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Abstract
This paper revisits the classical Linear Quadratic Gaussian (LQG) control from a modern optimiza-
tion perspective. We analyze two aspects of the optimization landscape of the LQG problem: 1)
connectivity of the set of stabilizing controllers Cn; and 2) structure of stationary points. It is known
that similarity transformations do not change the input-output behavior of a dynamical controller
or LQG cost. This inherent symmetry by similarity transformations makes the landscape of LQG
very rich. We show that 1) the set of stabilizing controllers Cn has at most two path-connected
components and they are diffeomorphic under a mapping defined by a similarity transformation;
2) there might exist many strictly suboptimal stationary points of the LQG cost function over Cn
and these stationary points are always non-minimal; 3) all minimal stationary points are globally
optimal and they are identical up to a similarity transformation. These results shed some light on
the performance analysis of direct policy gradient methods for solving the LQG problem.

1. Introduction

As one of the most fundamental optimal control problems, Linear Quadratic Gaussian (LQG) con-
trol has been studied for decades. Many structural properties of the LQG problem have been es-
tablished in the literature, such as existence of the optimal controller, separation principle of the
controller structure, and no guaranteed stability margin of closed-loop LQG systems (Zhou et al.,
1996; Bertsekas, 2017; Doyle, 1978). Despite the non-convexity of the LQG problem, the globally
optimal controller can be found by solving two algebraic Riccati equations (Zhou et al., 1996), or a
convex semidefinite program based on a change of variables (Gahinet and Apkarian, 1994; Scherer
et al., 1997).

While extensive results on LQG have been obtained in classical control, its optimization land-
scape is less studied, i.e., viewing the LQG cost as a function of the controller parameters and
studying its analytical and geometrical properties. On the other hand, recent advances in reinforce-
ment learning (RL) have revealed that the landscape analysis of another benchmark optimal control
problem, linear quadratic regulator (LQR), can lead to fruitful and profound results, especially for
model-free controller synthesis (Fazel et al., 2018; Malik et al., 2019; Mohammadi et al., 2019; Tu
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and Recht, 2019; Li et al., 2019b; Umenberger et al., 2019; Zhang et al., 2020a). For instance, it
is shown that the set of static stabilizing feedback gains for LQR is connected, and that the LQR
cost function is coercive and enjoys an interesting property of gradient dominance (Fazel et al.,
2018; Bu et al., 2019). These properties are fundamental for establishing convergence guarantees
of gradient-based algorithms for solving LQR and their model-free extensions for RL (Malik et al.,
2019; Mohammadi et al., 2019). We note that recent studies have also contributed to establishing
performance guarantees of model-based RL techniques for LQR (see, e.g., Dean et al. (2020); Wang
and Janson (2020)) as well as LQG control (Tu et al., 2017; Boczar et al., 2018; Zheng et al., 2020;
Simchowitz et al., 2020).

This paper aims to analyze the optimization landscape of the LQG problem. Unlike LQR that
deals with fully observed linear systems whose optimal solution is a static feedback policy, the LQG
problem concerns partially observed linear systems driven by additive Gaussian noise, and its opti-
mal controller is no longer static. We need to search over dynamical controllers for LQG problems.
This makes its optimization landscape richer and yet much more complicated than LQR. Indeed, the
set of stabilizing static state feedback policies is connected, but the set of stabilizing static output
feedback policies can be highly disconnected (Feng and Lavaei, 2020). The connectivity of stabi-
lizing dynamical output feedback policies, i.e., the feasible region of LQG control, remains unclear.
Furthermore, LQG has a natural symmetry structure induced by similarity transformations that do
not change the input-output behavior of dynamical controllers, which is not the case for LQR.

Some recent studies (Sun et al., 2018; Chi et al., 2019; Li et al., 2019a; Qu et al., 2019; Ge and
Ma, 2017) have demonstrated that symmetry properties play a key role in rendering a large class of
non-convex optimization problems in machine learning tractable; see also Zhang et al. (2020b) for
a recent review. For the LQG problem, we can expect the inherent symmetry by similarity trans-
formations to bring some important properties of its non-convex optimization landscape. We also
note that the notion of minimal controllers (i.e., controllable and observable controllers) is a unique
feature in controller synthesis of partially observed dynamical systems, making the optimization
landscape of LQG distinct from many machine learning problems. We provide an extended review
on related work in Zheng et al. (2021).

