
Proceedings of Machine Learning Research vol 144:1–12, 2021 3rd Annual Conference on Learning for Dynamics and Control

Automating Discovery of Physics-Informed Neural State Space Models
via Learning and Evolution

Elliott Skomski ELLIOTT.SKOMSKI@PNNL.GOV

Ján Drgoňa JAN.DRGONA@PNNL.GOV

Aaron Tuor AARON.TUOR@PNNL.GOV

Pacific Northwest National Laboratory
Richland, WA, USA

Editors: A. Jadbabaie, J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J. Tomlin, M. N. Zeilinger

Abstract
Recent works exploring deep learning application to dynamical systems modeling have demon-

strated that embedding physical priors into neural networks can yield more effective, physically-
realistic, and data-efficient models. However, in the absence of complete prior knowledge of a
dynamical system’s physical characteristics, determining the optimal structure and optimization
strategy for these models can be difficult. In this work, we explore methods for discovering neural
state space dynamics models for system identification. Starting with a design space of block-oriented
state space models and structured linear maps with strong physical priors, we encode these com-
ponents into a model genome alongside network structure, penalty constraints, and optimization
hyperparameters. Demonstrating the overall utility of the design space, we employ an asynchronous
genetic search algorithm that alternates between model selection and optimization and obtains accu-
rate physically consistent models of three physical systems: an aerodynamics body, a continuous
stirred tank reactor, and a two tank interacting system.
Keywords: Neuroevolution, neural networks, system identification, genetic algorithms

1. Introduction

Recent work has shown that given an appropriate design space, Neural Architecture Search (NAS)
(Elsken et al., 2019) using evolutionary algorithms—so-called Neuroevolution (Floreano et al.,
2008)—can discover models that meet or exceed the performance of expert-designed networks for
complex computer vision (Liang et al., 2018; Real et al., 2019), natural language processing (So
et al., 2019), and continuous control tasks (Gaier and Ha, 2019). In this work we bring together
neural architecture search and works viewing neural networks from a dynamical systems perspective.
We present a new NAS design space for the discovery of accurate control-oriented systems models
from a host of physics-driven neural network components.

Several recent design spaces for NAS have composed generic neural network functional compo-
nents while preserving inductive priors from successful state-of-the-art computer vision or natural
language processing neural network architectures (Liu et al., 2020). On the other hand, as it applies
to dynamical system identification, NAS with neuroevolutionary methods have typically used lower
level components such as neurons and basic function compositions applied in black-box systems
modeling without the benefit of physics-modeling based priors embedded in the design space (Al-

© 2021 E. Skomski, J. Drgoňa & A. Tuor.

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Mahasneh et al., 2017; Subudhi and Jena, 2011a,b; Yang et al., 2017; Ferariu and Burlacu, 2011;
Ayala et al., 2020; Hatanaka et al., 2006; Yang et al., 2017; Gaier and Ha, 2019). Yet outside NAS re-
search, advantageous inductive priors for dynamics modeling have recently been proposed by several
key contributions which view recurrent and residual networks through the lens of traditional dynam-
ical systems modeling. Prominent examples are guarantees on stability by constraining the deep
network’s linear maps using orthogonal (Mhammedi et al., 2017; Jia et al., 2019; Wang et al., 2020),
spectral (Zhang et al., 2018), symplectic (Haber and Ruthotto, 2017), anti-symmetric (Chang et al.,
2019), stochastic (Tuor et al., 2020), or Schur Decomposition (Kerg et al., 2019) parametrizations.

