Proceedings of Machine Learning Research vol 144:1-12, 2021

Fast Stochastic Kalman Gradient Descent for Reinforcement Learning

Simone Totaro SIMONE.TOTARO @ GMAIL.COM
Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

Anders Jonsson ANDERS.JONSSON @ UPF.EDU
Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

Abstract

As we move towards real world applications, there is an increasing need for scalable, online op-
timization algorithms capable of dealing with the non-stationarity of the real world. We revisit
the problem of online policy evaluation in non-stationary deterministic MDPs through the lense of
Kalman filtering. We introduce a randomized regularization technique called Stochastic Kalman
Gradient Descent (SKGD) that, combined with a low rank update, generates a sequence of feasible
iterates. SKGD is suitable for large scale optimization of non-linear function approximators. We
evaluate the performance of SKGD in two controlled experiments, and in one real world application
of microgrid control. In our experiments, SKGD is more robust to drift in the transition dynamics
than state-of-the-art reinforcement learning algorithms, and the resulting policies are smoother.
Keywords: Non-stationary MDPs, Reinforcement Learning, Tracking

1. Introduction

We consider the problem of continual, non-stationary reinforcement learning, also known as track-
ing. In our setting, a learning agent interacts with a changing environment, and the agent needs
to adapt to changes in the environment without making any explicity assumption about the model
dynamics. We are concerned with the task of tracking the value functions arising from the drift in
the transition dynamics. We take a statistical approach, where we generalize the state-space model
introduced by Geist and Pietquin (2010) to high dimensional settings via stochastic regularization,
similar in spirit to the dropout technique. We call this algorithm Stochastic Kalman Gradient De-
scent. It is known that the time and space complexity of Kalman methods is O(d?), where d is the
number of dimensions of the parameter space. We present a low rank approximation, which directly
updates a low-rank approximation of the initial covariance matrix. We show that our method can
deal with non-stationarity both in the case of simulated drift and in a real world task that aims to
control an electrical microgrid. For reproducibility, the code of the algorithm is publicly available'.

1.1. Related Work

Our work can be placed at the intersection of reinforcement learning, control, and optimization.
In reinforcement learning, the term non-stationarity refers to the time dependence of the transition
dynamics and/or reward function (Puterman, 2014). If exploration is not possible in the time di-
mension, then the set of stationary policies may not include the optimal policy. In such settings,

1. https://github.com/d3sm0/skgd.

© 2021 S. Totaro & A. Jonsson.

FAsT SKGD

further assumptions are usually needed to explicitly characterize the drift in the transition dynam-
ics (Lecarpentier and Rachelson, 2019), or an underlying discrete time process that decomposes the
non-stationary task into subtasks, possibly with stationary transition dynamics (Choi et al., 2000).
Assumptions are exploited to learn one or several models of the world (Doya et al., 2002), switch
between them (Wiering, 2001) or condition a global optimal policy (Raileanu et al., 2020).

Our work differs from those described above because we do not characterize the shift in dis-
tribution directly, only indirectly through the sequence of prediction errors observed throughout
the learning process. As such, our method is model-free, but crucially it is limited to determinis-
tic changes in the transition dynamics. Our work builds upon Kalman Temporal Difference (Geist
and Pietquin, 2010), which in the case of deterministic dynamics and identity covariance noise is
equivalent to Recursive Least Squares Temporal Difference, or RLSTD (Bradke and Barto, 1996).
However, these algorithms were designed for linear function approximation, while we are interested
in nonlinear function approximation with large parameter spaces.

Several existing works perform low-rank updates of a positive semi-definite matrix (Nocedal
and Wright, 2006; Seeger, 2004; Spantini et al., 2015) or apply gradient descent for stochastic
optimization (Vuckovic, 2018; Mahsereci, 2018; Chen et al., 2020). Our work differs in that we do
not filter the gradient dynamics of the loss function, but rather the prediction, for which the Bellman
residual is the innovation. There exists a low-rank version of RLSTD that updates the subspace in
each iteration (Gehring et al., 2015); in contrast, we maintain a fixed subspace and only update a
low-rank matrix, which is possible since actions are deterministic. Most similar to our work is that
of Shashua and Mannor (2020) which, unlike our algorithm, has an update rule with time complexity
O(d?), and does not address the known issues of Extended Kalman Filtering (Huang et al., 2008).

