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Abstract
Koopman operators provide tractable means of learning linear approximations of non-linear dy-
namics. Many approaches have been proposed to find these operators, typically based upon ap-
proximations using an a-priori fixed class of models. However, choosing appropriate models and
bounding the approximation error is far from trivial. Motivated by these difficulties, in this paper
we propose an optimization based approach to learning Koopman operators from data. Our results
show that the Koopman operator, the associated Hilbert space of observables and a suitable dic-
tionary can be obtained by solving two rank-constrained semi-definite programs (SDP). While in
principle these problems are NP-hard, the use of standard relaxations of rank leads to convex SDPs.
Keywords: Koopman Operators, Learning Nonlinear Dynamics, Nonlinear Identification.

1. Introduction and motivation

Many scenarios involve predicting the output of an unknown non-linear system based on past mea-
surements and some a-priori information. Recently, substantial interest has been devoted to the use
of Koopman operator based methods to solve this problem, as a tractable alternative to nonlinear
identification. An excellent introduction to the topic is given in Mezić (2013), and more recent ref-
erences can be found in Lusch et al. (2018); Otto and Rowley (2019). Given a non-linear discrete
time system of the form:

ξk+1 = f(ξk) where ξk =
[
xTk−r+1 . . . xTk

]T
, xj ∈ Rn (1)

let H denote a Hilbert space of functions ψ(ξ) : Rnr → Rmr(the so called observables). The
KoopmanK operator acts on the elements of H, by propagating their values one step into the future:

(K ◦ψ)(ξk) = (ψ ◦ f)(ξk) = ψ(ξk+1) (2)

K is a linear operator, albeit typically infinite dimensional. When it has a countable set of
eigenfunctions φi(.) with eigenvalues µi, the observables ψ(.) can be propagated as follows. Let
a =

[
a1 . . .

]T denote the coordinates of ψ(.) in the basis spanned by φ(.), that is

ψ(.) =
∑

aiφi(.)
.
= Φ(.)a, where: Φ(.) =

[
φ1(.) . . .

]
Then

(K ◦ψ)(.) =
∑

aiµiφi(.) = Φ(.)Ma,where M = diag(µi)
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LEARNING KOOPMAN OPERATORS

In particular, if the state ξ ∈ span{φi}, then ξk+1 = Φ(ξk)Ma. While this approach leads for
to linear representations of (1), identifying the Koopman eigenfunctions from data is not trivial.

Extended Dynamical Mode Decomposition (EDMD) type approaches seek to identify approxi-
mations to Koopman operators over a restricted subspace, defined by the span of a given dictionary
D(.)

.
=
[
ψ1(.) . . .ψN (.)

]
. In this subspace, the Koopman operator can then be approximated by a

matrix K ∈ RN×N that propagates the coefficients of the expansion, that is, for ψ(.) = D(.)a, then
(K ◦ ψ)(.) = D(.)Ka. Typically, given experimental data X

.
=
[
ξ1 ξ2 . . . ξT

]
, K is found

by minimizing the one-step prediction error over a set of observables. Specifically, this approach
considers m observables ψ(j)(.)

.
= D(.)aj , each defined by a coordinate vector aj , and solves:

K = argmin
K

m∑
j=1

T−1∑
k=1

‖[D(ξk+1)−D(ξk)K]aj‖22 (3)

where D(ξk) is the matrix obtained by evaluating the dictionary a the point ξk. EDMD often works
well, but requires choosing a suitable dictionary, with the approximation error strongly hinging on
this choice. This approximation error can be reduced by considering larger dictionaries, but this
may lead to overfitting of the data and poor generalization capabilities Otto and Rowley (2019).

