
Proceedings of Machine Learning Research vol 144:1–13, 2021 3rd Annual Conference on Learning for Dynamics and Control

ARDL - A Library for Adaptive Robotic Dynamics Learning

Joshua Smith JOSHUA.SMITH@ED.AC.UK and Michael Mistry MMISTRY@INF.ED.AC.UK

School of Informatics, University of Edinburgh, UK

Editors: A. Jadbabaie, J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J. Tomlin, M. N. Zeilinger

Abstract
Dynamics learning and adaptive control algorithms have received a lack of support from robot dy-
namics libraries over the years. Only a few existing libraries like Pinocchio implement the standard
regressor for basic model learning. In this work we introduce an open-source dynamics library
specifically designed to provide support for dynamics learning and online adaptive control algo-
rithms. Alongside established kinematics and dynamics computations, our new dynamics library
provides computation for the standard, the Slotine-Li and the filtered regressor matrices found in
adaptive control algorithms. We demonstrate the library through several existing adaptive con-
trol algorithms, alongside a new online simultaneous Semi-Parametric model using a Radial Basis
Function Neural Network augmented with a newly derived consistency transform.

1. Introduction

Robot dynamics modelling involves learning the forces that occur on a robot platform given a state.
Such models are used in control and planning frameworks when we are able to drive the robot
through torque signals. Often these controllers are limited in performance due the inaccuracy of the
dynamics model, which is especially an issue on real platforms. Even if we can accurately ascertain
inertial parameters from CAD estimation, often there are irregularities between manufactured plat-
forms, unidentifiable effects from friction or wires, and the effects of wear and tear. By learning the
model directly from data we can rectify these issues on individual platforms.

Robot dynamics model learning typically falls into one of three categories: Parametric, Non-
Parametric and Semi-Parametric. Parametric models require specific reformulations of rigid body
dynamics to isolate relevant inertial parameters of each body. These models have the advantage of
being state generalisable over the entire state space, however, they suffer in accuracy from unmod-
elled forces. Alternatively, Non-Parametric models are implemented using pure machine learning
techniques which treat the problem as a function mapping from the input to the outputs. They tend
to have good accuracy (given good data) as they do not rely on a specific formulation based on
physics. However, they do suffer from a lack generalisation when the input state is not close to
the data initially trained on. Semi-Parametric models are a hybrid approach that combines the best
attributes of both. They can exhibit better accuracy and improved generalisation, however, training
of Semi-Parametric models tend to be much more complicated in order to achieve these benefits.

Adaptive dynamics model learning approaches, Middletone and Goodwin (1986); Slotine and
Li (1989); Pucci et al. (2015); Sanner and Slotine (1995), effectively combine the task of learning
the dynamics with providing control to the robot. Adaptive algorithms require the capability of
running online within a control loop and often have to deal with long-term learning and noise from
the sensors. Research in adaptive control have heavily revolved around passive stability of both the

© 2021 J. Smith & M. Mistry.

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

learning and control. Slotine and Li (1989) is an example of a Parametric adaptive control solution
with passive stability that guarantees position, velocity and parameter convergence. In order to
provide a stability proof, the controller requires the Slotine-Li regressor which maintains the skew-
symmetry between the time derivative of the Inertia matrix and the Coriolis matrix, xT (Ṁ−2C)x =
0 where x is any vector. The parameter convergence is guaranteed through the use of the filtered
regressor, used to avoid using noisy joint acceleration estimation and measurements.

To implement these models and algorithms we require the ability to compute the various dy-
namic and regressor matrices, which is functionality typically reserved for dynamics libraries. Three
examples that are popular within the robotics community are RBDL, IDyntree, and Pinocchio.
RBDL, Felis (2017), is one of the most mature dynamics libraries implementing the spatial al-
gorithms in Featherstone (2008). Due to the design of the software, RBDL is efficient in calculating
various dynamics quantities using O(n) algorithms. IDyntree, Nori et al. (2015), follows a similar
route to RBDL and more specifically acts as a floating base extension to the Kinematics and Dynam-
ics Library (KDL) introduced with Orocos. It takes advantage of the same spatial notation as with
RBDL and is heavily used with the iCub robot platform. Pinocchio is a more recently introduced
dynamics library, Carpentier et al. (2015–2019, 2019), and has been designed to take advantage of
spatial notation with Lie group representations as in RBDL. Pinocchio also implements several pro-
gramming patterns to increase the efficiency of the generated programs. The two major additions
they introduce are the use of the CRTP pattern which aims to solely implement static polymorphism
rather than dynamic polymorphism, and the use of autodiff libraries, allowing users to automatically
compute the desired derivatives of various quantities without having to manually construct them.