Our contributions We first characterize the connectivity of the feasible region of the LQG prob-
lem, i.e., the set of strictly proper stabilizing dynamical controllers, denoted by Cn (n is the state
dimension). We prove that Cn can be disconnected, but has at most two path-connected compo-
nents (Theorem 3.1). If Cn is disconnected, its two path-connected components are diffeomorphic
under a mapping defined by a similarity transformation (Theorem 3.2). This brings positive news to
gradient-based local search algorithms for the LQG problem, since it makes no difference to search
over either path-connected component even if Cn is disconnected. We further present a sufficient
condition under which Cn is always connected, and this condition becomes necessary for a class of
LQG problems with a single input or a single output (Theorem 3.3).

Second, we investigate structural properties of the stationary points of the LQG cost func-
tion. It is known that the LQG cost is invariant under similarity transformations on the controller
(see Lemma 4.1). One natural consequence is that the globally optimal solutions to the LQG prob-
lem are not unique, not isolated, and can be disconnected in the state-space domain. For a class of
LQG problems, we show that the set of globally optimal solutions is a submanifold of dimension
n2 and it has two path-connected components (Proposition 4.1). When characterizing the stationary
points with vanishing gradients, the notion of minimal controllers plays an important role. In The-
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orem 4.1, we show that it is very likely there exist many strictly suboptimal stationary points of the
LQG cost over Cn, and these stationary points are always non-minimal. In contrast, we prove that all
minimal stationary points are globally optimal to the LQG problem (Theorem 4.2). These minimal
stationary points are identical up to similarity transformations. This is expected from the classi-
cal result that the globally optimal LQG controller is unique in the frequency domain (Zhou et al.,
1996, Theorem 14.7). Our analysis implies that if local search iterates converge to a critical point
that corresponds to a controllable and observable controller, then the algorithm has found a globally
optimal solution to the LQG problem (Corollary 4.2). However, it requires further investigation on
whether local search algorithms can escape saddle points of LQG (Lee et al., 2019).

2. Problem Statement

2.1. The Linear Quadratic Gaussian (LQG) problem

Consider a continuous-time1 linear dynamical system

ẋ(t) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t),
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp represents the state, input, and output, respectively, and w ∈
Rn, v ∈ Rp are process and measurement noises. It is assumed that w and v are white Gaussian
noises with intensity matrices W � 0 and V � 0. The classical LQG problem is defined as

min
u(t)

J := lim
T→∞

1

T
E
[∫ T

t=0

(
xTQx+ uTRu

)
dt

]
subject to (1),

(2)

where Q � 0 and R � 0. In (2), the input u(t) is allowed to depend on all past observations y(τ)
with τ < t. Throughout the paper, we make the following standard assumption of minimal systems.

Assumption 1 (A,B) and (A,W 1/2) are controllable, and (C,A) and (Q1/2, A) are observable.

Unlike the linear quadratic regulator (LQR), static policies in general do not achieve the optimal
cost, and we need to consider the class of dynamical controllers in the form of

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t),
(3)

where ξ(t) ∈ Rq is the internal state of the controller, and AK, BK, CK are matrices of proper
dimensions that specify the dynamics of the controller. We refer to the dimension q of the internal
state variable ξ as the order of the dynamical controller (3). A dynamical controller is called full-
order if its order is the same as the system dimension, i.e., q = n; if q < n, we call (3) a reduced-
order or lower-order controller. We shall see later that it is unnecessary to consider dynamical
controllers with order beyond the system dimension n.