1.2. Contribution

We propose a fast optimizer called Stochastic Kalman Gradient Descent (SKGD) for learning value
functions in deterministic, non-stationary, online Markov decision processes (MDPs). SKGD ex-
tends Kalman Temporal Difference by improving the computational complexity and guaranteeing
the feasibility of the iterates. Both problems are addressed by designing an update rule that produces
sparse, symmetric, positive semi-definite and rank-preserving covariance matrices. We introduce
sparsity via a dropout regularization over the rows of the covariance matrix, and show that it is
equivalent to regularizating the norm of the matrix. Then we use the eigendecomposition to design
an update rule that generates a sequence of low rank matrices, which are positive semi-definite and
rank-preserving. Our method is suitable for large scale optimization of online non-stationary regres-
sion tasks. In the present work we show its performance when used in actor-critic architectures for
online reinforcement learning. We present two controlled experiments that illustrate its behaviour,
and one real world application in the form of microgrid control (Totaro et al., 2020).

2. Background

In this section we describe the background for our work and introduce notation used throughout.

2.1. Tracking in Dynamical Systems

We consider discrete-time dynamical systems described by a hidden variable X and an observable
variable Y, both of which can be multivariate with dimensions d and n, respectively. We assume

FAsT SKGD

that n is small, i.e. n < d. The values of Y are given by a non-stationary observation function
f : R — R™, which is either linear or nonlinear. The values of X and Y at time step ¢ are given by
Ty = x4-1 + &t

yr = fe(xe) + U,

where &; and v, are additive, white and independent noise components. Tracking is the problem of
computing an estimate &, of the true value x; given a sequence of observations y1, . . . , Ys.

2.2. Linear Observation Function

We first assume that the observation function is linear, i.e. f;(x;) = Hixy, where H; € R"™*4 is the
observation matrix at time ¢. In this case, we can use recursive least squares estimation (Plackett,
1950) or Kalman filtering (Kalman, 1960) to track the value of X. The former assumes a constant
value of X, i.e. & = 0 for each ¢; we present the derivation for the more general case & # 0.

A linear recursive estimator is given by

Ty = (I — Kth)Zi't_l + Kt?/t,
where K; € R¥*" is a gain matrix. The estimation error €, = x; — &4 can be recursively defined as
e = (I — KeHy)(e—1 + &) — Kty

The objective is to minimize the expected square norm of the estimation error, L; = E[||e/|?] =
Ele/ €] = E[Tr(ere/))] = Tr P,. Here, P, = Elese]] € R4 is the estimation error covariance,
recursively defined as

P, = (I - KH)(P—1+ Z)(I — Kth) + Kt‘I’tK ;

where Z; and U, are the covariance matrices of the noise components &; and 1;, respectively. We

make the common assumption that the noise terms are i.i.d., implying that =; and ¥, are diagonal.
Setting the gradient of L, to 0 yields the following expression for the gain matrix:

P =P +5E, ()

K, = PH/ (H PH +¥,)~". ©)

In turn, this simplifies the expression for P; to yield the following recursive update rules:

&y = (I — KeHy) &1 + Ky, 3)
P, = (I — K.H;)P,. “4)

At time ¢, Kalman filtering computes the gain matrix K; (2), and then recursively updates the
estimate Z; (3) and estimation error covariance P; (4). We remark that the update rules for recursive
least squares estimation are obtained by setting =; to 0, i.e. (1) simply becomes P, =P,_;.

There exist other algorithms that perform similar recursive updates of the estimate and estima-
tion error covariance. One such algorithm is Least Squares Temporal Difference, or LSTD (Bradke
and Barto, 1996), in which the objective function is given by

Z 01:1),

=1

w\»—l

FAsT SKGD

where variables X and Y are both observed. Hence the aim is to find a parameter vector 6 that
minimizes L;(6). A related objective function is given by

Lt(e) =E (yt - f(07$t))2 ‘ ('xlayla s 7xt717yt71) ;

where the objective at time ¢ is conditional on the history of all previous observations. Our algorithm
is fundamentally concerned with efficiently computing the gain matrix and recursive updates, and
hence it readily applies to these other objective functions as well.