Our current work integrates these two orthogonal yet complementary lines of research—neural
architecture search and dynamics-inspired neural network components—to expedite the discovery
of effective dynamical systems models. We present a neural block dynamics design space that
encompasses an extensive range of time-invariant, block-oriented state space models. These models
are built from a library of neural components using structured linear maps to imbue models with
strong priors for physical modeling, encouraging stability and data efficiency. In addition to structural
hyperparameters, coefficients for multi-objective loss terms penalizing constraints violations, block
interactions, trajectory smoothing, and prediction error are also included in the search space. We
evaluate our design space with two search algorithms: Random Search (RS), and an Asynchronous
Genetic Algorithm (AGA). RS has no evolutionary effects, whereas AGA is designed to maximize
interaction between learning and evolution, discovering performant models in a directed and expe-
ditious manner. We conduct system identification experiments for both search methods on three
non-autonomous systems representing a range of dynamic behavior and achieve highly accurate
models with physically consistent open-loop response for each.

2. Methods

Our objective in this work is to develop a neural network design space for system identification and
dynamics modeling that is general enough to model a large extent of known systems and leverages
inductive priors specific to dynamical systems modeling. This design space is intended to serve as
both a substrate for expert-built neural dynamics models and as a basis for neural architecture search
to discover architectures best suited for specific systems. To this end, we introduce a family of neural
state space models built from components consisting of linear map parametrizations, activation
functions, and neural network block components.

2.1. Structured Linear Maps

In addition to unstructured linear maps, our design space includes three structured linear map
parametrizations which can introduce strong inductive biases and provide guarantees suitable for
a large extent of known systems models. For sparsity-inducing priors, we employ a Lasso variant
implemented with gradient descent as described in Bottou (2010). We include another matrix
parametrization, Soft SVD, which enforces singular value constraints on linear maps. This is
accomplished by parametrizing the matrix as a product M = UΣV, initializing U and V as random
orthogonal matrices, and introducing a regularization term to enforce orthogonality as parameters are
updated. Bounds λmin and λmax are placed on the nonzero elements of the diagonal matrix Σ where:

Σ = diag(λmax − (λmax − λmin) · σ(p)) (1)

2

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

with p a randomly initialized vector and σ the elementwise logistic sigmoid. The final structured
parametrization in the design space is the Perron-Frobenius (PF) map proposed by Tuor et al. (2020),
which bounds the dominant eigenvalue of the matrix to guarantee stability of the learned system and
global dynamic properties such as dissipation.

2.2. Activation Functions

The design space contains a library of two non-parametric and two parametric activation functions:
Rectified Linear Units (ReLU), a common activation which clamps negative values to zero (Nair
and Hinton, 2010); Gaussian Error Linear Units (GELU), which approximates the expected value of
stochastic regularization (Hendrycks and Gimpel, 2016); Bendable Linear Units (BLU), which learns
a continuous approximation of two piecewise linear functions (Godfrey, 2019); and Soft Exponential
(SoftExp), which learns a function that interpolates between exponential and logarithmic functions
(Godfrey and Gashler, 2015). For parametric activation functions, we use independent activations at
each layer to allow models to learn activations for each phase of computation.

2.3. Neural Time-Invariant Block Dynamics Models

The general form of state space model we consider is composed of a state estimator fo, state transition
dynamics f , and observation dynamics fy with learnable parameters θ. With uk as control input at
time k, and yk−Np , ...,yk−1,yk a sequence of initial observed variables of the system the model is
of the form:

x̂e
k = fo(ŷk−Np , ..., ŷk; θo) (2a)

x̂k+1 = f(x̂e
k,uk; θxu) (2b)

ŷk+1 = fy(x̂k+1; θy) (2c)

It is common for the state dimension of the main transition dynamics to be unknown. From the
deep learning perspective we can view x̂ as the hidden state of an RNN with cell function f , input
u, and output ŷ. From a dynamics modeling perspective, when f is linear, fo plays the role of
a finite approximate lifting function from Koopman operator theory as suggested by Yeung et al.
(2019). The library of block components for f , fo, and fy consists of linear maps (LMs), multi-
layer perceptrons (MLPs), residual networks (rMLPs), and recurrent neural networks (RNNs) built
from the parametrized linear maps and activation functions discussed in the previous sections. An
additional factor of variation is introduced in fo to account for time lag using a window of Np past
observations.

