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Abstract
A fundamental challenge in reinforcement learning is to learn policies that generalize beyond the
operating domains experienced during training. In this paper, we approach this challenge through
the following invariance principle: an agent must find a representation such that there exists an
action-predictor built on top of this representation that is simultaneously optimal across all training
domains. Intuitively, the resulting invariant policy enhances generalization by finding causes of
successful actions. We propose a novel learning algorithm, Invariant Policy Optimization (IPO),
that implements this principle and learns an invariant policy during training. We compare our
approach with standard policy gradient methods and demonstrate significant improvements in gen-
eralization performance on unseen domains for linear quadratic regulator and grid-world problems,
and an example where a robot must learn to open doors with varying physical properties.
Keywords: Reinforcement Learning, Generalization, Invariance, Causality

1. Introduction
One of the fundamental challenges with state-of-the-art reinforcement learning (RL) approaches is
their limited ability to generalize beyond the specific domains they were trained on. The problem
of generalization is particularly acute in complex robotics applications. Deploying an RL policy
on a robot outside of the laboratory requires learning a policy that can generalize to a wide range
of operating domains, especially in safety-critical applications. For example, autonomous vehi-
cles must contend with unfamiliar obstacles, lighting, and road conditions when deployed at scale;
robotic manipulators deployed in homes must deal with new objects and environments; and robots
operating in close proximity to humans must be able to handle new patterns of human motion.

As a simple example, consider the problem shown in Figure 1. A robot is placed in a grid-world
and must learn to navigate to a goal located in a different room. In order to do this, it must learn to
first navigate to a key, use this key to open the door, and then navigate to the goal. During training,
the robot is presented with environments containing red and green keys. A policy trained using stan-
dard RL techniques demonstrates strong performance when deployed in test environments with key
colors seen during training. However, its performance significantly degrades in test environments
with different key colors (see Section 5.2 for a thorough exploration of this problem).

Learning policies capable of such generalization remains challenging for a number of reasons.
Primarily, RL algorithms have a tendency to memorize solutions to training environments, thereby
achieving high training rewards with a brittle policy that will not generalize to novel environments.
Moreover, learned policies often fail to ignore distractors in their sensor observations (e.g., the key
colors) and are highly sensitive to changes in such irrelevant factors. The goal of this paper is to
address these challenges and learn policies that achieve strong generalization across new operating
domains given a limited set of training domains.

Statement of Contributions. We approach the problem of generalizing across domains (for-
malized in Section 2) with the following principle: a policy will generalize well if it exploits in-
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INVARIANT POLICY OPTIMIZATION

Figure 1: A depiction of the Colored-Key problem described in Section 1 on a 12 × 12 grid. The color of the keys in
the environment corresponds to a different operating domain. The agent (red triangle) must learn to use the
key to open the door and reach the goal (green square). The agent is trained on domains with red and green
keys. At test time, the learned policy is deployed on a domain with differently-colored keys (e.g., grey keys).
Our results in Section 5 demonstrate that our algorithm generalizes to this novel testing domain significantly
better than one trained using standard techniques.

(a) (b) (c)
Figure 2: (a) Door-opening environment in DoorGym. Proximal Policy Optimization (PPO) and IPO tend to find

qualitatively different policies when trained on domains with low door hinge friction. PPO tends to find a
policy that uses the outside of the hook (b), while IPO finds a robust hooking strategy (c).

variances resulting from causal relationships present across domains (e.g. key color does not cause
rewards and thus rewards are invariant to the color). To embody this principle, we leverage a close
connection between causality and invariance (Section 3) in an approach we refer to as Invariant Pol-
icy Optimization (IPO). The key idea is to learn a representation that makes the optimal policy built
on top of this representation invariant across training domains. Effectively, this approach attempts
to learn and exploit the causes of successful actions. We demonstrate that IPO exhibits significantly
stronger generalization compared to traditional on-policy methods in three different scenarios (Sec-
tion 5): a linear-quadratic output feedback problem with distracting observations, an instantiation
of the colored-key problem, and an example where a robot must learn to open doors with varying
physical properties (Figure 2 (a)).