2.3. Nonlinear Observation Function

When the observation function f is nonlinear, the tracking problem becomes significantly harder. In
this case, the standard approach of Extended Kalman Filtering (Anderson and Moore, 1979) is to lin-
earize the observation function around the current estimate. At time step ¢, let F} = V, fy(Z4—1) €
R™*9 be the Jacobian matrix containing the first-order partial derivatives of the observation func-
tion evaluated in £;—;. The idea of linearization is to replace the observation matrix H; with the
Jacobian F; in the update rules for the gain matrix K; and estimation error covariance F;:

K, = BF, (F,BF, +¥,), 5)
&y = Tp—1 + Ki(ye — fi(2i-1)), (6)
P, = (I - K,F,)P,. (7

Note that the estimate Z; still depends directly on the actual observation function f.

It is well known that linearization propagates uncertainty only around the mean estimate (Huang
etal., 2008). In addition, the update of P, may not lie in the feasible set, i.e. P, may not be symmetric
and positive semidefinite (PSD). Moreover, the matrix multiplications in the update rules for K; and
P; have time complexity O(d?n), which is prohibitive when the number of dimensions d is large.

2.4. Reinforcement Learning

In reinforcement learning (Sutton and Barto, 2018), the environment is modelled as a Markov deci-
sion process (MDP), i.e. a tuple M = (S, A, p, r), where S is a finite set of states, A a finite set of
actions, p : S x A — A(S) a transition kernel and 7 : S x A — R a reward function. Here, A(X)
denotes the probability simplex of any set A, i.e. the set of all probability distributions over X.

At each time step ¢, the learning agent observes a state s; € S, selects an action a; € A,
transitions to a new state s;1 ~ p(+|s¢, a;) and obtains a reward r; with expected value E[ry] =
(8¢, at). The aim is to compute a policy, i.e. a mapping 7 : S — A(.A) from states to probability
distributions over actions. The value of policy 7 in state s is given by

S1 =S8

Y

VT(s)=E [Z Y (s, ag)
t=1

i.e. the expected sum of future rewards when starting in state s and using policy 7 to select actions.
Here, v € (0, 1] is a discount factor that determines the relative importance of distant rewards. The
value function V'™ satisfies the recursive Bellman equation

VT(s) =) m(als) [7’(8, a) +7) p(s']s,a)V7(s)

acA

s

FAsT SKGD

An optimal policy m* = arg max, V™ maximizes the value function in each state.

In most applications of reinforcement learning, the state space is too large to explicitly represent
the value of each state. Instead, it is assumed that each state s € S corresponds to a feature vector
#(s), and the value function is approximated as Vj(s) = g(0, ¢(s)), where 0 is a parameter vector.
In this case, the aim of reinforcement learning is to compute the parameter vector 8* that corresponds
to the value function of the optimal policy 7*, or the closest approximation thereof.

Estimating 6* can be modelled as a tracking problem in a dynamical system where a hidden
variable © models the parameter vector and an observed variable R models the obtained reward:

O = 01 + &, (®)
re = fi(0) + 1y,)

Note that r; is a scalar, i.e. n = 1. The observation function f is given by

F1(0:) = Vi, (st) — Ve, (5041) = 9(0r, d(51)) — v9(0r, B(5151)),

where s; and s;11 are the states at times ¢ and ¢ + 1, respectively, i.e. the observed reward r; =
ft(0y) 4+ 1y is the discounted difference between the values in s; and s;11. The noise component
1y models variations in reward around the mean r(s;, a;). For deterministic MDPs with transition
kernel p : S x A — S, the noise ¢, is white and independent. However, this assumption does not
hold in the stochastic case. In this paper, as in previous work, we focus on the deterministic case.

For stationary MDPs, the optimal parameter vector 8* is constant, i.e. { = 0 for each t. By
setting & # 0 we can estimate the value of © for non-stationary MDPs. This is precisely the idea
behind Kalman Temporal Difference, or KTD (Geist and Pietquin, 2010). In a non-stationary MDP,
the transition kernel p = {p; }+>1 and reward function = {r;};>; can have different definitions at
each time step ¢, and 0 is defined as the optimal parameter vector for the MDP M, = (S, A, py, 7).