From all of these libraries only IDyntree and Pinocchio implement any of the regressors and
they are limited to, at the time of writing, computing the standard regressor. Whilst these can be
used for the algorithms, the data structures behind the inertial parameters tend to be more difficult
to update due to being defined as constants or being difficult to isolate without good knowledge
of the software. The lack of support means that many papers on adaptive dynamics control often
have closed source custom software, which is normally not readily accessible and increases work
for researchers implementing the algorithm or re-implementing for verification purposes. Some
examples of the lack of open-source software are in the likes of Middletone and Goodwin (1986);
Slotine and Li (1989); Yuan and Yuan (1995); Cheah et al. (2006); Wensing and Slotine (2018).

As such the contribution of this paper is introducing a new dynamics library, ARDL1, focused
on supporting adaptive learning algorithms for dynamics. ARDL mainly focuses on providing cal-
culations for all the regressor matrices, allowing clear access to the inertial parameters to allow
updating, and maintaining performance throughout. We will demonstrate the library in action with
several preexisting adaptive control algorithms.

Furthermore, the concept of Semi-Parametric consistency was introduced in Smith and Mistry
(2020) for online learning of the dynamics model using a Semi-Parametric model. We specifically
identified a local adaptation that when applied with a Gaussian Mixture Model in a Semi-Parametric
framework allows online simultaneous updates. In this work we further emphasise the generality
of the consistency adaptation by presenting an online simultaneous Semi-Parametric Radial Basis
Function Neural Network model using the ARDL library.

1. https://github.com/smithjoshua001/ARDL

2

https://github.com/smithjoshua001/ARDL

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

2. Theoretical Background

Parametric models, Atkeson et al. (1985); Slotine (1985), are based on the classical articulated rigid
body dynamics equation to model the forces of the platform in question.

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ (1) Y(q, q̇, q̈)π = τ (2)

Where q, q̇, q̈, τ are the joint positions, velocities, accelerations and joint torques of the robot. M(q),
C(q, q̇) and g(q) are the inertia matrix, coriolis matrix, and gravity vector respectively. π is the in-
ertial parameters of each link. Y(q, q̇, q̈) is the standard regressor matrix, which is a reformulation
of (1).

Atkeson et al. (1985) solves for the inertial parameters, through standard least squares, by stack-
ing multiple observations through the regressor matrix with the stacked torque measurements. Slo-
tine and Weiping Li (1987) provides a stable direct adaptive controller that ensures that the position
and velocity errors are driven towards zero in a passively stable fashion. The passivity of the system
is ensured through the aforementioned Slotine-Li regressor, ensuring the skew-symmetric property
of xT (Ṁ− 2C)x = 0, with a sliding mode controller.

In Slotine and Li (1989) they present an composite adaptive controller that is an extension to
the direct adaptive controller by adding a term with the torque error to ensure convergence of the
inertial parameters. The convergence is achieved using a first order filtered regressor to eliminate
the need to use the noisy joint acceleration signals.

Non-Parametric models, Vijayakumar and Schaal (2000); Nguyen-Tuong et al. (2009), typically
follow a more Machine Learning approach. They define the model as a function mapping from the
robot state to the joint torques.

f(q, q̇, q̈) = τ (3)

Radial Basis Function Neural Networks are a class of linearly parameterized neural networks
that can be used as a Non-Parametric model, Sanner and Slotine (1992). Specifically they rely
on a set of basis functions that span the space of the inputs and associated weights which when
combined provide a linear sum of these basis functions which can approximate the desired function.
An interesting property of the RBFNN though is they can universally approximate a smooth non-
linear function over a compact set, Park and Sandberg (1991).

Typically RBFNNs have an output computation as:

f(x) = W∗Θ(x) + ε (4)

Θ(x) =
[
θ0(x) θ1(x) . . . θk(x)

]T (5)

θ•(x) = e−β•(x−µ•)T (x−µ•) (6)

min
W

|τ −WΘ(x)| (7)

where W are the weights of the RBFNN network with •∗ and •̂ indicating the optimal and estimated
value of • respectively. µ• and β• are the center and coefficient of the basis function in question. ε
is the approximation error of the RBFNN. x is the input vector for the basis functions.

Given a function f(x) we can define a gradient based update equation for the weight matrix of
the RBFNN:

3

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

˙̂
WT = PΘT (x)(f(x)− ŴΘ(x)) (8) Ṗ = − PΘ(x)ΘT (x)PT

1 +ΘT (x)PΘ(x)
(9)

P is a positive definite matrix initially user selected, in this paper we initialized to a diagonal matrix
with positive coefficients. P is updated according to (9).