1.1. Related Work

Quantifying generalization. The problem of finding policies that generalize beyond their training
domain is becoming an increasingly popular topic as reinforcement learning continues to mature
and a number of recent studies have attempted to quantify and understand the generalization chal-
lenge in RL. In Song et al. (2019), the authors quantify the effects of observational overfitting,
where learned policies are sensitive to irrelevant observational features. Benchmark suites includ-
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ing Sonic Nichol et al. (2018) and Atari 2600 games Mnih et al. (2013) have also been proposed to
quantify generalization. Recently, CoinRun Cobbe et al. (2019b) and the broader Procgen Bench-
mark Cobbe et al. (2019a) use procedural generalization of environments at controllable levels of
difficulty to demonstrate that effective generalization can require an extremely large number of
training environments. Another manifestation of the generalization gap is the sim-to-real problem
in robotics: agents trained in simulation overfit to this domain and fail to operate in hardware Tobin
et al. (2017); Peng et al. (2018); Tan et al. (2018).

Regularization and domain randomization. The most common approach for improving the
out-of-domain generalization of a learning algorithm is to add different forms of regularization.
Popular ones borrowed from supervised learning include L2 regularization, dropout Srivastava et al.
(2014), and batch normalization Ioffe and Szegedy (2015); each of these has been shown to im-
prove generalization Cobbe et al. (2019b). While practical and easy to implement, these methods
typically do not explicitly exploit any structure of the RL problem. Another approach is to constrain
the agent’s policy to only depend on a set of learned task-relevant variables, which are found by
introducing an information-theoretic regularizer Pacelli and Majumdar (2020); Goyal et al. (2019).
These methods have been shown to generalize to new domains that contain task-irrelevant features
not present during training. However, the task-relevant variables are not guaranteed to exploit causal
relationships in the environment, which is the focus of this paper. Data augmentation and domain
randomization have also been shown to be particularly useful in crossing the sim-to-real barrier
Urakami et al. (2019); Peng et al. (2018); Akkaya et al. (2019). These methods are complementary
to the approach presented here and could potentially be used to generate a diverse set of training
domains for our method.

Distributional robustness. The PAC-Bayes Control approach Majumdar et al. (2020); Veer and
Majumdar (2020) provides a way to make provable generalization guarantees under distributional
shifts. This approach is particularly useful in safety-critical applications where it is important to
quantify the impact of switching between training and test domains. Another approach that provides
robustness guarantees is to train with adversarial perturbations to the underlying data distribution
Sinha et al. (2017). However, the challenge with both of these approaches is that they require an
a priori bound on how much the test domain differs from the training domain (e.g., in terms of an
f -divergence). In contrast, the recently proposed risk-extrapolation method Krueger et al. (2020)
promotes out-of-distribution generalization by encouraging robustness of hypotheses over affine
combinations of training risks. This method is shown to improve performance of RL agents when
their state space is augmented with noisy copies of true system states.

Causality and invariance. Recently, the task of learning causal predictors has drawn inter-
est in the supervised learning setting. An approach formalized in Peters et al. (2016) attempts to
find features that are causally linked to a target variable by exploiting the invariance of causal re-
lationships Pearl (2009); Peters et al. (2017). This idea was expanded upon in the invariant risk
minimization (IRM) approach Arjovsky et al. (2019), which formulates the problem in terms of
finding a representation such that the optimal classifier built on top of this representation is invariant
across domains. This results in classifiers that ignore spurious correlations that may exist in any
single domain. The formulation leads to a challenging bilevel optimization problem and is tackled
via a regularizer that approximates its solution. In Ahuja et al. (2020), the authors present a game-
theoretic reformulation of the IRM principle and propose a new algorithm, known as IRM-Games,
which offers better empirical results. The approach presented in Teney et al. (2020) uses a variance
regularization scheme to find approximately-invariant classifiers. Our approach adapts ideas from
causality and invariance to RL settings by learning representations that invariantly predict actions
across domains. We provide more background on invariance, causality, and IRM in Section 3.
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Causality in RL. Lastly, there are a number of recent methods that attempt to exploit causality
in RL. For example, Dasgupta et al. (2019) observed that, in some instances, causal reasoning can
emerge in agents trained via meta-learning. Other approaches explicitly attempt to learn causal
graphs that describe the dynamics of the agent’s environment. Along these lines, Nair et al. (2019)
proposes a two-phase training process where interactions with the environment are first used to learn
the causal graph of the environment, and then a policy that exploits this graph is trained. Finally, the
IRM method has recently been applied to RL problems. In Zhang et al. (2020), the authors attempt
to learn a causal Markov decision process (MDP) that is bisimilar to the full MDP present during
training. This formulation requires learning a model for both the causal and full dynamics of the
system, a mapping between the two, and a causal model of the rewards. Standard RL algorithms
are then used in conjunction with these causal models to produce a final policy. This approach is
distinct from the one in this paper, which focuses on identifying the causes of successful actions,
which is potentially simpler.