Deep learning motivated approaches use a neural network parameterized by a set of weights W
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Figure 1: Top: Finding Koopman operators via Semi-Definite
Programs. The first SDP (Section 3.3) finds the ob-
servables yk corresponding to given data xk, the
Koopman operator K, and the Loewner matrices that
encode the mapping xk → yk. The second SDP (Sec-
tion 3.4) finds the inverse mapping yk → xk. Bot-
tom: The pipeline to predict xk+1/xk . . . ,xk−r uses
explicit expressions for the predictions of the model
K. Thus, it only requires O(r) operations.

as dictionary. The Koopman operator
K is found by alternatively minimiz-
ing the prediction error over W and
K. Alternating minimization meth-
ods can get trapped in local minima.
Further, the issue of which archi-
tectures are best suited to represent
dynamical systems is largely open.
Recent work Lusch et al. (2018);
Otto and Rowley (2019) proposed en-
coder/decoder type architectures that
map states ξ to latent variables y and
impose approximately linear dynam-
ics for the evolution of the latter. A
salient feature of these approaches is
that the states ξ are no longer required
to be in the span of the Koopman
eigenfuctions. As shown in Otto and
Rowley (2019), the use of a nonlin-
ear decoder to map y back to ξ (as
opposed to a linear one if ξ ∈ span
{ D}) results in substantially smaller
dictionaries. Still, these methods re-
quire ad-hoc parameter selection (dimension of the latent variables, order of the dynamics) and, as
before, can lead to local minima.

An alternative approach, HAVOK Brunton et al. (2017), rooted in Takens embedding theorem
Takens (1981), seeks to model the trajectories of (1) by considering a forced linear system, whose
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dynamics are precisely the Koopman operator. The states and forcing term are obtained from the
singular value decomposition of a Hankel matrix Hx, formed by delayed measurements of xk. As
shown in Brunton et al. (2017) this approach successfully recovers the trajectories of nonlinear
chaotic systems, as linear combinations of a given basis. However, this linear reconstruction, com-
bined with the difficulty of identifying the linear dynamics from the svd of Hx Brunton et al. (2017)
can lead to high order models (e.g. a 14th order model for the third order Lorentz system).

In this paper, motivated by Fei Xiong et al. (2011); Xiong et al. (2013); Brunton et al. (2017);
Lusch et al. (2018); Otto and Rowley (2019), we propose an alternative, convex optimization based,
approach to the problem of data-driven identification of Koopman operators. The philosophy, illus-
trated in Fig. 1, uses delay coordinates, but, as in Lusch et al. (2018); Otto and Rowley (2019) does
not impose that the state of the system belongs to span of the Koopman eigenfunctions. Rather, we
identify a manifold of latent variables where the dynamics are linear and map back to state-space
via a non-linear transformations. The problems of finding the embedding manifold, the associated
Koopman operators and the mapping back to state-space are all recast as rank-constrained semi-
definite programs (SDPs). In turn, these can be relaxed to convex optimizations using the standard
weighted nuclear norm surrogate for rank. Advantages of the proposed approach include:

• A simple rank check allows for certifying that the solution to these convex SDPs is indeed the
Koopman operator underlying the given data.

• Does not specify a priory the dimension of the embedding or the order of the dynamics.
Rather, both of these can be obtained from the solution to the SDPs.

• Minimizing the order of the linear dynamics leads to simpler models than competing methods.

• In cases where the spectrum of the Koopman operator is not finite, it allows for obtaining
finite dimensional approximations with guaranteed approximation error.

• These SDPs have an underlying structure, chordal sparsity, that can be exploited to substan-
tially reduce computational complexity, leading to algorithms that scale linearly with the
number of data points.

The paper is organized as follows. In section 2 we formally state the problem under consid-
eration and summarize some needed results on rational interpolation. Section 3 contains the main
results of the paper. It shows that a Hilbert space H of observables, its associated Koopman dic-
tionary and eigenfunctions, and the mapping back to state-space can be found by solving rank-
constrained SDPs. Section 4 illustrates the proposed approach with some simple examples. Finally,
Section 5 summarizes the paper and points out to directions for extending its results. Due to space
constraints all technical proofs are omitted. They can be found in the ArXiV version of the paper
https://arxiv.org/pdf/2102.03934.pdf.