Within the general class of models, f may be a single neural network which takes as input the
concatenated u and x̂ vectors. Or alternatively, lending more structure to the problem, interactions
between the the control inputs, and principal state transition dynamics are modeled as a composition
component blocks so that Equation 2b becomes:

x̂k+1 = fx(x̂
e
k; θx) ◦ fu(uk; θu) (3)

where fx and fu are drawn from the library of block components and ◦ is an elementwise operator
modeling the influence of exogenous inputs upon the estimated system state. Three operators

3

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

are considered: addition (+), multiplication (×), and a learnable interpolation of addition and
multiplication (+/×) as given in Equation 5 of Godfrey and Gashler (2015).

The unstructured and structured model classes, which are high-level options in the design
space, are denoted black-box and block respectively. The block-oriented formulation allows the
representation of several classes of models commonly used in system identification. Choosing the
addition operator, when both are fx and fu are linear, we have a basic linear time-invariant model.
When only fu is nonlinear, we have a Hammerstein model with neural network nonlinearity. When
both fu and fy are nonlinear but not fx, we have a Hammerstein-Weiner model. Making all blocks
nonlinear provides a general neural block nonlinear model with nonlinear state transition dynamics.

2.4. Multi-Objective Loss

The state space models are trained with multi-objective loss functions informed by best practices in
control-oriented data-driven system identification. Expressions for constituent objective terms are
found in Equation 4. The principal loss function is mean squared error between predicted trajectory
and ground-truth measurements over an N -step time horizon, Ly (Equation 4a). The model is given
a sequence of Np initial previous ground-truth measurements and future sequence of control inputs
U, then generates a series of predictions ŷ1, ..., ŷN . Although not necessary, for simplicity we
align the Np past measurements given to the state estimator, and the N -step prediction horizon
so that Np = N . To promote alignment between the state estimator, fo, and dynamics, f , we
incorporate an additional arrival cost penalty, Le (Equation 4b). We include an additional term,
Ldx, to ensure smooth state transitions regularizing the distance between successive states (Equation
4c). We employ the penalty method such that predictions remain within realistic bounds, enforcing
this property by defining lower and upper bounds y and y, then apply inequality constraints via a
loss term Lcon

y (Equation 4d). We can further constrain the influence of input map fu on predicted
states for block-structured models, defining lower and upper bounds fu and fu and using the same
inequality constraint formulation as in Lcon

y to create another loss term, Lcon
fu

. In this work, we set
y = −0.2, y = 1.2, fu = −0.02, and fu = 0.02. Finally, the term Lreg is included for structured
linear maps which include constraints that must be enforced via optimization—in this case, the Soft
SVD parametrization.

Ly =
1

N

N∑
k=1

||ŷk − yk||22 (4a)

Le = ||x̂e − x̂||22 (4b)

Ldx =
1

N − 1

N−1∑
k=1

||x̂k − x̂k+1||22 (4c)

Lcon
fu =

1

N

N∑
k=1

(
max(0, −fu(uk) + fu) + max(0, fu(uk)− fu)

)
(4d)

Lcon
y =

1

N

N∑
k=1

(
max(0, −ŷk + y) + max(0, ŷk − y)

)
(4e)

L = QyLy +QeLe +QdxLdx +Qcon
y Lcon

y +Qcon
fu L

con
fu +QregLreg (4f)

4

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

SSM Type f * f * Map f * Act. f * Layers f * Nodes f * min f * max fx fu N Qcon
fu Qcon

y Qreg Qdx Qe

1 Block Linear Linear ReLU 1 4 0.0 0.5 + 4 0.0 0.0 0.1 0.0 0.0
2 Black-box MLP Soft SVD GELU 2 8 0.1 0.6 × 8 0.1 0.1 1.0 0.1 0.1
3 Res. MLP PF BLU 3 16 0.2 0.7 + / × 16 1.0 1.0 10.0 1.0 1.0
4 RNN Lasso SoftExp 4 32 0.3 0.8 32 10.0 10.0 10.0 10.0
5 5 0.4 0.9 64
6 0.5 1.0
7 1.1
8 1.2

Figure 1: The SSM genome.

