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Abstract
Over the last decade, the problem of data-driven modeling in linear dynamic networks has been
introduced in the literature, and has shown to contain many different challenging research questions.
The structural and topological properties of networks become a central ingredient in the data-driven
modeling problem, as well as the selection of locations for signals to be sensed and for excitation
signals to be added. In this survey-type paper we will present an overview of recent results that are
obtained for the problem of learning the dynamics of a single link/module in a dynamic network of
which the topology is given. The surveyed methods include extensions of classical identification
methods, combined with Bayesian kernel-based methods. Particular attention will be given to the
selection of signals that need to be available for measurement/excitation, and accuracy properties
of the estimated models in terms of consistency and minimum variance properties.
Keywords: System identification, identifiability, dynamic networks, kernel-based methods, sys-
tems over graphs.

1. Introduction

Linear dynamic networks are structured systems that are composed of interconnected linear time-
invariant systems. Typically a dynamic network induces a graph, with vertices and edges, that
represents the topology of the network. Often a network is represented in a state-space form with
states as node signals represented by the vertices in the graph, and the state transitions as links or
edges in the graph. However in a data-driven modeling setting, where not all states of a system
are typically measured, it has appeared to be attractive to represent the network in a graph that has
(measured) node signals as vertices, and dynamic transfer functions on the links/edges. The basic
setting of Dynamic Structure Functions that was introduced in Gonçalves and Warnick (2008), was
generalized to a stochastic estimation and identification setting in Van den Hof et al. (2013), and has
been adopted by several different authors.

In this setting a dynamic network is built up out of L scalar internal variables or nodes wj ,
j = 1, . . . , L, and K external variables rk, k = 1, . . .K. Each internal variable is described as:

wj(t) =
L∑
l=1
l 6=j

Gjl(q)wl(t) + uj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);

• Gjl are proper rational transfer functions, referred to as modules.
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• uj is an input signal, uj(t) =
∑K

k=1Rjk(q)rk(t) with rk external variables that can directly
be manipulated by the user.

• vj is process noise, where the vector process v = [v1 · · · vL]T is modelled as a stationary
stochastic process with rational spectral density Φv(ω), such that there exists a white noise
process e := [e1 · · · eL]T , with covariance matrix Λ > 0 such that v(t) = H(q)e(t), where
H ∈ RL×p(q) is stable, monic and minimum-phase.

When combining the L node signals we arrive at the full network expression
w1

w2

...
wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L
GL1 · · · GL L−1 0



w1

w2

...
wL

+R

r1
r2
...
rK

+H

e1
e2
...
ep


which results in the matrix equation:

w = G(q)w +R(q)r +H(q)e, (2)

where by construction the matrix G is hollow, i.e. it has diagonal entries 0, while it encodes the
topology of the network, i.e. Gj`(q) 6= 0 if and only if there is a connection from node w` to node
wj in the network.
The single module identification problem to be considered is the problem of identifying one partic-
ular module Gji(q) on the basis of measured time-series of a subset of variables in w, and possibly
r, for the situation that the network topology is known. This is illustrated in the network depicted
in Figure 1.

It may be clear that simply measuring the input and output of the target module and estimating a
model on the basis of these signals, will generally not lead to accurate results, because of the signal
correlations that are induced by the remaining part of the network. For example, in the situation
of Figure 1, with G21 being the target module for estimation, estimating the dynamics on the basis
of input w1 and output w2 only will provide an estimated model that includes the dynamics of the
“parallel path” G31G43G42.

Non-uniqueness
The network representation (2) will in general be non-unique. E.g. for the situation R(q) = 0, the
dynamic properties of the network are reflected by the spectral density Φw(ω), while this spectrum
can be generated by different combinations of G, H and Λ. In this situation uniqueness is achieved
e.g. if the noise model H is restricted to be diagonal (Bottegal et al. (2018)). However, in situations
that the network and its topology result from structured first principle modelling, it is still relevant
to consider situations of non-diagonal H , as disturbances in different locations of the network can
very well be correlated. For the general case of R(q) 6= 0, the freedom of transforming the network
to equivalent representations is analyzed in Weerts et al. (2020).

2. Main approaches

We can distinguish several different approaches for addressing the single module identification prob-
lem, where the target module is indicated by Gji.
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Figure 1: Example network with the green module G21 being the target module for identification
(Ramaswamy and Van den Hof (2021)).