2. Preliminaries

For ease of reference, next we summarize our notation and recall some results on interpolation.
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2.1. Notation
|S| cardinality of the set S
x,M a vector in Rn (matrix in Rn×m)
⊗ Matrix Kronecker product
M � 0 the matrix M is positive semidefinite.
‖M‖∗ nuclear norm: ‖M‖∗ = Σ singular values of M.
Hm
y Hankel matrix with m columns associated with a vector sequence y(.), with block ele-

ments (Hm
y )i,j = yi+j−1

svec(M) (column-wise) vectorization of the unique elements of a symmetric matrix M.
smat(v) create a symmetric matrix M from the elements of v such that svec(M) = v

2.2. Rational Interpolants and Loewner Matrices

Given 2n scalar pairs (xi, yi), consider the problem of finding a rational function g(x)
.
=

∑m
k=1 akx

k∑m
k=1 bkx

k

such that yi = g(xi), i = 1, . . . 2n. Define the Loewner matrix
L ∈ Rn×n as :

L(x, y) =


y1−yn+1

x1−xn+1

y1−yn+2

x1−xn+2
. . . y1−y2n

x1−x2n
y2−yn+1

x2−xn+1

y2−yn+2

x2−xn+2
. . . y2−y2n

x2−x2n
...

...
. . .

...
yn−yn+1

xn−xn+1

yn−yn+2

xn−xn+2
. . . yn−y2n

xn−x2n

 (4)

Then, there exists a rational function of order at most m that interpolates the given data points if
and only if rank(L) ≤ m− 1 Antoulas and Anderson (1986); Ionita (2013).

2.3. Statement of the problem

Consider the nonlinear dynamical system:

xk+1 = f(xk, . . . ,xk−r+1) xj ∈ Rn (5)

where both the dynamics f(.) and its order r are unknown. Our goal is to identify its associated
Koopman operator, over a suitable space of observables, from experimental data x. Specifically:

Problem 1 Given a set of N trajectories {x(i)
k }

Ti
k=1, i = 1, . . . , N , x

(i)
k ∈ Rn, find a (functional)

dictionary D(.), a Hilbert space H of observables ψ(.) of the form:

ψ(ξk)
.
=
[
yTk−r+1 . . .y

T
k

]T ∈ span {D(ξk)} with yj ∈ Rm

where ξk
.
=
[
xk−r+1 . . .xk

]T (6)

and an operator K : H→ H such that (K ◦ψ)(ξk) = ψ(ξk+1).

Problem 1 is reminiscent of EDMD approaches. However, the main difference is that here we
seek to learn the dictionary D and the dimensions of the space H directly from the data, rather than
postulating a fixed dictionary and dimension. Further, if Problem 1 has a solution, the resulting
operator K is indeed the exact Koopman operator in H.
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Remark 1 As stated, Problem 1 is ill posed, since ‖ψ(.)‖ can be arbitrarily small or large. To
avoid this, and with an eye towards reconstruction of ξ from ψ, we will impose the additional
constraints:

1

M`(ξi)
‖ψ(ξi)−ψ(ξj)‖2 ≤ ‖ξi − ξj‖2 ≤Mu(ξi)‖ψ(ξi)−ψ(ξj)‖2 ∀ξj such that ‖ξi − ξj‖2 ≤ δ

y(ξk)
T
j y(ξk)j = (ξk)

T
j (ξk)j j = 1, . . . r, for all k in a given set of “anchor” points I

where yj denotes the jth block component of ψ(ξk) and the scalar δ and the set of anchor points
I are design hyperparameters. That is, we impose that (a) the mapping φ : ξ → ψ and its inverse
are locally Lipschitz continuous, with Lipschitz constants M`(ξi) and Mu(ξi); and (b) the function
ψ(.) is normalized to have components with unity gain at some given “anchor” points.

3. Learning Koopman Operators via Semi Definite Optimization

In this section we present the main theoretical result of the paper: a reformulation of Problem 1 as
a rank minimization subject to a positive semi-definite constraint. Since this problem is generically
NP hard, we then develop a tractable convex relaxation, along with optimality certificates.

3.1. Finding Koopman operators as a constrained rank minimization

Consider the following feasibility problem (in y, r,m):

Problem 2 Given a set of N trajectories {x(i)
` }

Ti
`=1, i = 1, . . . N , x

(i)
` ∈ Rn, find scalars r,m and

N trajectories y
(i)
k ∈ Rm, k = 1, . . . , Ti, such that the following holds:

rank (Hy
(r+1)) ≤ r, where Hy

(r+1) .=


H

(r+1)

y(1)

...
H

(r+1)

y(N)

 and H
(r+1)

y(i)

.
=


y
(i)
1 y

(i)
2 · · · y

(i)
r+1

y
(i)
2 y

(i)
3 · · · y

(i)
r+2

...
...