As shown in Equation 4f, the combined multi-objective loss L contains the terms from above
weighted by factors Q—these loss terms may be optimally weighted with varying importance for
particular systems and architectures.

2.5. State Space Model Genome

Figure 1 illustrates the complete space of model configurations possible in our proposed neural
dynamics design space. Columns indicate the attributes (genes) of constituent components while
rows indicate the possible values each attribute can take. Columns with f∗ represent attributes that
model components fx, fu, fy, and fo share but whose values may vary across components. For the
purposes of our experiments, we represent models sampled from the search space as a vector of traits,
each with a discrete set of possible values. These sets are represented as ordered ring buffers which
allows wrapping of position-wise mutations selecting the nearest higher or lower value for attributes
with a natural ordering.

In addition to the full granularity of the design space with all potential combinations of attribute
values available (dubbed XL), we introduce a restricted design space (dubbed standard) that captures
typical heuristics commonly found in expert designed models. The standard design space couples
the linear parametrizations and activation functions of all block components f∗ in the SSM. It further
imposes some additional hierarchy on the design of discovered architectures through the addition of
SSM types Hammerstein, Hammerstein-Weiner, Linear, and Block Nonlinear. With these additional
values the attribute SSM Type completely determines which block components are linear (see Table
1) for the standard design space. The standard genome additionally omits fx ◦ fu from the search,
using addition to model state and input component interactions by default. Following a common
pattern in neural network architecture design practice, values for number of layers, number of nodes,
activation function, and linear map parametrization are the same across block components in the
standard design space. While still a vast search space, these restrictions reduce the total number
of possible architectures by orders of magnitude from ∼3 trillion for the XL design space to ∼3.5
billion for the standard design space.

2.6. Asynchronous Genetic Search

We introduce an asynchronous genetic algorithm designed to maximize utilization of a fixed com-
putation budget while searching the design space in a directed manner. This is accomplished by

5

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Model class
Block Block Nonlinear Hammerstein-Wiener Hammerstein Linear

fx N Y Y Y
fu N N N Y
fy Y N Y Y

Table 1: Linear components for standard design space block-oriented model classes.

maintaining a fixed number of actively training individuals—initially generated at random—and at
fixed-duration intervals (5 minutes for our experiments) spawning new individuals as models finish
training. Models are ranked and selected according to best-observed n-step prediction mean squared
error Ly (Equation 4a) on the validation set.

The algorithm is initialized with a random population of state space models from the design
space. The number of new state space models dispatched during the periodic spawning phases equals
the number of models which have terminated training since the last spawning, thereby effectively
leveraging but not exceeding a fixed computational budget.

New population members are generated via one of three operators: random, mutation, or
crossover. The random operator selects all traits at random. The mutation operator randomly selects
a trait and randomly steps to the next higher or lower value according to the trait’s prescribed
or natural ordering. The crossover operator implements crossover weighted by fitness, taking
two individuals A and B and for each trait randomly selecting to use A’s trait with probability
fitness(A)/(fitness(A) + fitness(B)).

The proportion of each generation’s new births via mutation versus crossover is a hyperparameter:
mutation probability pmut is given, and crossover probability pcross is derived simply as 1 − pmut.
Further, in order to promote more exploration at the beginning of search, each new generation may
spawn a randomly-selected model with probability pbirth

i , which is annealed by a constant factor
0 < k < 1 prior to each iteration, i, so that pbirth

i+1 = kpbirth
i .

We use random search as an alternative method for exploring the design space. Random search
selects options for each position in the model vector representation at random without the fitness-
based guidance of genetic operators.