It is well-known that the LQG problem (2) has a closed-form solution by solving two algebraic
Riccati equations (Zhou et al., 1996, Theorem 14.7). Precisely, the optimal controller is given by

ξ̇ = (A−BK)ξ + L(y − Cξ), u = −Kξ. (4)

1. We only consider the continuous-time case; see our extended version (Zheng et al., 2021) for the discrete-time case.
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In (4), the matrix L is called the Kalman gain, computed as L = PCTV −1 where P is the unique
positive semidefinite solution [see, e.g., Zhou et al. (1996, Corollary 13.8)] to

AP + PAT − PCTV −1CP +W = 0, (5a)

and the matrix K is called the feedback gain, computed as K = R−1BTS where S is the unique
positive semidefinite solution to

ATS + SA− SBR−1BTS +Q = 0. (5b)

It is clear that the optimal solution from Ricatti equations (5) is always full-order, i.e., q = n.

2.2. Parametrization of Dynamical Controllers and the LQG Cost Function

Here, we view the cost in (2) as a function of the parametrized dynamical controller (AK, BK, CK).
By combining (3) with (1), we get the closed-loop system

d

dt

[
x
ξ

]
=

[
A BCK

BKC AK

] [
x
ξ

]
+

[
I 0
0 BK

] [
w
v

]
,[

y
u

]
=

[
C 0
0 CK

] [
x
ξ

]
+

[
v
0

]
.

(6)

We denote the set of stabilizing controllers with order q ∈ N by

Cq :=

{
K =

[
0m×p CK

BK AK

]
∈ R(m+q)×(p+q)

∣∣∣∣ [ A BCK

BKC AK

]
is stable

}
, (7)

and let Jq : Cq → R denote the function that maps a parameterized dynamical controller in Cq to its
corresponding LQG cost for each q ∈ N. The following two lemmas give useful characterizations
of the cost function Jq; see Zheng et al. (2021) for a short proof.

Lemma 2.1 Fix q ∈ N such that Cq 6= ∅. Given K ∈ Cq, we have

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
= tr

([
W 0
0 BKV B

T
K

]
YK

)
, (8)

whereXK and YK are the unique positive semidefinite solutions to the following Lyapunov equations[
A BCK

BKC AK

]
XK +XK

[
A BCK

BKC AK

]T
+

[
W 0
0 BKV B

T
K

]
= 0, (9a)[

A BCK

BKC AK

]T
YK + YK

[
A BCK

BKC AK

]
+

[
Q 0
0 CT

KRCK

]
= 0. (9b)

Lemma 2.2 Fix q ∈ N such that Cq 6= ∅. Then, Jq is a real analytic function on Cq.

Now, given the dimension n of the system state variable, the LQG problem (2) can be reformu-
lated into a constrained optimization problem:

min
K

Jn(K)

subject to K ∈ Cn.
(10)
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After reformulating the LQG problem (2) into (10), a tentative approach for model-free reinforce-
ment learning of LQG is to conduct policy gradient on (10), with the gradient of Jn(K) estimated
from system trajectories. To characterize the performance of policy gradient algorithms, it is nec-
essary to understand the optimization landscape of (10). It is well-known that Cn is in general
non-convex and Lemma 2.2 indicates that Jn is a real analytical function. However, little is known
about their further geometrical and analytical properties, especially those that are fundamental for
establishing convergence of gradient-based algorithms. In this paper, we characterize 1) the con-
nectivity of Cn (Section 3) and 2) the stationary points of the LQG cost function Jn(K) (Section 4).

3. Connectivity of the Set of Full-Order Stabilizing Controllers

We first have the following observation on some basic properties of the set of full-order stabilizing
controllers Cn.

Lemma 3.1 Under Assumption 1, the set Cn is non-empty, unbounded, and can be non-convex.

Example 1 (Non-convexity of stabilizing controllers) Consider a dynamical system (1) withA =
1, B = 1, C = 1. The set of stabilizing controllers Cn = C1 is given by

C1 =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣ [ 1 CK

BK AK

]
is stable

}
.

The following dynamical controllers K(1) =

[
0 2
−2 −2

]
,K(2) =

[
0 −2
2 −2

]
stabilize the plant and

thus belong to C1. However, K̂ = 1
2

(
K(1) + K(2)

)
=

[
0 0
0 −2

]
fails to stabilize the plant.