2. Problem Formulation
We are interested in the problem of zero-shot generalization to environments that can be significantly
different from environments seen during training. We formalize this as follows. Let st = (sat , s

e
t )

denote the joint state of the agent and environment. In the colored-keys example (Section 1), sat
corresponds to the location of the robot at time t, while set corresponds to locations of the obstacles,
key, door, and goal. In our formulation, different environments correspond to different (initial) states
of the environment (e.g., different configurations of obstacles, key, door, and goal). We denote the
agent’s actions, observations, and rewards by at ∈ A, ot ∈ O, and rt ∈ R respectively.

During training, we assume access to multiple sets of environments {edi }
nd
i=1 from different

domains d ∈ Dtr. We assume that the action space A and observation space O are shared across
all domains (state spaces need not be shared). Each domain d corresponds to a partially observable
Markov decision process (POMDP) Thrun et al. (2005) with dynamics mapping pd(st+1|st, at),
observation mapping pd(ot|st), and reward mapping pd(rt|st, at). In the colored-keys example,
domains differ (only) in terms of the observation mapping; in particular, each domain assigns a
particular color to keys. Each domain also defines a distribution Dd over environments.

Our goal is to learn a policy that generalizes to domains Dall ⊇ Dtr beyond the training do-
mains (e.g., generalizing to key colors not seen during training). Specifically, let Re(π) denote the
expected cumulative reward

∑
t rt (over a finite or infinite horizon) when policy π is executed in

environment e. We would then like to maximize the worst-case rewards over all domains:

Rall(π) := min
d∈Dall

Rd(π) := min
d∈Dall

E
e∼Dd

[
Re(π)

]
. (1)

Without further assumptions on the relationship betweenDtr andDall, finding a policy that performs
well on domains Dall may be impossible. We discuss this further in Section 4.

3. Background: Invariance and Causality
In this section, we provide a brief exposition of causality and its relationship to invariance. We refer
the reader to Peters et al. (2017); Arjovsky et al. (2019); Pearl (2009); Ahuja et al. (2020) for a
thorough introduction.

Definition 1 (Structural Causal Model Peters et al. (2017)) A structural causal model (SCM) C =
(S, η) governing the random vector x := (x1, . . . , xm) is a collection S of m assignments:

Sj : xj ← fj(Pa(xj), ηj), j = 1, . . . ,m, (2)
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where Pa(xj) ⊆ {x1, . . . , xm}\{xj} are the parents of xj , the η1, . . . , ηm are independent noise
variables, and each fj is a mapping from these variables to xj . The graph G of an SCM is obtained
by associating one vertex for each xj and edges from each parent in Pa(xj) to xj . We assume
acyclic causal graphs. We refer to the elements of Pa(xj) as the direct causes of xj .

Definition 2 (Intervention Peters et al. (2017)) Consider an SCM C = (S, η). An intervention
d changes one or more of the structural assignments to obtain a new SCM Cd = (Sd, ηd) with
assignments:

Sd
j : xj ← fdj (Pad(xj), η

d
j ), j = 1, . . . ,m. (3)

We say that the variables whose structural assignments we have changed have been intervened on.