3. Experiments

To measure the efficacy of our dynamics model design space, we perform model search using the
two search algorithms and three datasets.

3.1. Model Training

Models are trained via full-batch gradient descent with the AdamW optimizer (Loshchilov and
Hutter, 2019) for a fixed number of epochs and a learning rate of 2× 10−3. Early stopping is used
to terminate training when a model has not improved on its best validation set performance for a
set number of epochs. We train models for 1,000 epochs at most, and allow models 100 epochs of
training without improvement before termination.

We initialize each search algorithm with 50 individuals, maintain a fixed-size pool of 50 active
individuals, and check the active population and spawn any new individuals every 5 minutes. For

6

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Dataset AGA Random AGA XL Random XL

Aero Val. 3.16× 10−3 4.18× 10−3 1.89 × 10−3 1.35× 10−2

Test 1.23× 10−2 1.04× 10−2 6.87 × 10−4 1.44× 10−2

CSTR Val. 7.00× 10−3 6.76 × 10−3 8.30× 10−3 7.66× 10−3

Test 8.32× 10−3 8.00 × 10−3 9.14× 10−3 1.12× 10−2

Two Tank Val. 3.37 × 10−4 5.45× 10−4 4.01× 10−4 3.29× 10−3

Test 1.00 × 10−3 2.21× 10−3 2.56× 10−3 1.11× 10−2

Table 2: Validation and test set open-loop MSE for each dataset and algorithm’s best model.

0 200 400 600 800 1000
Individual

10
2

10
1

Experiment
Random
Random XL
AGA
AGA XL

(a) Aerodynamics

0 200 400 600 800 1000
Individual

10
2

2 × 10
2

3 × 10
2

4 × 10
2

Experiment
Random
Random XL
AGA
AGA XL

(b) CSTR

0 200 400 600 800 1000
Individual

10
3

10
2

10
1

Experiment
Random
Random XL
AGA
AGA XL

(c) Two Tank

Figure 2: Best open-loop validation set MSE as optimization progresses for each search algorithm,
model genome, and dataset.

the AGA, we let initial random birth probability pbirth
0 = 1 with annealing rate k = 0.5, and we let

pmut = 0.2 and pcross = 0.8.

3.2. Datasets

We evaluate our design spaces using three non-autonomous systems with different properties (ob-
served variables yk and control inputs uk dimensionality given in parentheses):

• Aerodynamics (MathWorks, a): models y and z acceleration and angular velocity in all
dimensions of an aerodynamic body using ten control inputs (yk ∈ R5, uk ∈ R10).

• CSTR (Hedengren, a; MathWorks, b): models temperature and chemical concentration of a
non-adiabatic continuous stirred tank reactor using a single control input (yk ∈ R2, uk ∈ R).

• Two Tank (Hedengren, b): models water levels in two tanks governed by inputs for pump
speed and valve opening (yk ∈ R2, uk ∈ R2).

4. Results and Analysis

Table 2 lists open-loop validation and test set MSE for models obtained by each search algorithm,
and Table 3 gives the attribute values for each of these models. For the Aerodynamics and Two Tank
datasets, AGA discovered models from the XL genome that outpaced those found by RS from the
same genome, with a considerable performance gap emerging as optimization progressed. These
results underscore the AGA’s robustness with high-dimensional search spaces. A similar result can
be seen for the Two Tank datasets with the standard model genome, though the performance gap
between AGA and RS isn’t as pronounced. Although the Aerodynamics model obtained from the

7

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Dataset Algorithm SSM Type State Est. Linear Map Nonlin. Map Activation Layers Nodes λmin λmax N Qcon
fu Qcon

y Qreg Qdx Qe

Aero AGA Blk. Nonlin. Res. MLP Soft SVD RNN BLU 2 32 0.0 1.2 64 0.0 0.1 0.1 0.0 1.0
CSTR RS HW RNN Linear RNN GELU 3 32 — — 64 10.0 0.0 1.0 10.0 0.0
Two Tank AGA Hammerstein Linear Linear RNN GELU 2 32 — — 8 1.0 0.0 0.1 1.0 10.0