For the purpose of learning the dynamics of a robot we can set x as the state of the robot, [q, q̇, q̈],
and have f(x) = τ . This should drive the estimated weight matrix to the optimal weight matrix and
minimise the error between the true and estimated torque (7).

Semi-Parametric models, Nguyen-Tuong et al. (2010); Traversaro et al. (2017); Romeres et al.
(2016); Smith and Mistry (2020), combine both the Parametric and Non-Parametric models together
to try and take advantage of the benefits of both models. The generalisation from the Parametric
model with the accuracy of the Non-Parametric model.

Y(q, q̇, q̈)π + f(q, q̇, q̈) = τ (10)

Our previous work, Smith and Mistry (2020), uses a Semi-Parametric model based on the Com-
posite Adaptive Controller and a Gaussian Mixture Model (GMM). We also introduced the concept
of consistency in a semi-parametric model that simultaneously learns both components. The consis-
tency transform, (12), was introduced to solve the inconsistency that arises in the Non-Parametric
target function, (11), when the inertial parameters are updated. The exact formulation of the consis-
tency transform for the GMM can be found in Smith and Mistry (2020).

f(q, q̇, q̈) = τ −Y(q, q̇, q̈)π̂ (11) ∆f(q, q̇, q̈) = −Y(q, q̇, q̈)∆π̂ (12)

3. Main Features

To implement most of the discussed controllers we need access to all the regressors, and the state
derivatives. As mentioned in the introduction, current dynamics libraries do not implement the
required matrices. To solve this we introduce the open-source ARDL library. ARDL has been
designed to implement these regressors and to support adaptive control algorithms.

For the Parametric dynamics we have used work from Garofalo et al. (2013) as a basis for
computing all required dynamics matrices, vectors and regressors. Whilst not as efficient as the O(n)
algorithms introduced in Featherstone (2008), the equations do provide the necessary foundation for
the Slotine-Li regressor, and with some adaptation the filtered regressor.

Though the main focus of the library is not the re-implementation of various Non-Parameteric
models, we have provided an iterative Gaussian Mixture Model implementation based on Pinto
and Engel (2017). We provide explicit support for computing the required regressors and state-
derivatives for applying Semi-Parametric consistency transform for the Gaussian Mixture Model,
Smith and Mistry (2020), and as will be shown later the consistency transform for a Semi-Parametric
RBFNN model.

To ensure efficient computation, all the equations have been implemented using the Eigen Li-
brary Guennebaud et al. (2010), which is a very mature and optimized matrix/vector library com-
monly used throughout robotics. The inheritance hierarchy and polymorphism has been imple-

4

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

mented using the curiously recurring template pattern (CRTP) to force evaluation at compile time
rather than run time.

3.1. Online Simultaneous Semi-Parametric Radial Basis Function Neural Network

In addition to the ARDL library we further emphasise the simultaneous consistency adaptation
framework. We achieve this by not only replicating the Gaussian Mixture Model Semi-Parametric
model from Smith and Mistry (2020), but also applying the framework to a Semi-Parametric model
using a Radial Basis Function Neural Network (RBFNN).

3.1.1. SEMI-PARAMETRIC CONSISTENCY ADAPTATION

To use the RBFNN in a semi-parametric setup we can follow a similar approach to Smith and Mis-
try (2020). This means that instead of learning τ the RBFNN will learn the residual error from the
parametric model, (11). When the parametric model updates, the residual error will change accord-
ingly modifying the target function and the optimal weights, creating an inconsistency. This can
cause convergence and performance issues, however, due to the structured nature of the parametric
model we can compute the change in the non-parametric model and correct the inconsistency. This
is achieved generally through (11) and (12).

In the case of RBFNN, we can identify how the optimal weight matrix should change with
respect to the inertial parameters through (13), where the inverse is elementwise through Θ(x).

∂W∗

∂π
= −YΘ−1(x) (13)

Knowing how the optimal weights change though is not particularly useful as the optimal
weights are not typically known before training. Instead the focus should be on computing the
change in the estimated weight matrix with respect to the inertial parameters. This can be achieved
by taking the partial derivative of (8), with f(x) replaced with the residual error from the parametric
model, and updating the partial derivative alongside updating the weight matrix normally.

∂
˙̂
WT

∂π
= PΘT (x)

(
−Y − ∂Ŵ

∂π
Θ(x)

)
(14)

When substituted into (12), we obtain how a change in the inertial parameters will change the
estimated weights of the network. The update to the weights will keep the network consistent with
the new target function whilst reusing the previous data.

4. Results

There are some other libraries that support the computation of some of the regressors needed for
adaptive algorithms, primarily iDynTree and Pinocchio. Both these libraries only support computa-
tion of the standard regressor matrix.