We now introduce the notion of similarity transformations that has been widely-used in control
theory. Let GLq denote the set of q × q real invertible matrices. Given q ≥ 1 such that Cq 6= ∅, we
define the mapping Tq : GLq × Cq → Cq that represents similarity transformations on Cq by

Tq(T,K) :=

[
Im 0
0 T

] [
0 CK

BK AK

] [
Ip 0
0 T

]−1
=

[
0 CKT

−1

TBK TAKT
−1

]
. (11)

For any invertible matrix T ∈ GLq and K ∈ Cq, Tq(T,K) is indeed a stabilizing controller of order
q and thus is in Cq. We can also check that Tq is indefinitely differentiable on GLq × Cq, and that

Tq(T2,Tq(T1,K)) = Tq(T2T1,K) (12)

for any T1, T2 ∈ GLq. This implies that for any fixed T ∈ GLq, the map K 7→ Tq(T,K) admits an
indefinitely differentiable inverse given by K 7→ Tq(T

−1,K). We therefore have:

Lemma 3.2 Given q ≥ 1 such that Cq 6= ∅, for any invertible matrix T ∈ GLq, the map K 7→
Tq(T,K) is a diffeomorphism from Cq to itself.

For notational simplicity, for any fixed T ∈ GLn, we let TT : Cn → Cn denote the mapping
given by TT (K) := Tn(T,K) between the set of full-order stabilizing controllers. We are now
ready to present the main results.
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Theorem 3.1 Under Assumption 1, the set of full-order stabilizing controllers Cn has at most two
path-connected components.

Theorem 3.2 If Cn has two path-connected components C(1)n and C(2)n , then C(1)n and C(2)n are
diffeomorphic under the mapping TT for any invertible matrix T ∈ Rn×n with detT < 0.

Theorem 3.2 shows that even if Cn has two path-connected components, there exists a linear
bijection defined by a similarity transformation TT between these two components. In the follow-
ing theorem, we present a sufficient condition under which Cn is path-connected. This condition
becomes necessary for a class of dynamical systems with single input or single output.

Theorem 3.3 Under Assumption 1, the following statements are true.

1. The set of full-order stabilizing controllers Cn is path-connected if there exists a reduced-order
stabilizing controller, i.e., Cn−1 6= ∅.

2. Suppose the plant (1) is single-input or single-output, i.e., m = 1 or p = 1. Then the set Cn
is path-connected if and only if Cn−1 6= ∅.

One main idea in our proofs2 is based on a classical change of variables that has been widely
used for developing convex reformulation of various controller synthesis problems (Scherer et al.,
1997; Gahinet and Apkarian, 1994). We adopt the change of variables to construct a set with a
convex projection and a surjective mapping from that set to Cn, and then path-connectivity results
generally follow from the fact that a convex set is path-connected. The potential disconnectivity of
Cn comes from the fact that the set of real invertible matrices GLn = {Π ∈ Rn×n | det Π 6= 0} has
two path-connected components (Lee, 2013): GL+

n = {Π ∈ Rn×n | det Π > 0}, GL−n = {Π ∈
Rn×n | det Π < 0}. The full proofs are technically involved, which are provided in Zheng et al.
(2021, Section 3.2 – Section 3.4).

We note that given any open-loop unstable first-order dynamical system, i.e., n = 1, and A >
0 in (1), it is easy to see that there exist no reduced-order stabilizing controllers, i.e., Cn−1 =
∅. Thus, Theorem 3.3 indicates that its associated set of stabilizing controllers Cn is not path-
connected. We provide an explicit single-input and single-output (SISO) example below.

Example 2 (Disconectivity of stabilizing controllers) Consider the system in Example 1: A =
1, B = 1, C = 1. The above reasoning indicates that Cn is not path-connected. Indeed, using the
Routh–Hurwitz stability criterion, it is straightforward to derive that

C1 =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK

}
. (13)

This set has two path-connected components C+1 and C−1 given by

C+1 :=

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK, BK > 0

}
,

C−1 :=

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < −1, BKCK < AK, BK < 0

}
.