Dataset Algorithm Model f∗ Nonlin. Map Linear Map Activation Layers Nodes λmin λmax fx ◦ fu N Qcon
fu Qcon

y Qreg Qdx Qe

Aero AGA Block

fx rMLP Lasso ReLU 1 32 — —

+/× 4 0.0 0.0 10.0 1.0 0.1
fu Linear Soft SVD SoftExp 4 4 0.0 0.8
fy rMLP Lasso ReLU 1 32 — —
fo RNN Lasso BLU 2 8 — —

CSTR RS Black-box
f rMLP Soft SVD ReLU 5 32 0.5 0.9

N/A 16 — 0.1 10.0 10.0 0.1fy MLP Soft SVD BLU 2 4 0.3 1.2
fo Linear PF GELU 5 4 0.0 1.2

Two Tank AGA Black-box
f rMLP Linear GELU 1 16 — —

N/A 8 — 10.0 — 0.1 0.1fy MLP Linear BLU 1 16 — —
fo Linear Linear BLU 5 32 — —

Table 3: Attributes of best-observed models according to validation set MSE, obtained from standard
(top) and XL (bottom) SSM genomes.

standard genome outperformed the model obtained by RS, it didn’t quite generalize to the test set
as effectively as the latter, a possible indication of the AGA’s potential to overfit the validation set.
For CSTR, RS prevailed over AGA for the standard genome in both validation and test set MSE;
however, AGA search over the XL genome obtained a model with better generalization to the test set
than the model found via RS despite lower validation set performance. By all accounts, AGA search
was able to find models that yielded performance competitive or superior to those found by RS.

The XL genome results noticeably demonstrate the efficacy of our AGA implementation when
performing directed searches in high-dimensional optimization landscapes. For the Aerodynamics
and Two Tank datasets, AGA is able to pull ahead of RS and converge to more performant models.
These results further suggest that decoupling the structure of model components in neural SSMs can
improve performance on certain systems—the Aerodynamics model in particular benefits from this
decoupling, though other systems seem to perform well without this decoupling.

To assess the effectiveness of structured architectures and linear maps for neural SSMs, Figure 3
shows the distribution of deviation from the average log-scaled test set loss for models obtained by
RS over the standard model genome, grouped by SSM type and linear map choices. For brevity, we
focus our analysis on these attributes and their behavior in the standard genome.

One might expect that each system would converge toward a structure that lends itself to the
true physical properties of the system; however, we find that a broad set of structural configurations
can produce good models overall. Looking at SSM types, it appears that block-structured SSMs
generally perform better than linear or black-box SSMs for all systems, though linear and black-box
can be competitive at their best. Models with purely linear components can perform well, but exhibit
high variance in performance—a reasonable result since the systems being modeled are nonlinear.
As for linear maps, adding structure can be effective toward producing consistent models with lower
variance in performance. However, this structure is not always effective for all systems—often linear
maps without structural priors yield models that perform well. For certain systems, however, models
with structured maps on average perform better than the average over all linear maps and may exceed
the performance of unstructured maps with further tuning. It remains to be seen whether more careful
tuning of constraints and loss coefficients will give better performance to the structured maps that
rely on these attributes.

8

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Black-box

Blk. Nonlin.

Hammerstein

HW

Linear

SS
M

 T
yp

e
Aerodynamics CSTR Two Tank

3 2 1 0 1 2 3

Lasso

Linear

PF

Soft SVD

Li
ne

ar
 M

ap

3 2 1 0 1 2 3 3 2 1 0 1 2 3

Figure 3: Boxplots indicating distributions of deviation from average log-scaled test set loss for
SSM type and linear map choices used in all random search runs over the standard model
genome for each dataset. White circles indicate mean of deviations.