In the special case for which the value function approximation Vj is linear, i.e. g(6, ¢(s)) =
#(s) "6, the observation function f is also linear:

fe(0) = ¢(St)T9t - ’Y¢(St+1)T9t = (p(st) — ’Y¢(5t+1))T9t-

In this case, estimating the value of © reduces to Kalman filtering. However, most successful
applications of reinforcement learning use nonlinear function approximation in the form of neural
networks. Even though we can linearize the observation function, the update rules in (5)-(7) become
inefficient when the parameter vector 6 is high-dimensional.

Most algorithms for non-stationary MDPs explicitly model the values of latent variables that
determine the distribution shift of the transition kernel p; and/or reward function r; at each time step
t. In contrast, KTD does not need to explicitly model latent variables, and instead performs tracking
directly on the unknown parameter vector §. This results in an algorithm with fewer parameters
and faster updates, and no prior knowledge about latent variables is needed. The aim of the present
work is to develop a practical algorithm that brings those qualities to the general nonlinear case.

3. Stochastic Kalman Gradient Descent

The strength of KTD is that it is purely online and derived from the purpose of tracking. It does not
make any assumptions about the structure of the MDP, which is common in applications of RL to
the problem of control. KTD has three key shortcomings: 1) it assumes a linear parameterization

FAsT SKGD

of the value function; 2) the time and space complexity is quadratic in the number of dimensions d;
and 3) it does not handle stochastic MDPs.

In this section we present a novel algorithm that we call Stochastic Kalman Gradient Descent,
or SKGD, that addresses the first two shortcomings of KTD. The third shortcoming is a pitfall of
all projected Bellman error methods (Baird, 1995), which we aim to address in future work. For a
fixed policy 7, and deterministic MDP, the policy evaluation problem is equivalent to performing
nonlinear regression on the observation produced by the dynamical system in (8)-(9). We derive the
nonlinear extension of KTD via this more general framework.

3.1. Regularization via Row Dropout

The linearization of the predictor around the mean estimate discards all higher order terms of the true
estimation error covariance P, concentrating the uncertainty in a few highly correlated parameters.
In low dimensions, one can regularize the eigenvalues directly with a matrix norm like the Frobenius
norm ||-|| , but in high dimensions this is prohibitively expensive. We propose to apply a stochastic
mask, constructed by sampling a vector of indices m ~ Bern(c) with m € {0,1}¢ and forming
the corresponding diagonal matrix M = diag(m). This dropout technique allows us to control the
norm of P and (indirectly) the rank via the parameter o of the Bernoulli distribution. The error
covariance matrix P is effectively a per-parameter learning rate, and setting some eigenvalues to 0
has the effect of resetting the learning rate to O after some iterations.
In the following lemma we show that ||A/ P|| /o is an unbiased estimator of || P|| .

Lemma 1 For m ~ Bern(c), M = diag(m) and any matrix P, it holds that
1
SEUIMPIp} = 1PlF-

Proof Follows from the definitions of M and ||| » and the linearity of the expectation:
1 1 1 o
E(IMP) = CE(Y S (MaPy) = S B YR = IS S P =P
i i j i
|

The expected time complexity of || M P|| - is O(cd?), which is smaller than O(d?) when o < 1.
We use dropout in the covariance update, multiplying the previous covariance matrix by M:

P,=MP,_1 +5,. (10)

Since Z¢ is a diagonal matrix by assumption, the time complexity of the matrix multiplications in (5)
and (7) becomes O(od?n) with the new definition of P;.

3.2. Feasibility and Complexity

Even if we use the more efficient update rules derived from (10), the sequence of covariance matrices
may not be feasible, i.e. P, may not be symmetric and PSD for £ > 1. We would like to have an
update rule that is always feasible and depends on the rank of the true covariance P.