. . .
...

y
(i)
Ti−r y

(i)
Ti−r+1 · · · y

(i)
Ti


(7)

‖xs − xt‖2 ≤Mu(xs)‖ys − yt‖2
‖ys − yt‖2 ≤M`(xs)‖xs − xt‖2

}
∀(s, t) such that ‖xs − xt‖2 ≤ δ (8)

‖ys‖2 = ‖xs‖2 for all s ∈ I (9)

As shown next, the solution to Problem 1 (e.g the dictionary D, the embedding Hilbert space H and
the associated Koopman operator) can be constructed from any feasible solution to (7)-(9).

Theorem 1 Let (y
(i)
k , r,m) denote a feasible solution to (7)-(9) with y

(i)
k ∈ Rm and rank(Hy) =

r∗ ≤ r. Let Hy
(r∗+1) and NR(Hy

(r∗+1)) denote the Hankel matrix obtained by rearranging
the elements of Hy

(r+1) into r∗ + 1 columns, and its right null space, respectively. Note that
by construction rank(Hy

(r∗+1)) = r∗ and thus dim(NR(Hy
(r∗+1))) ≥ 1. Consider a vector

p ∈ NR(Hy
(r∗+1)), of the form p =

[
a0 . . . a(r∗−1) −1

]T . Let ρj , j = 1, . . . , r∗ denote the
roots of the polynomial P(ρ)

.
= ρr

∗ −
∑r∗−1

i=0 aiρ
i and define the r∗ vectors

vj
.
=
[
1 ρj ρ2j . . . ρr

∗
j

]T
5
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Finally, let V denote the Vandermonde matrix V =
[
v1 v2 . . . vr∗

]
. Then:

1. The desired dictionary D(.) has the matrix representation D = V ⊗ Im.

2. The Hilbert space H of observables is given by span(D), with the usual inner product.

3. The operator K : H → H with the matrix representation Λ = diag(ρi) ⊗ Im in the basis
defined by the columns of V is the Koopman operator associated with (1) in the space H.

Theorem 1 provides the foundation for constructing the Koopman operator from the solution
of an optimization problem, but is of limited practical value, due to several reasons: (i) It does not
indicate how to find m, the dimension of yk, or r, the “memory” of the system, and (ii) it leads to a
difficult, non-convex problem. Motivated by Fei Xiong et al. (2011), next we show that Problem 2
is equivalent to a SDP constrained rank-minimization. The starting point is to consider the Kernel
matrix with entries Kr,s

.
= yTr ys, where yr,ys denote the observables corresponding to points

xr,xs drawn from (not necessarily the same) training trajectories. Let y
(i)
s , s = 1, . . . Ti denote

the observables corresponding to the ith trajectory and define the (r + 1) × (r + 1) Gram matrix
G(i) .= (H

(r+1)

y(i) )TH
(r+1)

y(i) . The key observation is that both the entries of G(i) and the argument of
the constraints (8)–(9) are affine functions of entries of K, leading to the following result:

Theorem 2 Define the family of Gram matrices: G(i) = (H
(r+1)

y(i) )TH
(r+1)

y(i) =
∑Ti−r

`=0 K
(i)
`,r where

K
(i)
`,r =


(y

(i)
` )Ty

(i)
` (y

(i)
` )Ty

(i)
`+1 · · · (y

(i)
` )Ty

(i)
`+r

...
...

. . .
...