2. The controllers in (3) and (7) are strictly proper, which is sufficient for the LQG problem (2). For closed-loop stability,
we can consider proper dynamical controllers. Unlike Cn that might be disconnected, the set of stabilizing proper
dynamical controllers is always path-connected [see the appendix of Zheng et al. (2021)]. Our proof techniques via
the change of variables work for both cases.
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(a) C1 for Example 2 (b) C1 for Example 3

Figure 1: The set of stabilizing controllers C1 for Examples 2 and 3: (a) For Example 2, the set C1 given
by (13) has two path-connected components; (b) For Example 3, the set C1 given by (14) is path-connected.

In addition, as expected from Theorem 3.2, it is easy to verify that C+1 and C−1 are homeomorphic
under the mapping TT for any T < 0. Figure 1a illustrates the region of the set C1 in (13).

Theorem 3.3 also suggests the following result: Given any open-loop stable dynamical sys-
tem (1), i.e., A is stable, we have that Cn is path-connected. An explicit example is shown below.

Example 3 (Stabilizing controllers for an open-loop stable system) Consider an open-loop sta-
ble dynamical system (1) with A = −1, B = 1, C = 1. Since it is open-loop stable, Theorem 3.3
indicates that its associated set of stabilizing controllers Cn is path-connected. Using the Routh–
Hurwitz stability criterion, it is straightforward to derive that

C1 =

{
K =

[
0 CK

BK AK

]
∈ R2×2

∣∣∣∣AK < 1, BKCK < −AK

}
. (14)

This set is path-connected, as illustrated in Figure 1b.

Remark 1 (Connectivity of the feasible region of LQR/LQG) Some recent studies revisited the
classical LQR problem from a modern optimization perspective and designed policy gradient algo-
rithms (Fazel et al., 2018; Mohammadi et al., 2019; Zhang et al., 2020a). The connectivity of the
feasible region (i.e., the set of stabilizing controllers) becomes important to local search algorithms
(e.g., policy gradient) since they typically cannot jump between different connected components. It
is known that the set of stabilizing static state-feedback policies {K ∈ Rm×n | A− BK is stable}
is connected (Bu et al., 2019), and this is one important factor in justifying the performance of the
algorithms in Fazel et al. (2018); Mohammadi et al. (2019); Zhang et al. (2020a). On the other
hand, the set of stabilizing static output feedback policies {DK ∈ Rm×p | A − BDKC is stable}
can be highly disconnected (Feng and Lavaei, 2020), posing a significant challenge for local search
algorithms. In Theorems 3.1, 3.2 and 3.3, we have shown that the set of stabilizing dynamical
controllers Cn in the LQG problem has at most two path-connected components that are diffeomor-
phic to each other under a particular similarity transformation. Since similarity transformations
do not change the input/output behavior of a controller, it makes no difference to search over either
path-connected component of Cn even if Cn is not path-connected. This brings positive news to
gradient-based local search algorithms for the LQG problem.
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4. Structure of Stationary Points

We have shown that Cn might be disconnected, and that the potential disconnectivity has no harm
to gradient-based local search algorithms. In this section, we proceed to characterize the stationary
points of Jn(K), which is also important for performance analysis of gradient-based algorithms.

4.1. Invariance of LQG Cost under Similarity Transformations

As shown in Lemma 3.2, the similarity transformation Tq(T, ·) is a diffeomorphism from Cq to itself
for any invertible matrix T ∈ GLq. Then together with (12), we can see that the set of similarity
transformations is a group isomorphic to GLq. We can therefore define the orbit of K ∈ Cq by

OK := {Tq(T,K) | T ∈ GLq}.

It is known that the LQG cost is invariant under similarity transformations on the controller, and
thus is a constant over an orbit OK for any K ∈ Cq.

Lemma 4.1 Let q ≥ 1 such that Cq 6= ∅. Then we have Jq(K) = Jq(Tq(T,K)) for any K ∈ Cq
and any invertible matrix T ∈ GLq.