We will compare the computation time of the regressor matrix between the ARDL and Pinocchio
libraries. We did not compare against IDynTree due to the regressor generator refusing to compile
in the latest version. The compilation errors are most likely due to the fact that the code is legacy
and not maintained within the project. We shall use a variable length Kuka LWR IV arm as the test

5

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

0 20 40 60 80 100 120 140 160 180 200

100

102

Degrees of Freedom

Ti
m

e
Ta

ke
n

(s
)

ARDL Kuka Pinocchio Kuka

Figure 1: Time taken to compute 5000 standard regressor matrices for a variable length stacked
Kuka Lwr IV manipulator.

model, which we generate by chaining multiple arms together via a fixed joint. The variable length
aspect allows us to judge the scalability of the regressor computation.

The test was performed on Xubuntu 18.04 using a i7-7700HQ, set with a performance governor
at 3.5Ghz, with 32GB 2133Mhz DDR4 RAM. All compiled with Clang 11 using the flags "-O3
-march=native".

To isolate small changes in timing due to scheduling on the CPU we compute the standard re-
gressor of the model 5000 times at random configurations. We can see the time taken for each
model computing 5000 random regressors in figure 1. It is clear at low dimensionality the differ-
ences between the two libraries are negligible. As the dimensionality of the model are increased
the performance diverges up to about a factor of 10, in favour of ARDL, at 200 degrees of freedom.
The most likely main factor of the difference between the two libraries arises through the algorithms
used to generate the regressor.

4.1. Simulated Examples

To demonstrate the effectiveness of this library several examples of adaptive model learning have
been included. These include the Direct Adaptive Controller from Slotine and Weiping Li (1987),
the Composite Adaptive Controller from Slotine and Li (1989), and the Online Simultaneous Semi-
Parametric Model introduced in Smith and Mistry (2020).

We implement all the controllers using ARDL and execute them on a Mujoco simulation of
a Kuka LWR 4 manipulator. An example of the control and learning functions of the Composite
Adaptive Controller using ARDL is given in listing 1. Using these proven examples we can verify
the correctness of the various quantities used in their calculations. The trajectory for all examples
are the same with all models initialised to zero. We show only the results for joint 1 of the simulated
robot due to space restrictions and due to the fact the majority of the forces act on this joint.

4.1.1. DIRECT ADAPTIVE CONTROL

Figures 2(a) and 2(b) show the position and velocity errors, and the feedback and feed forward
torques of the controller respectively. The greyed out portions of the graphs indicate areas where no
learning is performed. These areas are to demonstrate the initial model performance and the final
model performance.

From figure 2(a) we can see that the position and velocity errors are reduced to a range of -0.2
and 0.2. More importantly we can see that the feedback torque in figure 2(b) are minimised only

6

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

0 50 100 150

−4

−2

0

Time (s)

E
rr

or
q̃ (rad) ˜̇q (rad s−1)

0 50 100 150

−4

−2

0

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

(a) Position and Velocity errors of joint 1

0 50 100 150

−20

0

20

Time (s)

To
rq

ue
(N

m
−
1
)

Feedback Feed Forward

(b) Feed forward and Feedback contributions, of
joint 1

Figure 2: Direct Adaptive Controller - The learning is performed between 16 and 96 seconds,
beforehand is only controlled via the feedback gains of the controller.

fluctuating slightly. The fluctuation is increased slightly once the training is finished due to the fact
that the inertial parameters aren’t guaranteed to converge and in this case they do not.

4.1.2. COMPOSITE ADAPTIVE CONTROL

0 50 100 150

−4

−2

0

2

4

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

0 50 100 150

−4

−2

0

2

4

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

(a) Position and Velocity errors of joint 1

0 50 100 150
−40

−20

0

20

40

Time (s)

To
rq

ue
(N

m
−
1
)

Feedback Feed Forward

(b) Feed forward and Feedback contributions of
joint 1

Figure 3: Composite Adaptive Controller - The learning is performed between 16 and 96 seconds,
beforehand is only controlled via the feedback gains of the controller.

Figures 3(a) and 3(b) show the same as figures 2(a) and 2(b) respectively. The position and velocity
errors as before are reduced significantly to between -0.1 and 0.1. The same is said for the feedback
torque. A notable difference between the direct and composite approaches is that after the learning
is finished the feedback and feed forward torques do not increase or change much in pattern. This
can be due to the fact that the inertial parameters converge to a more stable result.