(y
(i)
`+r)

Ty
(i)
` (y

(i)
`+r)

Ty
(i)
`+1 · · · (y

(i)
`+r)

Ty
(i)
`+r


(note that K

(i)
`,r are submatrices of K). Consider the following rank minimization problem:

r∗ = min
K�0

rank(G
.
=
[
(G(1))T . . . (G(N))T

]T
) subject to: (10)

1
M2

u(xs)
‖xs − xt‖22 ≤ Ks,s − 2Ks,t +Kt,t

Ks,s − 2Ks,t +Kt,t ≤M2
` (xs)‖xs − xt‖22

}
∀(s, t) such that ‖xs − xt‖2 ≤ δ (11)

Ks,s = ‖xs‖22 for all s ∈ I (12)

Denote by K(i) the submatrix of K with entries (K(i))`,j = (y
(i)
` )Ty

(i)
j , and letm = maxi

{
rank(K(i))

}
.

Consider the factorizations (Y(i))TY(i) = K(i) with Y(i) ∈ Rm×Ti . Then, if r∗ < r + 1, the
columns y

(i)
k of Y(i) solve Problem 2.

3.2. Adding a regularization

Theorems 1 indicates how to find the observables ψ(.) ∈ H by solving a constrained optimization
problem. Further, these constraints guarantee that the mapping ψ(.) : Rrn → H locally satisfies
some Lipschiz and gain constraints. However these constraints alone do not guarantee that ψ(.) is
not arbitrarily complex, or even has the same functional form for all ξ. These issues can complicate
the task of finding an explicit form for the mapping, if one is needed. Next, we briefly indicate how
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to use additional degrees of freedom available in the problem to guarantee that ψ(.) is the simplest
possible mapping, in a sense precisely defined below, and has the same functional form for all ξ.

Consider a point ξk
.
=
[
xTk−r+1 . . . xTk

]T , and for each (block) component xj , denote by
Nxj the indexes of its nearest neighbors. Let Kxj be matrix with elements (Kxj )r,s = xTr xs for all

r, s ∈
{
j ∪ Nxj

}
. Similarly, given ψ(ξk)

.
=
[
yk−r+1 . . .yk

]T , let Kyj be the submatrix of K with

elements (Kyj )r,s = yTr ys for all r, s ∈
{
j ∪ Nxj

}
. For ease of notation, let κ(j)

x
.
= svec(Kxj ) ∈

Rq, κ(j)
y

.
= svec(Kyj ) ∈ Rq, where q .

=
(|Nxj |+1)(|Nxj |+2)

2 . Note that these vectors contain the
unique elements of the matrices Kxj , Kxj . Finally, let p = b q2c and define the Loewner matrix

Lxj

.
=


κy1−κyp+1

κx1−κxp+1

κx1−κxp+2

κy1−κxp+2
. . .

κy1−κyq

κx1−κxq

...
...

. . .
...

κyp−κyp+1

κxp−κxp+1
. . .

κyp−κyq

κxp−κxq

 (13)

where κxi ,κyi denote the ith component of κ(j)
x and κ(j)

y respectively. From the results in section
2.2, it follow that if rank(Lxj ) < p, then there exists a rational mapping of degree up to p − 1 that
maps the elements of Kxj to those of Kyj . Further, the degree of this mapping can be minimized
by minimizing the rank of Lxj with respect to the variables κyi , leading (locally) to the lowest order
rational mapping ψ(ξk). If a global, rather than local, rational mapping is desired, a similar idea
can be using involving all pairs x,y, rather than just the nearest neighbors of each point.

3.3. A Convex Relaxation

Theorem 2 allows for reducing Problem 1 to a constrained rank minimization problem. However,
this problem is still NP-hard. In order to obtain a tractable relaxation, we will replace the objective
(10) by

∑N
i=1 rank(G(i)) and add a term of the form λ1

∑T
j=1 rank(Lxj ), where T =

∑
Ti is the

total number of points. Then, proceeding as in Mohan and Fazel (2012), we will replace rank with
a convex surrogate, a weighted nuclear norm, where the weights are updates as each step of the
algorithm. Finally, in order to handle outliers, we will consider a “soft” version of (11)-(12), where
these are added to the objective as penalties. The complete algorithm is outlined in Algorithm 1. It
is worth noting that if the algorithm yields a solution G with rank(G) < r, this certifies that m is
indeed the Koopman operator. On the other hand, if the algorithm yields a solution G with minimum
singular value σmin, then an rth order approximate model mr can be obtained by performing PCA
on G. In this case the approximation error is bounded (in the Hankel norm sense) by

√
σmin.