We borrow ideas from low-rank Kalman filtering (Bonnabel and Sepulchre, 2012) to derive
a low-rank update rule for P. A low-rank approximation of P is given by P = QAQ", where

FAsT SKGD

1: Input: horizon 7', trajectory {(s¢, 7t, St+1) }ee|1]
2: [Ao, U] < eigen(ady,)

3: Q<+ QR(U — (UUTD))

4: fort=0...7 do

Ay < MA;_ 1 +€l,, M ~ Bern(o)

P+ Q/N\tQAT

Fy < Vo fe(0r-1)

A7« (FBRF, +el,)™ "

0 < 01 + E,FtTAfl(?“t + ’Yvét_l(st—i-l) - Vét_l(st))
10: At — At — AtQTFtA_lFtTQAt

11: end for

Y P W

Figure 1: Pseudo-code of the SKGD algorithm.

A € R™" models the error covariance in a lower dimensional subspace such that » < d, and
Q € R¥7 is a unitary matrix (satisfying Q" = Q') defining this subspace. In fact, an exact such
decomposition exists for symmetric matrices whose rank is 7: in this case, A = diag(A1,...,\,)
is the diagonal matrix containing the r distinct eigenvalues of P, and () has the associated r eigen-
vectors as columns. However, we define the low-rank approximation for arbitrary r, and A does not
have to be a diagonal matrix. As long as A is symmetric and PSD, then so is P. An advantage of
this approach is that it does not need to perform singular value decomposition at each time step.
We first note that the update rule in (7) can be rewritten as

P, =(I - K;F})P, = P, — P,F,A"'F,P,
where A = FtJStFtT + W,;. We temporarily assume that =; = 0, implying]5t = P,_. If the matrix
Q is constant, we can substitute the expression P, = QA;Q " and solve for A; to obtain
A=Q'PQ=Q"'P1Q-Q'P1F,AT'F,P,_1Q
=A1— M1 QTF AT EQA .

It is easy to show that if A;_1 is symmetric and PSD, then so is A;. Moreover, we can control the
estimated rank of P by initializing the values of 7,) and A appropriately.

Bonnabel and Sepulchre (2012) show that the noise component &; helps stabilize tracking, but

if we reintroduce the covariance =;, the update rule above is no longer rank-preserving. Instead, we
introduce a noise component =; € R"*" in the subspace defined by (), and modify the update rule:

Ap = A1 +E (D
A=A — MQTFTATIE,QA,. (12)
As long as 2, is a diagonal matrix with positive elements, the update rule preserves the rank and

feasibility, and the time complexity of the matrix multiplications in (5) and (7) becomes O(rdn).

3.3. Algorithm

Figure 1 shows the pseudo-code of the SKGD algorithm. The input to the algorithm is a time horizon
T and a trajectory (so, 70, S1, - - -, ST—1, 'T—1, ST). We initialize Ao and U to be the eigenvalues and

FAsT SKGD

Figure 2: Cumulative return of the Forced Van Der Pol Oscillator, averaged over 10 seeds.

eigenvectors of the diagonal matrix o/, projected onto the subspace R". To initialize (), we follow
the proposal of Bonnabel and Sepulchre (2012) and perform a QR-decomposition of the matrix
U — UU'U. The parameter vector 0o is initialized using standard neural network techniques. At
each time step ¢, we first perform dropout using the stochastic mask M. This allows us to control
the time complexity also in the case for which the rank of P is large. We then update 6, and A,
using the update rules in (6) and (12).

4. Experiments

We evaluate SKGD in an online control setting under non-stationary dynamics. That is, we assume
a sequence of transitions (s,a,r,s’) ~ M under policy 7y, (a | s) and dynamics p;(- | s,a) at
every decision time ¢, and we estimate the value of the policy 7y, from a single tuple. A common
benchmark algorithm is Proximal Policy Optimization, or PPO (Schulman et al., 2017), in which
the policy and value functions are parametrized by neural networks. The policy g, is learned via
direct policy optimization while the value function V,;, is optimized via the n-step temporal differ-
ence error (Sutton and Barto, 2018). The optimizer used is Adam (Kingma and Ba, 2015). Both
algorithms are trained from scratch and they only differ in the policy evaluation step, where SKGD
uses (5) and (7) to update the value estimator. We expect that the likelihood ratio estimator used
in the policy optimization step suffers from high variance for short trajectories and thus performs
poorly in this online setting. Hence we pick the smallest number of samples that allows SKGD or
PPO to not degenerate over time. Our main focus was to capture different types of noise structures
rather than different dynamics. We compare the two algorithms in two benchmarks domains: the
Cartpole domain (Sutton and Barto, 2018; Coumans and Bai, 2016-2019) and the Forced Van Der
Pol Oscillator (der Pol and Mark, 1927). We also test the algorithms on the real world problem of
controlling an electrical microgrid (Totaro et al., 2020).