Figure 3(a) shows the causal graph for the RL formulation in Section 2. Here, the reward rt depends
on the action at and a set of “reward-relevant” variables s̃t. Thus, Pa(rt) = {s̃t} ∪ {at}. In our
running colored-keys example, s̃t is purely a function of the agent’s state sat and the goal location.

st

ot

rt at

s̃t

st+1

(a)

ot

at

ht

�

⇡

(b)
Figure 3: (a) Causal graph corresponding to our RL

setting. Here, st is the state, ot is the ob-
servation, and at is the action. The reward
rt depends only on s̃t and at. (b) We seek
a representation Φ : ot 7→ ht such that
there exists π : ht 7→ at that is simulta-
neously optimal across domains.

Modularity principle Bareinboim et al. (2012);
Peters et al. (2017). The modularity principle es-
tablishes a close relationship between causality and
invariance: a set of variables {x1, . . . , xk} are the
direct causes of y if and only if the conditional prob-
ability p(y|x1, . . . , xk) remains invariant for all in-
terventions where y has not been intervened on. This
is also related to the notion of “autonomy” and the
principle of independent mechanisms (Peters et al.,
2017, Ch. 2.1). As an example, consider the reward
rt to be the variable of interest in Figure 3 (a). Then,
(s̃t, at) are the direct causes of rt if and only if for
all interventions where rt has not been intervened
on, p(rt|s̃t, at) remains invariant. Thus, in the con-
text of the colored-keys example, s̃t does not contain
any color-related information.

Invariant Risk Minimization (IRM). IRM Arjovsky et al. (2019) exploits the modularity prin-
ciple in the context of supervised learning. One assumes datasets {(xdi , ydi )}nd

i=1 from multiple
training domains1 d ∈ Dtr corresponding to different interventions on the data-generating process
that do not intervene on the target variable y. Here xdi ∈ X ⊆ Rnx and ydi ∈ Y ⊆ Rny . The
goal is to learn a data representation Φ : X → H ⊆ Rnh that elicits an invariant predictor w ◦ H
across training domains, i.e., a representation Φ such that there exists a classifier w : H → Y that
is simultaneously optimal for all training domains d ∈ Dtr. Intuitively, the representation Φ should
capture the direct causes of y and thus eliminate any features in x that spuriously correlate with y.
The optimization problem associated with IRM is a challenging bi-leveled one. The authors of Ar-
jovsky et al. (2019) propose IRM-v1, where a regularization scheme is used to find a representation
Φ that leads to classifiers that are approximately locally optimal across training domains.

IRM Games. Inspired by IRM, the authors of Ahuja et al. (2020) demonstrate that the set of
invariant predictors corresponds to the set of pure Nash equilibria of a game played among nd :=
|Dtr| players. Each player (corresponding to a training domain d) can choose its own classifier wd

and is trying to maximize its own utility function: −Ld(wav ◦Φ), where Ld(·) is the loss on domain

1. We note that Arjovsky et al. (2019) uses the term “environment” instead of “domain”. However, we use “domain”
since “environment” has a different meaning in RL contexts.
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d and wav(·) := 1
nd

∑nd
d=1w

d(·). While finding Nash equilibria for continuous games is challenging
in general, the game theory literature contains several heuristic schemes. In Ahuja et al. (2020), the
authors propose a strategy based on best response dynamics Barron et al. (2010), where players take
turns maximizing their utility functions. The resulting algorithm achieves similar or better empirical
performance as compared to IRM-v1, with significantly reduced variance.

4. Invariant Policy Optimization
We now describe our novel reinforcement learning algorithm, which we refer to as invariant policy
optimization (IPO). The key insight behind this algorithm is to implement the following invariance
principle: learn a representation Φ : O 7→ H ⊆ Rnh that maps observations ot to ht ∈ H in a
manner that supports invariant action prediction (see Figure 3 (b)). More precisely, the goal is to
learn a representation Φ such that there exists an “action-predictor” π : H → A built on top of
this representation that is simultaneously optimal across all training domains.2 We will refer to the
resulting policy π ◦Φ as an invariant policy. This invariance principle can be formally embodied as
the following optimization problem:

maximize
Φ:O→H
π:H→A

nd∑
d=1

Rd(π ◦ Φ) subject to π ∈ argmax
π̄:H→A

Rd
(
π̄ ◦ Φ

)
, ∀d = 1, . . . , nd. (4)