(a) Aerodynamics (AGA XL) (b) CSTR (Random) (c) Two Tank (AGA)

Figure 4: Open-loop traces for each system’s best-observed model, with search algorithm and space
indicated in parentheses.

5. Conclusion

We present design space variations for neural SSMs, which include a rich selection of structured
components and optimization constraints for the automated discovery of performant dynamical
system identification models. We evaluate our two design spaces with two search algorithms—
random and asynchronous genetic search—and provide an analysis of the architectures discovered for
models trained and evaluated on three non-autonomous systems. We find that adding block structure
and nonlinearity to neural SSMs can yield a greater likelihood of obtaining good models. Blackbox
and/or linear variations can also perform well, though with larger variance across runs.

For future work, we would like to extend our analysis to how AGA parameters affect optimization
progress and results, as well as a larger selection of structural configurations. We also plan to
continue exploring the properties of our genetic algorithm. Thus far, our analysis has revealed that
the asynchronicity of our genetic algorithm results in a complex interaction between learning and
evolution. We hope to examine these properties in greater detail and find ways to exploit them to

9

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

improve the AGA’s efficacy. Additionally, the AGA currently uses a naive selection approach, which
may limit the diversity of selected models. We believe this could be improved using techniques
such as non-dominated sorting with multiple objectives or tournament selection. Finally, we plan to
extend the AGA to evolve network topology at a lower level.

6. Acknowledgments

This research was supported by the Laboratory Directed Research and Development (LDRD) at
Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory
operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract
No. DE-AC05-76RL0-1830.

References

A. J. Al-Mahasneh, S. G. Anavatti, and M. Garratt. Nonlinear multi-input multi-output system
identification using neuro-evolutionary methods for a quadcopter. In 2017 Ninth International
Conference on Advanced Computational Intelligence (ICACI), pages 217–222, 2017.

Helon Vicente Hultmann Ayala, Didace Habineza, Micky Rakotondrabe, and Leandro dos Santos
Coelho. Nonlinear black-box system identification through coevolutionary algorithms and radial ba-
sis function artificial neural networks. Applied Soft Computing, 87:105990, 2020. ISSN 1568-4946.
doi: https://doi.org/10.1016/j.asoc.2019.105990. URL http://www.sciencedirect.com/
science/article/pii/S1568494619307719.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research 20 (2019) 1-21, 2019.

L. Ferariu and B. Burlacu. Multiobjective graph genetic programming with encapsulation applied
to neural system identification. In 15th International Conference on System Theory, Control and
Computing, pages 1–6, 2011.

Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to learning.
Evolutionary intelligence, 1(1):47–62, 2008.

Adam Gaier and David Ha. Weight agnostic neural networks. In Advances in Neural Information
Processing Systems, pages 5364–5378, 2019.

Luke B Godfrey. An evaluation of parametric activation functions for deep learning. In 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC), pages 3006–3011. IEEE,
2019.

10

http://www.sciencedirect.com/science/article/pii/S1568494619307719
http://www.sciencedirect.com/science/article/pii/S1568494619307719

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Luke B Godfrey and Michael S Gashler. A continuum among logarithmic, linear, and exponential
functions, and its potential to improve generalization in neural networks. In 2015 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
(IC3K), volume 1, pages 481–486. IEEE, 2015.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34
(1):014004, 2017.

Toshiharu Hatanaka, Nobuhiko Kondo, and Katsuji Uosaki. Multi-objective structure selection for
RBF networks and its application to nonlinear system identification. In Multi-Objective Machine
Learning, pages 491–505. Springer, 2006.

John D. Hedengren. Nonlinear Model Predictive Control. http://apmonitor.com/do/
index.php/Main/NonlinearControl, a. Accessed: 2020-11-05.