In the benchmark domains, we inject the non-stationarity as a time dependent force fB;11 =
B¢ + 0 bounded in value 3¢ € (Bmin, Pmax), V¥t € 0,...,T, which resets at every t = T'. The force
is applied at the cart and pole joint in the case of the cartpole, and as a change in the drift coefficient
1 in the case of the Forced Van Der Pol Oscillator.

We now discuss the specific experiments. The Forced Van Der Pol Oscillator is described by
the following equation of motion and reward function:

i=pi(l—2®)—z+a, r(@a)=]al®+ |z, (13)

FAsT SKGD

e
I

Figure 3: The left group represents the policy learnt by SKGD, and the right group that of PPO. For
each group we plot the evolution the state component &, x4, the full state x;, = (z, &)
with starting position (red dot) and terminal position (grey dot), and the control a;.

where € R?, a € R and p indicates the strength of the damping. The increment ¢ is chosen as
N*(po + 6, te) with (up = 0,0 = 0.03). In Figure 2 we show the return achieved by the two
algorithms during training. Our method is able to adapt to the change in damping quickly enough to
stop the oscillator in minimum time. In Figure 3, the policy found by our method is smoother than
that found by PPO.

The Non-Stationary CartPole is described by the following equations:

f=2i+0cosf— 6%sinb (14)
0=2%cosf+6+sind (15)

7’(.%' CL) _ 1, if 0¢ (eminaemax)ux € (!Tminal‘max)u (16)
’ 0, otherwise,

obtained by setting all constants to 1 (Tedrake, 2009). We require §; € (0,5),Vt € {0,...,T},
with §; ~ N (le —4,0.1¢). In this domain the difference between the two algorithms is less evident
because the necessary number of samples to obtain a non-degenerate policy is much larger than in
the other domain.

4.1. Microgrid

Microgrids are small electrical networks composed of flexible consumption, distributed power gen-
eration (renewable and/or conventional) and storage devices. The non-stationarity is inherent in the
demand and production of renewable energy. Direct estimation of the non-stationary processes is
known to be an open research question. We test our methods on an open source benchmark (Totaro
et al., 2020). Different from the other domains, this a finite horizon control problem, where data is
seen only once. Due to the small data availability of 18 months, we split the dataset in two parts,
training and testing, of 6 and 12 months respectively. The training set is used to pre-train a neural
network that predicts the next demand and renewable production. We then transfer the features to
augment the state space for the control problem. In Figure 5 we report the average reward.

FAsT SKGD

env/r

— agent.agent id: kid - id: ppo

global_step

100k 200k 300k 400k

Figure 4: Cumulative return for the Non Stationary Cartplole, averaged over 10 seeds.

Average Reward

Figure 5: Average reward for the Microgrid benchmark.

5. Discussion

We present a practical algorithm for online control in non-stationary deterministic MDPs. Our
method scales as O(rd), where r is a low-rank estimation chosen by the system designer, and
attempts to solve a long-standing issue in Extended Kalman Filtering via a low-rank, regularized
update rule, that is guaranteed to be rank-preserving and of small norm. Despite having space
complexity O(rd), for large networks this is still prohibitive, but a promising direction for future
work is to use a distributed implementation via a consensus algorithm, which might help to mitigate
the computational burden. We conjecture that it might also mitigate the sampling bias incurred in
stochastic transitions. Furthermore, non-stationarity can be addressed at decision time instead of at
prediction time (Chandak et al., 2020), the two methods are not exclusive, and their combination is
an interesting direction for future work.