Here, Rd is the reward associated with domain d, as defined in Section 2. Intuitively, given a
set of training domains, IPO attempts to learn a representation that corresponds to the “causes of
successful actions”. This interpretation elucidates the role of the different training domains; these
must correspond to different interventions on the causal graph shown in Figure 3 (a) that leave
optimal actions unaffected. Assuming a diverse set of training domains, one learns a representation
that eliminates features that spuriously correlate with good actions (i.e., actions that achieve high
rewards). For example, in the colored-keys problem, such a representation corresponds to one that
eliminates color from observations. By eliminating such features, an invariant policy generalizes
well to novel domains corresponding to unseen interventions on the spurious features.

Our algorithmic approach for IPO is inspired by the game-theoretic formulation of Ahuja et al.
(2020) (see Section 3). We endow each domain d with its own policy πd and define an overall aver-
aged policy πav(ht) := 1

nd

∑nd
d=1 π

d(ht) .3 The optimization problem behind IPO then becomes:

maximize
Φ,π1,...,πd

nd∑
d=1

Rd

(
1

nd

nd∑
d=1

πd ◦ Φ︸ ︷︷ ︸
:=πav◦Φ

)
(5)

subject to πd ∈ argmax
π̄d

Rd

(
1

nd

[
π̄d ◦ Φ +

∑
i 6=d

πi ◦ Φ
])
, ∀d = 1, . . . , nd.

Next, we relate Problem (5) to a game played between nd players. Each player corresponds to a
domain d and chooses a policy πd to maximize its own utility function Rd(πav ◦Φ). Since Problem
(5) is identical to the one in Ahuja et al. (2020) for finding invariant representations (with policies
playing the role of classifiers), the results from Ahuja et al. (2020) carry over to our setting. In
particular, under mild technical assumptions on the policies, the set of pure Nash equilibria of the
game correspond to the set of invariant policies. We refer the reader to Ahuja et al. (2020) for details

2. For the ease of exposition, we discuss the case of memoryless policies. However, it is straightforward to handle
policies with memory (e.g., by augmenting observations with a memory state).

3. Further details on this averaging step for stochastic policies are provided in the appendix of the extended addition of
this paper Sonar et al. (2020).
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Algorithm 1 Invariant Policy Optimization (IPO)
1: for iter = 1, 2, . . . itermax do
2: if Fixed-Φ then
3: Φ = I (identity map)
4: else
5: Φ← PPO

(∑nd

d=1R
d(πav

cur ◦ Φ)
)
// Update Φ via an iteration of proximal policy optimization

6: end if
7: for i = 1, . . . ,K, d = 1, . . . , nd do
8: for d = 1, . . . , nd do
9: πd ← PPO

(
Rd(πav ◦ Φ)

)
// Update πd while keeping πi with i 6= d fixed.

10: Define πav(·) := 1
nd

∑nd

d=1 π
d(·)// Averaging

11: end for
12: end for
13: end for

on the technical assumptions, but note that these are satisfied by a wide range of function classes
(e.g., ReLu networks with arbitrary depth, linear functions, and functions in Lp spaces).

While finding Nash equilibria for continuous games such as the one above is difficult in general,
the game theory literature has developed several approximate approaches that demonstrate good
performance in practice. Here, we adapt the strategy based on best response dynamics Barron et al.
(2010) proposed in Ahuja et al. (2020) to our setting. The resulting IPO training procedure is
presented in Algorithm 1. The for-loop in lines 8–11 implement the best-response dynamics; the
players (corresponding to the different domains) take turns choosing πd in order to optimize their
own objectiveRd(πav◦Φ). We choose to implement the updates using proximal policy optimization
(PPO) Schulman et al. (2017). However, this choice is not fundamental and one may implement
the updates using other policy gradient methods. Algorithm 1 can also accommodate actor-critic
methods. In this version, each domain d has both an actor πd and a critic vd. In the policy-update
steps, one updates both the actor and the critic using PPO.