1. An indirect method, that is based on selecting a particular set of predictor input signals rk,
k ∈ D, and a set of predicted outputs w`, ` ∈ Y , that are used in a predictor model, leading to

ε(t, θ) = wY(t)− T̄ (q, θ)rD(t). (3)

The matrix T̄ refers to a submatrix of the network transfer matrix T := (I −G)−1R, which
maps external signals r into internal node signals w. In order to extract the dynamics of a
particular module Gji from an estimated T̄ , a postprocessing step is necessary. Consistency
of the target module estimate is the typical objective. Different variations of indirect methods
exist, including two-stage and instrumental variable (IV) methods.

2. A direct method, that is based on selecting a particular set of predictor input signals wk,
k ∈ D, and a set of predicted output signals w`, ` ∈ Y , with i ∈ D, j ∈ Y , and estimating a
dynamic model based on a prediction error:

ε(t, θ) = H̄(q, θ)−1[wY(t)− Ḡ(q, θ)wD(t)− R̄rP(t)], (4)

where Ḡ(q, θ) and H̄(q, θ) are parametrized transfer function matrices, R̄ is a constant selec-
tion matrix, and rP a subset of excitation signals r. The target module is then embedded in
the model Ḡ(q, θ), and the objective is to estimate the target module consistently and possibly
with minimum variance.

3. Recently a generalization of the direct and indirect method was introduced based on a predic-
tor model with prediction error

ε(t, θ)=H̄(q, θ)−1[wY(t)−Ḡ(q, θ)wDw(t)−T̄ (q, θ)rDr(t)],

and where the target module estimate is obtained after post-processing the estimated Ḡ and
T̄ . This method allows for more flexibility in selecting the node signals to be measured for
identification, see Ramaswamy et al. (2019).

In all of the three approaches, models can be estimated by minimizing a scalar cost function
over θ, as e.g., the quadratic cost function

θ̂N := arg min
θ

1

N

N∑
t=1

εT (t, θ)Pε(t, θ) (5)
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with P a positive definite weighting function. Specific estimation algorithms are further addressed
in Section 5.

Besides the above methods, which are based on selecting an appropriate predictor model, there
are alternative methods including non-parametric approaches, where relations between particularly
estimated spectral densities of internal signals are used as a basis for module estimation, see Mat-
erassi and Salapaka (2015, 2020). Recently also a subspace method has been presented that can
handle non-measured interacting signals between the modules, see Yu and Verhaegen (2018). In
this paper we will focus on the prediction error approaches listed above.

In order to arrive at accurate, consistent (and possibly minimum variance) estimates of our target
module, there are two prime requirements for the estimation setup:

1. An appropriate predictor model needs to be chosen. This choice of predictor model includes a
selection of node signals to be included as measured signals, and to select inputs and outputs
in the predictor model. The predictor model determines where sensors should be available
in the network. The predictor model needs to satisfy particular properties in order to guar-
antee that the target module indeed can be estimated and no uncontrolled bias occurs in the
estimated model.

2. The measured data that is taken from the network needs to satisfy condition of data-informativity,
in other words it needs to be sufficiently rich in order to provide accurate estimates.

The three identification approaches listed above are distinguished by the choice of predictor
model. Whereas indirect methods use predictor models having only external excitation signals r
as predictor input, the direct method uses node signals w as predictor input, and the generalized
method combines both. Different choices of predictor models will lead to different conditions for
data-informativity. The direct method (4) has node signals wD as predictor inputs, and therefore
utilizes both external signals r and e for creating data-informativity. On the other hand, indirect
methods rely on external excitation signals r only for data informativity, and therefore will typically
require more “expensive” external excitations. The direct method provides asymptotically efficient
estimates (i.e. consistency and minimum variance for the identification setup) at the cost of the
need to include noise models H̄(q, θ). The indirect method and its variations provides consistent
estimates but not with minimum variance. When the node signals are measured with sensor noise
(errors-in-variables (EIV) situation), the direct method becomes biased and the indirect method
provides consistent estimates of the target module.

3. Indirect method

3.1. General approach

The network model (2) can be rewritten as w = Tr + v̄ where v̄ = (I −G)−1He. A consistent
estimate T̂ (q) of T (q) can be obtained using open loop MIMO identification method as in (3). On
the basis of T̂ (q), a consistent estimate Ĝ of G can be obtained by solving (I − Ĝ)T̂ (q) = R.
By identifiying only a submatrix of T and solving only a subset of the above equations, a target
module embedded in the dynamic network can be identified, see Gevers et al. (2018); Hendrickx
et al. (2019); Bazanella et al. (2019).