3.4. Mapping observables to states

The approach presented in Section 3 finds the observables ψ(ξk) corresponding to a given trajec-
tory ξk, k = 1, . . . T . However, it does not explicitly provide a method for mapping a given ψ(ξ),
obtained for instance by using the Koopman operator to propagate a trajectory in observable space,
back to the corresponding point ξ in state space. Motivated by Roweis and Saul (2000) we propose
to find (pointwise) the mapping ψ → ξ by locally approximating the mapping between the embed-
ded space and ambient space kernels, Ky and Kx, with a rational function. Specifically, given a
point y∗ ∈ Rm, let Ny∗

.
=
{
yk : ‖y∗ − yk‖22 ≤ δ

}
and denote by X its preimage. We propose to

estimate x∗ by first finding Kxi,x∗ , the elements of Kx corresponding to xTi x∗, ∀xi ∈ X and then

7
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Algorithm 1 Reweighted ‖.‖∗ based Koopman Identification

1: initialize: iter = 0,W0 = I; V
(j)
0 = I, j = 1, . . . , T ; λ1, λ2, λ3, δ ← hyperparameters,

NN = {(s, t) : ‖xs − xt‖2 ≤ δ}, σ ←small number, r ← upper bound on system order.
2: Repeat: Solve

minK(i)�0 ‖WiterG‖∗ + λ1
∑T

j=1 ‖V
(j)
iterLxj‖∗ + λ2

∑
s∈I(Ks,s − ‖xs‖22)2

+λ3
∑

r,t∈NN max
{

0, 1
M2

u(xs)
‖xs − xt‖22 −Ks,s + 2Ks,t −Kt,t

}
+λ3

∑
r,t∈NN max

{
0,Ks,s − 2Ks,t +Kt,t −M2

` (xs)‖xs − xt‖22
}

Update

W(iter+1) =
(

G+σI
‖G+σI‖

)−1
, V

(j)
(iter+1) =

(
Lxj+σI

‖Lxj+σI‖

)−1
, iter = iter + 1

3: Until: rank(G) < r.
4: [U(i),S(i), (U(i))T ]← svd(K(i)), S(i) ← S(i)

‖S(i)‖ , r
(i)
k ← min r :

∑r
j=1 S

(i)
jj ≥ 0.99

5: Y(i) ← [U(i)(:, 1 : rk)]
T

6: [UG,R,V
T
G]← svd(G), m← VG(:, r + 1)

7: Output: embeddings Y(i), model m.

finding x∗ by factorizing Kx. Note that, in order to get a valid kernel compatible with the priors,
the elements Kxi,x∗ should be such that the completed matrix Kx � 0, rank(K) ≤ n, and the con-
straints (8)-(9) are satisfied. As shown next, under the assumption that the mapping G : Ky → Kx

is rational, then x∗ can be found by solving a rank minimization problem subject to semi-definite
constraints.

Consider the Kernel matrices Kx,Ky ∈ R(|X |+1)×(|X |+1), where the entries have been ordered
so that the elements of the form yTi y∗ and xTi x∗ appear in the first row and column. As before,
for ease of notation, let κx = svec(Kx), κy = svec(Ky). Note that κx,κy ∈ Rq, with q .

=
(|X |+1)(|X |+2)

2 , and that all inner products involving y∗ and x∗ appear in the first |X | + 1 elements
of κy and κx. Let p = b q2c and consider the following rank minimization problem:

min
κx

rank (L)subject to: (14)

κx1 − 2κxi + κxj ≤ δ2
κx1 − 2κxi + κxj ≤M2

u(xi)(κy1 − 2κyi + κyj )
κy1 − 2κyi + κyj ≤M2

` (xi)(κx1 − 2κxi + κxj )

 i = 2, . . . , |X |+ 1

j = (2|X |+4−i)(i−1)
2 + 1

(15)

Kx
.
= smat(κx) � 0, rank(Kx) ≤ n,κx1 = κy1 (16)

L =


κx1−κxp+1

κy1−κyp+1

κx1−κxp+2

κy1−κyp+2
. . .

κx1−κxq

κy1−κyq

...
...