Line 5 of the algorithm periodically updates the representation Φ. However, as demonstrated in
Ahuja et al. (2020), simply fixing Φ = I (identity) is an effective approach and can (under certain
conditions) recover invariant predictors that extract causal features (and ignore non-causal factors
such as color in the colored-key example). The intuition is that the burden of extracting causal
features from observations is simply shifted to π (the portion of the overall policy that maps the
output of Φ to actions). In our numerical experiments (Section 5), we did not find significant
benefits to periodically updating Φ.4

5. Examples
Next, we demonstrate the generalization benefits afforded by IPO on three examples. Code for all
our examples is available on GitHub: https://github.com/irom-lab/Invariant-Policy-Optimization.git.

5.1. Linear Quadratic Regulator with Distractors

We first apply our approach to the linear-quadratic regulator (LQR) problem Anderson and Moore
(2007) modified to include high-dimensional “distractor” observations. There has been a growing
interest in LQR as a simplified surrogate for deep RL problems Dean et al. (2019); Tu and Recht
(2018); Fazel et al. (2018); Agarwal et al. (2019). Here we consider the output-feedback control

4. Further discussion on the choice of Φ = I is provided in the appendix of the extended edition of this paper Sonar et al.
(2020).
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Number of training domains 2 3 4 5 10
Gradient descent 97.7±5.4 90.0±9.2 82.6±4.3 78.6±5.4 68.8±3.9
Overparameterization 86.2±3.0 75.3±4.4 69.4±1.8 64.5±1.9 51.4±1.0
IPO (ours) [Fixed-Φ] 78.8±3.5 64.8±2.3 57.7±1.0 52.3±1.8 43.2±1.1
IPO (ours) [Variable-Φ] 71.3±2.1 62.7±2.4 57.8±1.0 53.9±1.1 45.3±0.45
LQR oracle 32.1 32.1 32.1 32.1 32.1

Table 1: LQR with distractors: comparison of IPO with two baselines (gradient descent and overparameterization)
with distractor dimension ny = 1000 and varying number of training domains. IPO demonstrates stronger
generalization (lower costs) compared to the baselines. The mean and std. dev. are across 10 seeds.

problem proposed in Song et al. (2019) as a benchmark for assessing generalization with respect to
changes in the observation model. The dynamics of the system are described by st+1 = Ast +Bat,
where st ∈ Rns , at ∈ Rna , and A,B are fixed matrices. The agent receives a high-dimensional
observation vector ot = (Wcst,Wdst), where Wc and Wd are semi-orthogonal matrices. This
ensures that the portion of the observation corresponding to Wcst ∈ Rns contains full information
about the state, while Wdst ∈ Rny is a high-dimensional “distractor.” The goal is to choose policies
of the form at = Kot in order to minimize the infinite-horizon LQR cost

∑∞
t=0 s

T
t Qst + aTt Rat.

Here, a domain corresponds to a particular choice of Wd; all other parameters (A,B,Q,R,Wc)
are shared across domains and unknown to the agent. During training time, one learns a policy Kot
using nd domains. At test time, the learned policy is assessed on a new domain. In the case where
there is a single domain (used for both training and test) and ot = st, one can find the globally
optimal policy via gradient descent (despite the non-convexity of the problem) Fazel et al. (2018).
However, as demonstrated in Song et al. (2019), simple policy gradient using the combined costs
of multiple training domains finds a policy that overfits to the training domains in the more general
setting considered here. Intuitively, this is because the learned policy fails to ignore the distractors.

For our numerical experiments, we choose nx = na = 20 and Q = R = I20×20. The matrices
A and Wc are random orthogonal matrices, B is I20×20, and the Wd are random semi-orthogonal
matrices (different for each domain). For IPO, we employ a policy n−1d

∑nd
i=1K

d
i that averages

policies Kd corresponding to the training domains. Instead of PPO, we simply use gradient descent
to perform policy updates. 5