John D. Hedengren. Level Regulation with MPC. https://apmonitor.com/do/index.php/
Main/LevelControl, b. Accessed: 2020-11-05.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. arXiv preprint arXiv:1606.08415,
2016.

Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks.
IEEE transactions on pattern analysis and machine intelligence, 2019.

Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov,
Yoshua Bengio, and Guillaume Lajoie. Non-normal recurrent neural network (nnRNN): learning
long time dependencies while improving expressivity with transient dynamics. In Advances in
Neural Information Processing Systems, pages 13613–13623, 2019.

Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evolutionary architecture search for deep
multitask networks. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 466–473, 2018.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, and Gary Yen. A survey on evolutionary neural
architecture search. arXiv preprint arXiv:2008.10937, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

MathWorks. Modeling an Aerodynamic Body. https://www.mathworks.com/help/
ident/ug/modeling-an-aerodynamic-body.html, a. Accessed: 2020-10-06.

MathWorks. Non-Adiabatic Continuous Stirred Tank Reactor: MATLAB File Modeling with
Simulations in Simulink. https://www.mathworks.com/help/ident/ug/non-
adiabatic-continuous-stirred-tank-reactor-matlab-file-modeling-
with-simulations-in-simulink.html, b. Accessed: 2020-10-06.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In International
Conference on Machine Learning, pages 2401–2409, 2017.

11

http://apmonitor.com/do/index.php/Main/NonlinearControl
http://apmonitor.com/do/index.php/Main/NonlinearControl
https://apmonitor.com/do/index.php/Main/LevelControl
https://apmonitor.com/do/index.php/Main/LevelControl
https://www.mathworks.com/help/ident/ug/modeling-an-aerodynamic-body.html
https://www.mathworks.com/help/ident/ug/modeling-an-aerodynamic-body.html
https://www.mathworks.com/help/ident/ug/non-adiabatic-continuous-stirred-tank-reactor-matlab-file-modeling-with-simulations-in-simulink.html
https://www.mathworks.com/help/ident/ug/non-adiabatic-continuous-stirred-tank-reactor-matlab-file-modeling-with-simulations-in-simulink.html
https://www.mathworks.com/help/ident/ug/non-adiabatic-continuous-stirred-tank-reactor-matlab-file-modeling-with-simulations-in-simulink.html

DISCOVERING NEURAL SSMS VIA LEARNING AND EVOLUTION

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML, 2010.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

David R So, Chen Liang, and Quoc V Le. The evolved transformer. Proceedings of the 36th
International Conference on Machine Learning, 2019.

Bidyadhar Subudhi and Debashisha Jena. A differential evolution based neural network approach to
nonlinear system identification. Applied Soft Computing, 11(1):861–871, 2011a.

Bidyadhar Subudhi and Debashisha Jena. Nonlinear system identification using memetic differential
evolution trained neural networks. Neurocomputing, 74(10):1696–1709, 2011b.

Aaron Tuor, Jan Drgona, and Draguna Vrabie. Constrained neural ordinary differential equations
with stability guarantees. arXiv preprint arXiv:2004.10883, 2020.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11505–11515, 2020.

C. Yang, J. Qiao, and L. Wang. A novel echo state network design method based on differential
evolution algorithm. In 2017 36th Chinese Control Conference (CCC), pages 3977–3982, 2017.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pages 4832–4839. IEEE, 2019.

Jiong Zhang, Qi Lei, and Inderjit S Dhillon. Stabilizing gradients for deep neural networks via
efficient SVD parameterization. Proceedings of the 35th International Conference on Machine
Learning, 2018.

12

	Introduction
	Methods
	Structured Linear Maps
	Activation Functions
	Neural Time-Invariant Block Dynamics Models
	Multi-Objective Loss
	State Space Model Genome
	Asynchronous Genetic Search

	Experiments
	Model Training
	Datasets

	Results and Analysis
	Conclusion
	Acknowledgments