Acknowledgments

The authors would like to thanks Matthieu Geist, Roberta Raileanu, and Gergely Neu for the in-
sightful discussions. Anders Jonsson is partially funded by Spanish grants PID2019-108141GB-100
and PCIN-2017-082.

10

FAsT SKGD

References

B. D. O. Anderson and J. B. Moore. Optimal Filtering. PrenticeHall, 1979.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning Proceedings 1995, pages 30-37. Elsevier, 1995.

S. Bonnabel and R. Sepulchre. The geometry of low-rank kalman filters. In Matrix Information
Geometry, pages 53—-68. Springer, 2012.

S. J. Bradke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33-57, 1996.

Y. Chandak, G. Theocharous, S. Shankar, S. Mahadevan, M. White, and P. S. Thomas. Optimizing
for the future in non-stationary mdps. arXiv preprint arXiv:2005.08158, 2020.

R. T. Q. Chen, D. Choi, L. Balles, D. Duvenaud, and P. Hennig. Self-tuning stochastic optimization
with curvature-aware gradient filtering. In Proceedings on ”I Can’t Believe It’s Not Better!” at
NeurIPS Workshops, Proceedings of Machine Learning Research 137, pages 60-69, 2020.

S. P. M. Choi, D.-Y. Yeung, and N. L. Zhang. Hidden-mode markov decision processes for nonsta-
tionary sequential decision making. In Sequence Learning, pages 264-287. Springer, 2000.

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016-2019.

B. Van der Pol and J. Van Der Mark. Frequency demultiplication. Nature, 120(3019):363-364,
1927.

K. Doya, K. Samejima, K. Katagiri, and M. Kawato. Multiple model-based reinforcement learning.
Neural computation, 14(6):1347-1369, 2002.

C. Gehring, Y. Pan, and M. White. Incremental truncated Istd. arXiv preprint arXiv:1511.08495,
2015.

M. Geist and O. Pietquin. Kalman temporal differences. Journal of artificial intelligence research,
39:483-532, 2010.

G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Analysis and improvement of the consistency
of extended kalman filter based slam. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 473-479, 2008.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engi-
neering, 82:35-45, 1960.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In ICLR 2015 : Interna-
tional Conference on Learning Representations 2015. Ithaca, NYarXiv.org, 2015.

E. Lecarpentier and E. Rachelson. Non-stationary markov decision processes, a worst-case approach
using model-based reinforcement learning. In Advances in Neural Information Processing Sys-
tems, pages 72167225, 2019.

11

http://pybullet.org

FAsT SKGD

M. Mabhsereci. Probabilistic Approaches to Stochastic Optimization. PhD thesis, Eberhard Karls
Universitit Tiibingen, Germany, 2018.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, NY, USA, second
edition, 2006.

R. E. Plackett. Some theorems in least squares. Biometrika, 37:149, 1950.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley

& Sons, 2014.

R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation via policy-dynamics value
functions. arXiv preprint arXiv:2007.02879, 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. 2017.

M. Seeger. Low rank updates for the cholesky decomposition. 01 2004.

S. Di-Castro Shashua and S. Mannor. Kalman meets bellman: Improving policy evaluation through
value tracking. arXiv preprint arXiv:2002.07171, 2020.

A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk. Optimal Low-rank Ap-
proximations of Bayesian Linear Inverse Problems. SIAM J. Sci. Comput., 37(6):2451-2487,
2015.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

R. Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile machines
course notes for mit 6.832. Working draft edition, 3, 2009.

S. Totaro, I. Boukas, A. Jonsson, and B. Cornélusse. Lifelong control of off-grid microgrid with
model based reinforcement learning. arXiv preprint arXiv:2005.08006, 2020.

J. Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic optimization,
2018.

M. A. Wiering. Reinforcement learning in dynamic environments using instantiated information. In
Machine Learning: Proceedings of the Eighteenth International Conference (ICML2001), pages
585-592, 2001.

12

	Introduction
	Related Work
	Contribution

	Background
	Tracking in Dynamical Systems
	Linear Observation Function
	Nonlinear Observation Function
	Reinforcement Learning

	Stochastic Kalman Gradient Descent
	Regularization via Row Dropout
	Feasibility and Complexity
	Algorithm

	Experiments
	Microgrid

	Discussion