We compare our approach with two baselines: (i) gradient descent on K using the combined
cost of nd training domains, and (ii) gradient descent using an overparameterized class of policies
with two layers (i.e., K = K1K2) and hidden dimension of 10na. Interestingly, Song et al. (2019)
found that this form of overparameterization induces an implicit regularization towards “simpler”
policies (i.e., ones that are less “dependent” on the distractors). We present results using both the
Fixed-Φ version of IPO (ref. Algorithm 1) and the version where Φ is optimized. In the latter ver-
sion, we choose Φ to be linear (with output dimension 10na). Table 1 compares the generalization
performance of the learned policies to new domains as we vary the number of training domains.
Here, the distractors have dimension 1000. Consistent with Song et al. (2019), we find that over-
parameterization forms a strong baseline for this problem. However, IPO significantly outperforms
both baselines. As expected, performance improves with increasing number of training domains
and tends towards the performance achieved by an “oracle” policy that has access to the full state
st on the test domain. Note that the results using Fixed-Φ are similar to the version with optimized
Φ, which is consistent with the arguments provided in Section 4. Table 2 assesses the impact of the
distractor dimension. Here, we fix the number of training domains to five. Again, IPO demonstrates
significantly improved performance.

5. Hyperparameters and implementation details for all examples are provided in the appendix of the extended edition of
this paper Sonar et al. (2020).
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Distractor dimension 100 500 1000 1500 2000
Gradient descent 46.3±2.4 70.3±4.5 78.6±5.4 88.7±5.6 94.7±8.2
Overparameterization 36.3±0.5 54.3±2.0 64.5±1.9 71.6±2.0 79.1±3.4
IPO (ours) [Fixed-Φ] 42.5±2.0 50.8±1.1 52.3±1.8 55.0±1.7 59.4±2.2
IPO (ours) [Variable-Φ] 38.5±0.6 48.0±1.1 53.9±1.1 58.1±1.5 62.0±1.6
LQR oracle 32.1 32.1 32.1 32.1 32.1

Table 2: LQR with distractors: comparison of IPO with two baselines (gradient descent and overparameterization)
with varying dimensionality of distractors and nd = 5. IPO demonstrates stronger generalization (i.e., lower
costs) compared to the two baselines. The reported mean and std. dev. are across 10 different seeds.

5.2. Colored-Key Domains

We now consider the colored-keys problem introduced in Section 1. In this example, a robot is
placed in a grid-world that contains a goal (located in a room), a door, and a key (see Figure 1). The
robot is presented with a reward if it reaches the goal. Using this sparse reward signal, it must learn
to first navigate to the key, use this to open the door, and then navigate to the goal. In this setting, an
environment corresponds to a particular configuration of the key, door, goal, and obstacles. Different
domains correspond to different key colors.

We implement our approach on 5 × 5 grid-worlds using MiniGrid Chevalier-Boisvert et al.
(2018). Observations in MiniGrid correspond to 5 × 5 × 3 values; the three channels encode the
object type (e.g, door), object color, and object state (e.g., open/closed) for a 5 × 5 neighborhood
around the robot. The robot receives a sparse reward of 1 − 0.9t/T , where t is the time taken to
reach the goal and T = 250 is the time-limit for completing the task. During training, the robot has
access to environments from two domains corresponding to red and green keys. We use 48 training
environments split evenly between these domains. At test-time, the robot is placed in environments
with grey keys. This color choice is motivated by the fact that in MiniGrid, colors are encoded using
integers (e.g., red: 0, green: 1), and grey corresponds to the color that is “furthest away” in terms of
this encoding (grey: 5). We implement IPO with an actor-critic architecture and the Fixed-Φ option
(given the results in Section 5.1 and argument in Section 4). Table 3 reports the average rewards
on 50 test environments from the training and test domains. We compare our approach to PPO
Schulman et al. (2017) trained to maximize rewards combined across training environments. IPO
achieves better generalization to the new domain and is also more consistent across training seeds.

Key color Red (training) Green (training) Grey (testing)
PPO 0.94±0.004 0.94±0.005 0.80±0.12
IPO (ours) 0.94±0.003 0.94±0.003 0.85±0.03

Table 3: Colored-key domains: comparison of the average reward on 50 test environments drawn from different do-
mains. The reported mean and std. dev. are across 10 different seeds.

