#s(t)

Note that a regularization term is introduced in (13c) to make the problem strictly convex, with
Bp > 0 being an additional tuning parameter.
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Description Values
g | Gravitational acceleration | 9.81 m/s?
m | Quarter-car mass 225 Kg
r | Wheel radius 30 cm
J | Wheel Inertia 1 Nm?
v | Longitudinal speed 50 m/s
F, | Vertical force 2207.3 N

Table 1: Table of model parameters

By looking at the problem in (13), it can be seen that the cost is separable with respect to the
parameters {@k}szl and the ones of the PWA separator, once § is fixed. Based on this intuition,
the design problem (13) is solved in an alternating fashion as summarized in Algorithm 1. Starting
from an (eventually random) initial guess on the mode sequence S, the approach consists of three
main steps. Step 1.1 involves the design of the local governors. This is carried out by exploiting an
instrumental variable scheme (see Soderstrom and Stoica (2002); Gilson and Van den Hof (2005)
for more details), so as to cope with the non-white nature of the residual €, in (10). To this end, the
loss in (13b) is slightly modified as

T

PEIGENCRER)

t=1

2 K
HY{er}i,,S) = +AD 11013, (14)
k=1

2

where z(t) is the instrument chosen by the user so as to be uncorrelated with the noise v(t) acting
on the measurements (see (2)). Step 1.2 can be efficiently handled by exploiting the Newton-like
approach proposed in Breschi et al. (2016). Finally, step 1.3 involves the solution of an unsupervised
clustering problem that can be tackled via dynamic programming tools, see Bertsekas (1999). These
three steps are iterated until a user-defined stopping condition is met. We refer the reader to Breschi
and Formentin (2020) for a more detailed description of the optimization approach underlying the
above switching system design procedure.

4. The braking control case study

Let the data generating system (1) be described by the continuous-time single corner model:

2
At) = —% <1 ﬂj@ - Z) F.p(A(1)) + %u(t), (15)
where v [m/s] is the constant longitudinal speed, m [kg] is the quarter car mass, » [m] and J
[Nm?] are the wheel radius and moment of inertia, respectively. F), [N] is the vertical force acting
on the tire-road contact point. The values of variables in (15) are summarized in Table 1. We
further impose the control variable u(t) to saturate if either the minimum or the maximum allowed
braking torque are reached, which are respectively equal to u = 0 [Nm] of & = 2000 [Nm]. The
nonlinear relationship between between longitudinal friction coefficient ; and slip A is described
by the Burckhardt model (see Burckhardt (1993), Kiencke and Nielsen (2000b)), which has the
following empirical expression:

pA ) = i (1 —€2) + Aag, (16)
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Road Condition | o a9 Qasg
Asphalt dry 1.28 | 23.99 | 0.52

Table 2: Parameters of the Burckhardt model (16).
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(a) Attained vs desired closed-loop behavior. (b) Reference governor switching sequence.

Figure 4: Closed-loop performance: attained vs desired behavior for a piecewise constant reference.

where « is a constant parameter characterizing the road conditions. The values of the coefficients
in « are defined in Table 2, and they correspond to dry asphalt conditions. This results in the same
behavior depicted in Figure 1. We remark that neither the model describing the system dynamics
in (15) nor the relationship between the friction coefficient y and the slip A in (16) are used when
learning the reference governor.

The system in (15) is stabilized by the proportional integral derivative (PID) controller sug-
gested in Savaresi and Tanelli (2010), namely

1 2
(1 +55)

T

s (1 + ms)
This controller allows us to collect data and it represents the inner controller C in Figure 2, with its
features assumed to be unknown when the reference governor is designed. The resulting closed loop
system is fed by a piecewise constant slip set-point p(¢). Data are measured with a sampling time of
Ts = 0.01 s, for a total of 100 s. Thus, the available dataset Dy ={p(t), y(t)}1_, is constituted by
T = 10000 samples. The output measurements are corrupted by a zero-mean additive white noise

v(t) with Gaussian distribution and standard deviation o = 0.015, yielding a Signal-to-Noise Ratio
(SNR)

C(s) = 12000 (17)

T 2
Aot
SNR = 10log (Ztﬂ“) ~ 31.8 dB. (18)

23:1 v(t)?
The designed reference governor is
RO): p(t) = p(t — 1) + 0 De(t) + 05De(t — 1), (192)

so that it embeds an integral action to guarantee that constant references are tracked. The order of
the reference governor in (19) has been chosen via cross-validation. The number of possible modes
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Figure 5: Closed-loop tracking performance: standalone PID vs nested scheme (PID plus switching
reference governor).
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Figure 6: Braking torque (noiseless setting): standalone PID vs nested scheme (PID plus switching
reference governor).

of the controller is set to ' = 2, according to the number of actual operating conditions of the
braking wheel system. We remark that this is the only prior on the system exploited in the design of
R. We impose the switching logic to be driven by vectors x(t) of the form

/
x(t) = [p(t =1) y(t) y(t-1)]. (19b)
The reference model M is the first order discrete time model:
t+1)=0.96 t t
ear(t+1) = 0.962(t) + (1) 0)
Ydes(t) = 0.04zps(t),

which has a cutoff frequency of 0.8 Hz, allowing us to remove the undesired effects of the two
resonance peaks at 5 Hz and 12 Hz, and contemporarily obtain a satisfactory behavior in either the
stable and unstable region.

Algorithm 1 is executed for 20 randomly initialized switching sequences, for a maximum of
tmaz = 100 iterations for each initial condition. The controller is validated applying a piecewise
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constant set-point that explores both the stable and the unstable region over a horizon of 50 seconds.
All the experiments are conducted within a noisy setting, with a noise equivalent to that of the
training phase. The results displayed in Figure 4(a) show that the overall closed loop system is
capable to properly track the reference, with the desired closed-loop behavior matched for both
the stable and unstable mode. The occasional slowdown of the response reflects switches of the
reference governor, that appropriately changes mode in correspondence of shifts between the stable
and unstable region of the braking system. Nonetheless, the closed-loop system is able to recover
the desired behavior reasonably fast.

We then compare the results obtained with the inner PID controller alone with the performance
of the full nested strategy. The attained closed-loop slips are reported in Figure 5, which clearly
shows that the data-driven reference governor improves the performance of the system. Indeed,
it removes the undesired oscillatory behavior and overshoots characterizing the response obtained
with the standalone PID (see Figure 5). At the same time, undesired saturations that may have a
bad impact on the actuators are reduced, with a resulting smoother control action. Indeed, with the
PID controller only, the input saturates 8% of the times (namely, 405 input samples out of 5000 are
saturated). This percentage drops to 4% when the reference governor is used, i.e., 226 out of 5000
samples are saturated. Although most saturations are due to the effect of noise, there are exceptions
linked to the additional control effort required by the standalone PID controller. This can be seen
by looking at Figure 6, where we report the braking torques needed to follow the same piecewise
constant reference of Figure 5 within a noiseless setting. It is clear that the use of the standalone
PID implies additional control efforts for the closed-loop system to adapt to shifts in the operating
region of the braking system due to changes of the set-point.

5. Conclusions

In this work, we propose a data-driven design procedure for switching reference governors that can
be used to improve the closed-loop performance of an a-priori stabilized brake-by-wire system. By
specifying the desired closed-loop behavior via a reference model, it is shown that the proposed
approach allows us to track the desired closed-loop behavior and to decrease the overall control
effort, while exploiting the full operational range of the actuators.

Future works will be devoted to assess the proposed approach within a more realistic experi-
mental setup and to perform a sensitivity analysis with respect to the involved design parameters.
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