7

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

4.1.3. ONLINE SIMULTANEOUS SEMI PARAMETRIC GMM CONTROL

0 50 100 150

−4

−2

0

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

0 50 100 150

−4

−2

0

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

(a) Position and Velocity errors of joint 1

0 50 100 150
−40

−20

0

20

40

Time (s)

To
rq

ue
(N

m
−
1
)

Feedback Feed Forward

(b) Feed forward and Feedback contributions of
joint 1

Figure 4: Semi-Parametric controller in Smith and Mistry (2020) - The learning is performed be-
tween 16 and 96 seconds, beforehand is only controlled via the feedback gains of the controller.

Implementing the model and controller in Smith and Mistry (2020) we can plot similar results as
before. Figure 4(a) shows that the errors are reduced significantly and are practically negligible.
Figure 4(b) shows that the feedback torque are also minimised more than in the case of the direct
and composite adaptive controllers. This is achieved due to the fact the non-parametric Gaussian
Mixture Model can model the friction forces.

4.1.4. ONLINE SIMULTANEOUS SEMI-PARAMETRIC RBFNN

0 50 100 150

−4

−2

0

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

0 50 100 150

−4

−2

0

Time (s)

E
rr

or

q̃ (rad) ˜̇q (rad s−1)

(a) Position and Velocity errors of joint 1

0 50 100 150
−40

−20

0

20

40

Time (s)

To
rq

ue
(N

m
−
1
)

Feedback Feed Forward

(b) Feed forward and Feedback contributions of
joint 1

Figure 5: Semi-Parametric RBFNN controller - The learning is performed between 16 and 96 sec-
onds, beforehand is only controlled via the feedback gains of the controller.

We also implemented the RBFNN version of the online simultaneous semi-parametric control de-
scribed in section 3.1. We implement the RBFNN using CUDA on a Nvidia GTX 1070 GPU, using
the cuBLAS and cuTensor libraries provided by Nvidia. We use a total of 2048 basis functions ran-
domly spread over the input space, (q, q̇, q̈), of the robot using sobol noise from the cuRand library.

8

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

The initial Ŵ is set to zero with the partial derivative with respect to π set to zero as well, as no
data has been introduced so the weights will not change with π.

When repeating the same experiments as before we can plot the results in figures 5(a) and 5(b).
The results are very similar to figures 4(a) and 4(b) where the errors for position, velocity and torque
are minimized to a larger degree than in the direct and composite controllers.

5. Conclusion

We have introduced the Adaptive Robotic Dynamics Learning library in this work. This library is
designed to be run-time efficient capable of running an online adaptive control algorithm. This was
achieved through the use of efficient formulations of the required matrices, with minimal computa-
tion where structure can be exploited.

We have demonstrated the ability of the library through the implementation of several examples
of adaptive control. Each example demonstrates the correct and expected behaviour of the relevant
controller.

An online simultaneous semi-parametric RBFNN algorithm has been introduced to emphasise
the consistency framework along with integration with the ARDL library. We introduce the relevant
transform of the estimated weights of the network and run the controller on the mujoco simulated
setup. We show similar performance to the GMM version introduced in Smith and Mistry (2020)
with errors in position, velocity, and torque reduced significantly from the Parametric models.

Currently this library is designed and limited to work on a single fixed chain, however, the next
step of development will be to extend this to tree-like robots and floating-base. The extension should
be a trivial extension due to the use of spatial algebra and the generic formulation of the joints as
in Garofalo et al. (2013). We can also look to expanding our focus into how this work can also
fit into other robotics fields requiring the regressors such as model-based reinforcement learning,
Morimoto et al. (2003); Abbeel et al. (2006).

Listing 1: Composite adaptive controller example
vo id c o n t r o l (c o n s t Eigen : : VectorXd& q , c o n s t Eigen : : VectorXd& qd ,
c o n s t Eigen : : VectorXd& q_des , c o n s t Eigen : : VectorXd& qd_des ,
c o n s t Eigen : : VectorXd& qdd_des , Eigen : : VectorXd& t a u) {

/ / compute s l i d i n g mode v a r i a b l e s
Eigen : : VectorXd qd_r = qd_des − Lambda . a s D i a g o n a l () * (q−q_des) ;
Eigen : : VectorXd qdd_r = qdd_des − Lambda . a s D i a g o n a l () * (qd−qd_des) ;
Eigen : : VectorXd s = qd − qd_r ;
/ / u p d a t e t h e i n t e r n a l d a t a o f t h e r o b o t c h a i n
c−>u p d a t e C h a i n (q , qd) ;
/ / u p d a t e t h e i n t e r n a l m a t r i c e s i n t h e c h a i n
c−>u p d a t e M a t r i c e s () ;
/ / compute t h e p o s e s o f each l i n k
fk−>ge tBodyPoses (p o s e s) ;
/ / compute t h e j a c o b i a n s o f each j o i n t
fk−>g e t J a c o b i a n s (poses , j a c s) ;
/ / compute t h e v e l o c i t y o f each l i n k
fk−>g e t B o d y V e l o c i t i e s (v e l o c i t i e s , j a c s) ;
/ / compute t h e t ime d e r i v a t i v e o f each j a c o b i a n
fk−>g e t J a c o b i a n D o t s (poses , v e l o c i t i e s , j a c s , j a c D o t s) ;
/ / compute t h e S l o t i n e −Li r e g r e s s o r
dyn−> c a l c S l o t i n e L i R e g r e s s o r (qd_r , qdd_r , poses , v e l o c i t i e s ,