. . .
...

κxp−κxp+1

κyp−κyp+1
. . .

κxp−κxq

κyp−κyq



8



LEARNING KOOPMAN OPERATORS

Theorem 3 Let κ∗x,L
∗ denote the solution to (14)-(16). If rank(L∗) < p, then (i) there exist a

rational function g(.) of degree at most p such that g(κyi) = κxi; and (ii) the vector x∗ defined by
the first row of X, where XTX = Kx satisfies constraints (8)-(9) in Problem 2.

Relaxing the rank in (14) and (16) to a weighed nuclear norm, leads to an algorithm similar to
Algorithm 1, based on solving a sequence of SDPs until rank deficient matrices L,Kx are obtained.

4. Illustrative Examples

Example 1: Lorentz Attractor. In this example we consider the Lorentz chaotic system:

ẋ1 = σ(x2 − x1); ẋ2 = x1(ρ− x3)− x2; ẋ3 = x1x2 − βx3; (17)

with parameters σ = 28, ρ = 10, β = 8
3 . We used 400 points of the trajectory starting at [−10.38 −

4.5366 35.1640]T , uniformly sampled every 0.0271 seconds to find the embeddings, and matlab’s
command ssest to estimate an 7th order model. Fig 2(a) shows the training and one step ahead
reconstructed data, that is the results of applying the encoder/decoder illustrated on the top of Fig. 1
to (i) train, (ii) project the training data, (iii) perform a one step ahead prediction and (iv) lift back.
Figure 2(b) shows the predictions obtained using the pipeline at the bottom of Fig. 1, for points
not part of the training data. As shown there, the proposed pipeline is indeed able to predict with
reasonable accuracy the one step ahead value of the trajectory, using a 7th order Koopman operator.
For comparison, Brunton et al. (2017) uses a 14th order model.

Figure 2: Lorentz attractor: Left: one step ahead prediction of training data. Right: one step ahead predic-
tion of new data.

Example 2: The Duffing Oscillator. Here we consider the system1:

ẋ1 = x2; ẋ2 = −0.5x2 − x1 − x31 + 0.42x3; ẋ3 = x4; ẋ4 = −x3 (18)

1. The conventional Duffing equation is a forced oscillator. Here we use the last two equations to generate the forcing
term sin(t).

9
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In this case, Algorithm 1 yielded an embedding y ∈ R3. We then used matlab’s command
ssest to estimate a second order model for each component of y. Fig 3 (left) shows the one step
ahead prediction of the training data. The right panel in Fig. 3 shows the predictions obtained using
the pipeline at the bottom of Fig. 1, for points not part of the training data. As before, the proposed
pipeline successfully predicts the next point in the trajectory.
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Duffing example: one step ahead prediction of training data (x1,x2)
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Duffing example: one step ahead prediction of new data (x1,x2)

new data to predict
one step ahead prediction
training data

Figure 3: Duffing oscillator one step ahead predictions of (left) training data and (right) new data.

5. Conclusions

This paper proposes a convex optimization approach to learning Koopman operators from data.
The main idea is to use delay coordinates and nonlinear, kernel based embeddings to recast the
problem as a rank-constrained optimization. In turn, this optimization can be relaxed to a tractable
semi-definite program. Salient features of this approach are its ability to certify that the solution to
this SDP indeed solves the original problem, and the fact that neither the order of the embedding
nor of the dynamics governing their evolution need to be specified a-priori. Further, by seeking
embeddings that minimize the order of these dynamics, it leads to simpler models than those obtain
for instance by simply factoring the Hankel matrix of the observed data. The effectiveness of the
proposed technique was illustrated with two examples that exhibit chaotic behavior. In principle
the approach proposed here requires solving a large SDP, and it is well known that SDPs have
poor scaling properties. However, as shown in the Appendix, the specific optimization arising in
this paper exhibits an underlying sparse structure (chordal sparsity) than can be exploited to obtain
algorithms whose complexity scales linearly with the number of data points, when these SDPs
are solved using an ADMM based method such as the one proposed in Zheng et al. (2020). This
extension along with an extension to piecewise linear dynamics on the manifold, is currently being
explored.
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