We further have the following proposition characterizing the dimension of every orbit OK cor-
responding to minimal controllers; see Zheng et al. (2021) for the proof.

Proposition 4.1 Suppose K ∈ Cq represents a controllable and observable controller. Then the
orbitOK is a submanifold of Cq of dimension q2, and has two path-connected components, given by

O+
K = {Tq(T,K) | T ∈ GLq, detT > 0},
O−K = {Tq(T,K) | T ∈ GLq, detT < 0}.

From Lemma 4.1 and Proposition 4.1, one interesting consequence is that given a globally
optimal LQG controller K∗ ∈ Cn, any controller in the orbit OK∗ := {Tn(T,K∗) | T ∈ GLn} is
globally optimal. If K∗ is minimal (i.e., controllable and observable), the orbitOK∗ is a submanifold
of dimension n2, and it has two path-connected components. Figure 2 demonstrates the orbit of
globally optimal LQG controllers for an open-loop unstable system and another open-loop stable
system. Additionally, the LQG cost function Jq(K) is not coercive in the sense that there might
exist 1) sequences of stabilizing controllers Kj ∈ Cq where limj→∞ Kj = K̂ ∈ ∂Cq such that
limj→∞ Jq(Kj) <∞, and 2) sequences of stabilizing controllers Kj ∈ Cq where limj→∞ ‖Kj‖F =
∞ such that limj→∞ Jq(Kj) <∞. The latter fact is easy to see from Proposition 4.1 since the orbit
OK can be unbounded and Jq(K) is constant over the same orbit. The following example shows that
the LQG cost can converge to a finite value even when the controller K goes to the boundary of Cq.

Example 4 (Non-coercivity of the LQG cost) Consider the open-loop stable SISO system in Ex-
ample 3, and we fix Q = 1, R = 1, V = 1,W = 1 in the LQG formulation. The set of full-
order stabilizing controllers C1 is shown in (14). We consider the following stabilizing controller

Kε =

[
0 ε
−ε 0

]
∈ C1, ∀ε 6= 0. It is not hard to see that limε→0 Kε ∈ ∂C1. By solving the Lyapunov

equation (9a), we get the unique solution as XKε =
1

2

[
ε2 + 1 ε
ε ε2 + 2

]
, and the corresponding

LQG cost as J(Kε) = 1+3ε2+ε4

2 . Therefore, we have limε→0 J(Kε) = 1/2, while limε→0 Kε ∈ ∂C1.

8
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(a) Open-loop unstable system in Example 2 (b) Open-loop stable system in Example 3

Figure 2: Non-isolated and disconnected globally optimal LQG controllers. In both cases, we set Q =
1, R = 1, V = 1,W = 1. (a) LQG cost for Example 2 when fixing AK = −1 − 2

√
2, for which the set

of globally optimal points
{

(BK, CK) | BK = (1 +
√

2) 1
T , CK = −(1 +

√
2)T, T 6= 0

}
has two connected

components. (b) LQG cost for Example 3 when fixing AK = 1− 2
√

2, for which the set of globally optimal
points

{
(BK, CK) | BK = (−1 +

√
2) 1

T , CK = (1−
√

2)T, T 6= 0
}

has two connected components.

4.2. Non-minimal Stationary Points

We provide an interesting result on non-minimal stationary points.

Theorem 4.1 Let q ≥ 1 be arbitrary. Suppose there exists K? =

[
0 C?K
B?

K A?K

]
∈ Cq such that

∇Jq(K?) = 0. Then for any q′ ≥ 1 and any stable Λ ∈ Rq′×q′ , the following controller

K̃? =

 0 C?K 0

B?
K A?K 0

0 0 Λ

 ∈ Cq+q′ (15)

is a stationary point of Jq+q′ over Cq+q′ satisfying Jq+q′
(
K̃?
)

= Jq(K̃).