9

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

j a c s , j a c D o t s ,Y) ;
/ / P r o j e c t t h e r e g r e s s o r t o use t h e base p a r a m e t e r s
t a u = Y*dyn−> g e t R e g r e s s o r P r o j e c t o r () * p i ;
/ / Add f e e d b a c k c o n t r o l i n t o t h e c o n t r o l s i g n a l
t a u −= Damping . a s D i a g o n a l () * s ;

}

vo id l e a r n (c o n s t Eigen : : VectorXd& q , c o n s t Eigen : : VectorXd& qd ,
c o n s t Eigen : : VectorXd& qdd , c o n s t Eigen : : VectorXd& measured) {

i f (! i n i t) {
/ / I n i t i a l i s e t h e f i l t e r s f o r t h e f i l t e r e d r e g r e s s o r and t o r q u e f i l t e r
dyn−> i n i t F i l t e r e d S l o t i n e L i R e g r e s s o r (j a c s , j a c D o t s , v e l o c i t i e s , poses ,

qd , f i l t , W) ;
t a u _ f i l t e r −> s e t B u f f e r (measured) ;
i n i t = t r u e ;

} e l s e {
/ / Update t h e f i l t e r e d r e g r e s s o r and measured t o r q u e f i l t e r
dyn−>c o m p u t e F i l t e r e d S l o t i n e L i R e g r e s s o r (j a c s , j a c D o t s , v e l o c i t i e s , poses ,

qd , f i l t , W) ;
t a u _ f i l t e r −>compute (measured) ;

}
/ / Compute f o r g e t t i n g f a c t o r from S l o t i n e and Li (1 9 8 9)
lambda =lambda0 *(1 .0 − (Rho . i n v e r s e () . c o l w i s e () . lpNorm < 1 > () . maxCoeff ()) / k0) ;
/ / Add c u r r e n t r e g r e s s o r e x c i t a t i o n t o t h e we i gh t m a t r i x Rho t o make s u r e
/ / t h e norm does n o t exceed a v a l u e o f k1
i f (Rho . i n v e r s e () . c o l w i s e () . lpNorm < 1 > () . maxCoeff () > k1) {

Rho += (W*dyn−> g e t R e g r e s s o r P r o j e c t o r ()) . t r a n s p o s e () *
(W*dyn−> g e t R e g r e s s o r P r o j e c t o r ()) * 0 . 0 0 1 ;

} e l s e {
Rho += (− lambda0 *Rho + ((W*dyn−> g e t R e g r e s s o r P r o j e c t o r ()) . t r a n s p o s e () *

(W*dyn−> g e t R e g r e s s o r P r o j e c t o r ()))) * 0 . 0 0 1 ;
}
/ / u p d a t e t h e i n e r t i a l p a r a m e t e r s u s i n g (1 4) i n S l o t i n e and Li (1 9 8 9)
p i −= 0 . 0 0 1 * (Rho) . i n v e r s e () * ((Y*dyn−> g e t R e g r e s s o r P r o j e c t o r ()) . t r a n s p o s e ()

* s +(W*dyn−> g e t R e g r e s s o r P r o j e c t o r ()) . t r a n s p o s e ()
*R . a s D i a g o n a l () * (W*dyn−> g e t R e g r e s s o r P r o j e c t o r () * p i
− t a u _ f i l t e r −>g e t R e s u l t ())) ;

}

Acknowledgments

This work has been supported by the following grants: EPSRC UK RAI Hub ORCA (EP/R026173/1)
and NCNR (EPR02572X/1), CogIMon project in the EU Horizon 2020 (ICT-23-2014), THING
project in the EU Horizon 2020 (ICT-2017-1), and by grant EP/L016834/1 for the University of
Edinburgh RAS CDT from EPSRC.

References

Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate models in reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages 1–8,
2006.

10

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

Chirstopher G. Atkeson, Chae H. An, and John M. Hollerbach. Rigid body load identification for
manipulators. In 1985 24th IEEE Conference on Decision and Control, volume 24, 1985. doi:
10.1109/CDC.1985.268649.