This latter situation leads to a predictor model setup as depicted in Figure 2. The output wY of
the predictor model is selected to be composed of wj and all node signals wN that are in-neighbours
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Figure 2: Predictor model for the indirect method.

of wj , i.e. N = N−j . Using the predictor model

ε(t, θ) = H̄(q, θ)−1
[
wY(t)− T̄ (q, θ)rD

]
where T̄ is decomposed as

T̄ =

[
T̄jrD
T̄NrD

]
. (6)

If a consistent estimate T̂ of T̄ is made, then a consistent estimate of G0
jN is obtained according to

ĜjN = T̂jrD T̂
†
NrD (7)

where T̂ †NrD is the right inverse of T̂NrD .
The fact that the right inverse of T̂NrD needs to exist, requires the presence of a sufficient number

of external excitation signals r in the network, i.e. dim(rD) ≥ dim(wN ). So we need at least as
many external excitation signals r to be present as there are in-neighbours of wj .

3.2. Reducing the number of node signals

In general it is not necessary to use the full set of in-neighbours wN withN = N−j in the output wY .
It is sufficient to select a subset wN that satisfies the property that upon removal (immersion) of the
remaining unmeasured nodes from the network, while keeping the remaining node signals invariant,
the target module remains invariant too. This is achieved if the parallel path and loop condition is
satisfied (Dankers et al. (2016)):

Condition 1 (Parallel path and loop condition) In the graph of the network model, every path
from (wi, wj) to wj with length ≥ 2 passes through a node that is included in the predictor model.

With the parallel path and loop condition satisfied, we can perform the identification steps as
presented in Section 3.1, with a subset of the in-neighbour nodes of wj , i.e., wN with N ⊂ N−j . At
the same time, this reduces the required number of excitation signals present in the network, so as
to guarantee the existence of the right inverse of T̂NrD in (7).

In Shi et al. (2020) the above situation has been generalized and the handling of Condition 1
has been reformulated in terms of finding a disconnecting set between node signals wi and N−j
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Figure 3: Node signal selection through disconnecting set.

while excluding node signals that are input to modules of which the dynamics is known a priori.
This situation is depicted in Figure 3. In this Figure the red module Gjn is a module of which
the dynamics is a priori known, and the set of nodes in wN\{i} is a (minimum) disconnecting set
between the nodes wi and {wk · · ·wm}. With rD = (r1, r

T
u )T and dim(ru) = dim(wN\{i}), a

consistent estimate of G0
ji can then be obtained according to

Ĝji = T̂jrD T̂
†
NrDπi (8)

with πi the i−th unit vector. Excitation requirements on rD can now again be formulated in terms of
the existence of the right inverse of T̂NrD , implying that dim(rD) ≥ dim(wN ). The r-signals can be
added to the nodes in wN directly, or can also be added elsewhere in the network, as in Figure 2. If
N\{i} is a minimum disconnecting set then automatically the number of required external excitation
signals is minimized, thus providing the “cheapest” possible experimental setup. Note that the node
signals that need to be available for estimating the dynamics of G0

ji now become: wj , wN and wn.
The in-neighbours {wk, · · ·wm} are not necessarily included now. A further generalization of the
signal selection problem can be achieved by replacing the parallel path and loop condition by a
result from network abstractions (Weerts et al. (2020)), allowing in stead of measuring nodes in the
parallel paths and loops, measuring particular descendants of those nodes.

The considerations above show the results for the choice of an appropriate predictor model. For
the indirect method the requirements for data-informativity are rather straighforward: a sufficient
condition for data-informativity is that Φr(ω) > 0 for almost all ω, with Φr(ω) the spectral density
of r, see Van den Hof and Ramaswamy (2020).

The indirect method has been studied in different settings. The above reasoning follows from
the starting point of full measurement, i.e. all node signals are assumed available for measurement,
although in the final result only a subset of node signals needs to be measured. In a dual setting of
full excitation, i.e., having excitation signals on all node signals, it has been analyzed which node
signals to measure for consistent identification of the target module, see Bazanella et al. (2017);
Hendrickx et al. (2019). This situation is further relaxed in Bazanella et al. (2019).