Friction 1.1 1.2 1.3 1.4 1.5
PPO 96.6±2.1 94.0±3.6 89.8±8.1 83.4±12.0 78.2±13.7
IPO (ours) 99.0±1.3 96.0±2.7 93.8±5.9 87.4±9.8 81.0±12.6

Table 4: Door-opening environments. Training was performed using two domains with 0.0 and 0.1 friction respectively.
The table compares the door-opening success rates for PPO and IPO on 100 test environments with higher
friction. The reported mean and std. dev. are across 5 seeds.

5.3. DoorGym

Finally, we consider a more challenging task where a robot must learn to open doors (Figure 2 (a)).
We implement this example using Doorgym Urakami et al. (2019), which uses MuJoCo Todorov
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et al. (2012) as its simulation engine. Each environment in Doorgym corresponds to a particular
setting of physical parameters including door position, height, width, mass, handle location, door
hinge spring constant, and hinge friction. Observations correspond to the pose (and velocity) of the
gripper (hook), along with the position of the door handle. Actions correspond to torques applied
on the gripper. During training, we use environments from two domains. The first domain corre-
sponds to environments with zero friction at the door hinge, while the second domain corresponds
to the friction set to 0.1; all other environment parameters (e.g., door position, height, etc.) are
randomized. We use 32 training environments, with a 75%-25% split between the two domains.

We implement IPO using policies with an actor-critic architecture and the Fixed-Φ option. We
compare IPO with PPO implemented using the same architecture and trained using environments
pooled from both domains. We use the reward function specified in Urakami et al. (2019) for
training. Table 4 presents the door-opening success rates of both methods on test environments with
the friction set to higher values than seen during training. IPO demonstrates improved generalization
to these test domains. Perhaps more interesting than the quantitative difference between the two
methods, we observe a qualitative difference between the policies learned using IPO and PPO.
Across five seeds, PPO learns a policy that uses the outside of the hook on three seeds (Figure 2
(b)). On one seed, PPO learns to use the hook as one would expect (Figure 2 (c)) and demonstrates
a mixture of the two behaviors on the other seed. While using the outside of the hook is a viable
strategy for lower friction values, this strategy is not as robust for higher values. In contrast, IPO
learns to perform the hooking maneuver shown in Figure 2 (c) on all five seeds.6

6. Discussion and Conclusions
We have considered the problem of learning policies with strong generalization beyond training
domains. The key idea behind Invariant Policy Optimization (IPO) is to learn representations that
support invariant action prediction across different domains. We implemented the proposed tech-
niques on: (i) linear quadratic regulator (LQR) problems with distractor observations, (ii) an ex-
ample where an agent must learn to navigate to a goal by opening a door using different colored
keys in its environment, and (iii) an example where a robot must learn to open doors with varying
physical properties. We compared our approach with standard policy gradient methods (e.g., PPO)
and demonstrated significant improvements in generalization performance on unseen domains.

Future work. As IRM is a recently developed technique for training robust models, the theory
and methods surrounding it are still evolving (see e.g. Gulrajani and Lopez-Paz (2020); Rosenfeld
et al. (2020); Nagarajan et al. (2020) for recent developments). Due to the structural similarities be-
tween our method and IRM, improvements to IRM can be readily transferred to IPO. This includes
both theoretical developments surrounding IRM and improved bi-level optimization schemes (here
best-response was chosen for simplicity and empirical performance).

There are also a number of specific directions for improvements to IPO. On the theoretical
front, an important direction for future work is to provide rigorous guarantees on generalization to
novel domains. One potential avenue is to combine the algorithmic techniques presented here with
recent results on PAC-Bayes generalization theory applied to control and RL settings Majumdar
et al. (2020); Veer and Majumdar (2020). On the algorithmic front, an interesting direction is to use
domain randomization techniques to automatically generate new training domains that can be used
to improve invariant policy learning (e.g., automatically generating domains with different colored
keys in the colored-keys example). Finally, a particularly promising future direction is to explore
the application of IPO to robotics problems involving sim-to-real transfer, where one considers
simulation and reality as different domains to learn a policy that is invariant across them.

6. A video of both policies is available at https://youtu.be/J3O474yZ2Tc.
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