Theorem 4.1 indicates that from any stationary point of Jq over lower-order stabilizing con-
trollers in Cq, we can construct a family of stationary points of Jq+q′ over higher-order stabilizing
controllers in Cq+q′ . Moreover, the stationary points constructed by (15) are neither controllable
nor observable. This indicates that, if the globally optimal controller of Jn is controllable and ob-
servable, and if minK∈Cq Jq(K) has a solution for some q < n, then there will exist many strictly
suboptimal stationary points of Jn over Cn. The proof of Theorem 4.1 relies on similarity trans-
formation and is provided in Zheng et al. (2021). In Zheng et al. (2021, Theorem 4.2), we further
construct an explicit family of stationary points for Jn(K) with an open-loop stable plant, and pro-
vide a criterion for checking whether the corresponding Hessian is indefinite or vanishing.

4.3. Minimal Stationary Points Are Globally Optimal

Theorem 4.1 shows that there may exist many non-minimal stationary points for Jn that are not
globally optimal. Here, we show that all minimal stationary points are globally optimal to the LQG
problem (10). In particular, we have closed-form expressions for full-order minimal stationary
points K ∈ Cn, which turn out to be globally optimal.

9
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Theorem 4.2 Under Assumption 1, all minimal stationary points K ∈ Cn to the LQG problem (10)
are globally optimal, and they are in the form of

AK = T (A−BK − LC)T−1, BK = −TL, CK = KT−1, (16)

where T ∈ Rn×n is an invertible matrix, and

K = R−1BTS, L = PCTV −1, (17)

with P and S being the unique positive semidefinite solutions to the Riccati equations (5a) and (5b).

Theorem 4.2 can be viewed as a special case in Zhou et al. (1996, Theorem 20.6) that presents
first-order necessary conditions for optimal reduced-order controllers K ∈ Cq; see Zheng et al.
(2021) for an adapted proof. Theorem 4.2 indicates that if the LQG problem (10) has a globally
optimal solution in Cn that is also minimal, then the globally optimal controllers are unique in Cn
up to a similarity transformation. This is expected from the classical result that the globally optimal
LQG controller is unique in the frequency domain (Zhou et al., 1996, Theorem 14.7). Theorem 4.2
allows us to establish the following corollary.

Corollary 4.1 The following statements are true:

1. If Jn(K) has a minimal stationary point in Cn, then all its non-minimal stationary points
K ∈ Cn are strictly suboptimal.

2. If Jn(K) has a non-minimal stationary point in Cn that is globally optimal, then all stationary
points K ∈ Cn of Jn(K) are non-minimal.

We have constructed explicit LQG examples with non-minimal stationary points that are strictly
suboptimal in Zheng et al. (2021). It should be noted that, even with Assumption 1, the LQG
problem (10) might have no minimal stationary points. This happens if the controller from the
Ricatti equations (5) is not minimal; see the example in Zheng et al. (2021) taken from Yousuff
and Skelton (1984). Theorem 4.2 also allows us to check whether a sequence of gradient iterates
converges to a globally optimal solution.

Corollary 4.2 Consider a gradient descent algorithm Kt+1 = Kt − α∇J(K) for the LQG prob-
lem (10). Suppose the iterates Kt converge to a point K∗, i.e., limt→∞ Kt = K∗. If K∗ is a control-
lable and observable controller, then it is globally optimal.

In our extended version (Zheng et al., 2021), numerical experiments are provided to demonstrate
empirical performance of gradient descent methods for solving the LQG problem (10).

5. Conclusion and future work

In this paper, we have characterized the connectivity of the set of stabilizing controllers Cn and
provided some structural properties of the LQG cost function. These results reveal rich yet compli-
cated optimization landscape properties of the LQG problem. Ongoing work includes establishing
convergence conditions for gradient descent algorithms and investigating whether local search al-
gorithms can escape saddle points of the LQG problem. We note that the optimization landscape of
LQG also depends on the parameterization of dynamical controllers. It will be interesting to look
into the LQG problem when parameterizing controllers in a canonical form. Finally, our analysis
reveals that minimal stationary points in Cn are always globally optimal, and it would be interesting
to investigate the existence of minimal stationary points for the LQG problem.
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