Justin Carpentier, Florian Valenza, Nicolas Mansard, et al. Pinocchio: fast forward and inverse
dynamics for poly-articulated systems. https://stack-of-tasks.github.io/pinocchio, 2015–2019.

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux, Olivier
Stasse, and Nicolas Mansard. The Pinocchio C++ library: A fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives. In Proceedings of the 2019
IEEE/SICE International Symposium on System Integration, SII 2019, pages 614–619. Institute
of Electrical and Electronics Engineers Inc., 4 2019. ISBN 9781538636152. doi: 10.1109/SII.
2019.8700380.

C. C. Cheah, C. Liu, and Jean-Jacques Slotine. Adaptive Jacobian Tracking Control of Robots With
Uncertainties in Kinematic, Dynamic and Actuator Models. IEEE Transactions on Automatic
Control, 51(6):1024–1029, 6 2006. ISSN 0018-9286. doi: 10.1109/TAC.2006.876943. URL
http://ieeexplore.ieee.org/document/1643374/.

Roy Featherstone. Rigid Body Dynamics Algorithms. Springer US, Boston, MA, 2008. ISBN
978-0-387-74314-1. doi: 10.1007/978-1-4899-7560-7.

Martin L. Felis. RBDL: an efficient rigid-body dynamics library using recursive algorithms. Au-
tonomous Robots, 41(2):495–511, 2 2017. ISSN 0929-5593. doi: 10.1007/s10514-016-9574-0.
URL http://link.springer.com/10.1007/s10514-016-9574-0.

Gianluca Garofalo, Christian Ott, Alin Albu-Schäffer, and Alin Albu-Schaffer. On the closed form
computation of the dynamic matrices and their differentiations. IEEE International Conference
on Intelligent Robots and Systems, pages 2364–2369, 11 2013. ISSN 21530858. doi: 10.1109/
IROS.2013.6696688. URL http://ieeexplore.ieee.org/document/6696688/.

Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

R. Middletone and G. Goodwin. Adaptive computed torque control for rigid link manipulators. In
1986 25th IEEE Conference on Decision and Control, pages 68–73. IEEE, 12 1986. doi: 10.1109/
CDC.1986.267156. URL http://ieeexplore.ieee.org/document/4048708/.

J. Morimoto, G. Zeglin, and C. G. Atkeson. Minimax differential dynamic programming: appli-
cation to a biped walking robot. In Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 2, pages 1927–1932
vol.2, 2003. doi: 10.1109/IROS.2003.1248926.

Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Model Learning with Local Gaussian Process
Regression. Advanced Robotics, 23(15):2015–2034, 1 2009. ISSN 0169-1864. doi: 10.1163/
016918609X12529286896877.

Duy Nguyen-Tuong, Jan Peters, Duy Nguyen-Tuong, and Jan Peters. Using model knowledge for
learning inverse dynamics. In 2010 IEEE International Conference on Robotics and Automa-
tion, pages 2677–2682. IEEE, 5 2010. ISBN 978-1-4244-5038-1. doi: 10.1109/ROBOT.2010.
5509858. URL http://ieeexplore.ieee.org/document/5509858/.

11

http://ieeexplore.ieee.org/document/1643374/
http://link.springer.com/10.1007/s10514-016-9574-0
http://ieeexplore.ieee.org/document/6696688/
http://ieeexplore.ieee.org/document/4048708/
http://ieeexplore.ieee.org/document/5509858/

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

Francesco Nori, Silvio Traversaro, Jorhabib Eljaik, Francesco Romano, Andrea Del Prete, and
Daniele Pucci. iCub whole-body control through force regulation on rigid non-coplanar con-
tacts. Frontiers in Robotics and AI, 2(March):1–18, 3 2015. ISSN 2296-9144. doi: 10.3389/
frobt.2015.00006. URL http://www.frontiersin.org/Humanoid_Robotics/10.
3389/frobt.2015.00006/abstract.

J. Park and I. W. Sandberg. Universal Approximation Using Radial-Basis-Function Networks. Neu-
ral Computation, 3(2):246–257, 6 1991. ISSN 0899-7667. doi: 10.1162/neco.1991.3.2.246.

Rafael Pinto and Paulo Engel. Scalable and Incremental Learning of Gaussian Mixture Models. 1
2017. URL http://arxiv.org/abs/1701.03940.

Daniele Pucci, Francesco Romano, and Francesco Nori. Collocated Adaptive Control of Underac-
tuated Mechanical Systems. IEEE Transactions on Robotics, 31(6):1527–1536, 12 2015. ISSN
1552-3098. doi: 10.1109/TRO.2015.2481282. URL http://ieeexplore.ieee.org/
document/7299688/.

Diego Romeres, Mattia Zorzi, Raffaello Camoriano, and Alessandro Chiuso. Online semi-
parametric learning for inverse dynamics modeling. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 2945–2950. IEEE, 12 2016. ISBN 978-1-5090-1837-6. doi: 10.1109/
CDC.2016.7798708. URL http://ieeexplore.ieee.org/document/7798708/.

R.M. Sanner and J.-J.E. Slotine. Gaussian networks for direct adaptive control. IEEE Transactions
on Neural Networks, 3(6):837–863, 1992. ISSN 10459227. doi: 10.1109/72.165588. URL
http://ieeexplore.ieee.org/document/165588/.

Robert M. Sanner and Jean-Jacques E. Slotine. Stable Adaptive Control of Robot Manipulators
Using Neural Networks. Neural Computation, 7(4):753–790, 1995. ISSN 0899-7667. doi:
10.1162/neco.1995.7.4.753.

Jean-Jacques E. Slotine. The Robust Control of Robot Manipulators. The International Journal of
Robotics Research, 4(2):49–64, 6 1985. ISSN 0278-3649. doi: 10.1177/027836498500400205.
URL http://journals.sagepub.com/doi/10.1177/027836498500400205.

Jean-Jacques E. Slotine and Weiping Li. Composite adaptive control of robot manipula-
tors. Automatica, 25(4):509–519, 7 1989. ISSN 0005-1098. doi: 10.1016/0005-1098(89)
90094-0. URL https://www.sciencedirect.com/science/article/pii/
0005109889900940.

Jean-Jacques E. Slotine and Weiping Weiping Li. On the Adaptive Control of Robot Manipulators.
The International Journal of Robotics Research, 6(3):49–59, 1987. ISSN 0278-3649. doi: 10.
1177/027836498700600303. URL http://journals.sagepub.com/doi/10.1177/
027836498700600303.

Joshua Smith and Michael Mistry. Online Simultaneous Semi-Parametric Dynamics Model Learn-
ing. IEEE Robotics and Automation Letters, 5(2):2039–2046, 2020. ISSN 23773766. doi:
10.1109/LRA.2020.2970987.

Silvio Traversaro, Istituto Italiano, D I Tecnologia, Supervisor Dott, and Francesco Nori. Modelling
, Estimation and Identification of Humanoid Robots Dynamics. PhD thesis, 2017.

12

http://www.frontiersin.org/Humanoid_Robotics/10.3389/frobt.2015.00006/abstract
http://www.frontiersin.org/Humanoid_Robotics/10.3389/frobt.2015.00006/abstract
http://arxiv.org/abs/1701.03940
http://ieeexplore.ieee.org/document/7299688/
http://ieeexplore.ieee.org/document/7299688/
http://ieeexplore.ieee.org/document/7798708/
http://ieeexplore.ieee.org/document/165588/
http://journals.sagepub.com/doi/10.1177/027836498500400205
https://www.sciencedirect.com/science/article/pii/0005109889900940
https://www.sciencedirect.com/science/article/pii/0005109889900940
http://journals.sagepub.com/doi/10.1177/027836498700600303
http://journals.sagepub.com/doi/10.1177/027836498700600303

ARDL - A LIBRARY FOR ADAPTIVE ROBOTIC DYNAMICS LEARNING

Sethu Vijayakumar and Stefan Schaal. Locally Weighted Projection Regression: An O(n) Algo-
rithm for Incremental Real Time Learning in High Dimensional Space. In Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), pages 1079–1086,
2000. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
33.4151.

P. M. Wensing and J. Slotine. Cooperative adaptive control for cloud-based robotics. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6401–6408, 2018. doi:
10.1109/ICRA.2018.8460856.

Jing Yuan and Bing Yuan. Recursive computation of the Slotine-Li regressor. In Proceedings of
1995 American Control Conference - ACC’95, volume 3, pages 2327–2331. American Autom
Control Council, 1995. ISBN 0-7803-2445-5. doi: 10.1109/ACC.1995.531387. URL http:
//ieeexplore.ieee.org/document/531387/.

13

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4151
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4151
http://ieeexplore.ieee.org/document/531387/
http://ieeexplore.ieee.org/document/531387/

	Introduction
	Theoretical Background
	Main Features
	Online Simultaneous Semi-Parametric Radial Basis Function Neural Network
	Semi-Parametric Consistency Adaptation

	Results
	Simulated Examples
	Direct Adaptive Control
	Composite Adaptive Control
	Online Simultaneous Semi Parametric GMM Control
	Online Simultaneous Semi-Parametric RBFNN

	Conclusion