Related indirect methods, such as the two-stage method and the Instrumental Variable (IV)
method have been presented in Van den Hof et al. (2013) and Dankers et al. (2015) respectively. A
semi-parametric approach has been introduced in Galrinho et al. (2017) where a parametric model
of the target module is consistently identified using a multi-step approach, while avoiding non-
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convex optimization. All the indirect methods can handle an EIV setting as well as networks with
correlated process noise.

4. Direct method

4.1. General setup

In the situation that it is known that the process disturbances are uncorrelated, i.e. Φv is diagonal,
the direct identification method can typically be reduced to a MISO problem, where (4) reduces to

ε(t, θ) = H̄(q, θ)−1
[
wj(t)− Ḡ(q, θ)wD(t)− R̄rP(t)

]
(9)

wherewD is a vector signal, andwY = wj is scalar. The simplest situation is when allw-in-neighbors
of wj (denoted by wN−j ) are included, i.e. wD = wN−j

.
The target module can then directly be parametrized and estimated as part of a MISO model,

see Van den Hof et al. (2013). For consistency, conditions on informativity of the data have to be
satisfied, implying that sufficient excitation should be present in the predictor inputs. A typical, but
conservative, condition is that Φwm(ω) is positive definite for a sufficient number of frequencies
where wm is the vector of stacked predicted output and predictor input signals. For a particular
situation of limited order models a less conservative condition is formulated in Gevers and Bazanella
(2015). Excitation signals r are not explicitly included in the predictor model, but they play an
obvious role in the realization of the data-informativity conditions. Note that besides the external
excitation signals r, also the disturbance signals e (and their filtered versions v) can contribute to a
sufficient excitation of the predictor input signals. This is schematically depicted in Figure 4.

Figure 4: Predictor model for direct method.

Like in the situation of the indirect method, the number of node signals that needs to be included
in wD can be further reduced by satisfying the parallel path and loop condition, or similarly, by
constructing a (minimum) disconnecting set between the nodes i and D\{i}. However one of
the possible consequences of removing an w-in-neighbour of wj from wD is that in the immersed
network, in which the considered node is removed, the disturbance signals that are acting on wj
and those acting on wD can get correlated. The same situation occurs if in the original network
the disturbance signals v are correlated, i.e., the spectral density Φv(ω) is non-diagonal. In those
situations we have to deal with the presence of confounding variables as discussed next.
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4.2. Handling confounding variables in the direct method

In one of the following situations

a. Φv(ω) is non-diagonal such that vj and vk, k ∈ D are correlated, or

b. Some in-neighbours of wj are not included in wD, after immersion,

correlations between inputs and output in the predictor model are possibly introduced, that are
referred to as confounding variables.

Definition 1 (Confounding variable) A confounding variable is an unmeasured variable that af-
fects both the input and output of an estimation problem.

When not properly accounted for, confounding variables typically destroy the consistency properties
of the direct method for estimating G0

ji, as they introduce correlation between the measured node
signals wi and wj that is not induced by the module dynamics G0

ji. Phrased in identification-
terms, confounding variables are correlated disturbances. We distinguish two types of confounding
variables, depending on their origin of appearance. Next to the indirect confounding variables
that can occur due to non-measured input signals, we distinguish direct confounding variables that
appear as a result of disturbance correlations in Φv. There are different solutions for mitigating the
effect of confounding variables that affect the construction of the predictor model.

(a) Direct confounding variables can only be handled by including the predictor input node with
a disturbance that correlates with the output, in the predictor output too. In this way the
correlated disturbance between the two node signals can be modelled through a multivariate
noise model H̄;

(b). Indirect confounding variables can be handled by either following the previous strategy (a),
or by adding a measured node signal to wD that blocks the path from the confounding variable
to the input signal.

Handling confounding variables by adding predictor inputs has been addressed in Dankers et al.
(2016, 2017), while the solution through increasing the number of predicted outputs has been intro-
duced in Ramaswamy and Van den Hof (2021). The handling of confounding variables is illustrated
in the following example.

Example 1 Consider the network as sketched in Figure 5 (left) where node signal w7 is unmea-
sured, node signalsw1, w2, w3, w6 are measured, and the target is to estimate moduleG0

21. Becasue
of the path from node w7 to both input w1 and output w2, the unmeasured node signal w7 acts as
an indirect confounding variable for the estimation problem (w1, w3, w6) → w2. The effect of this
(indirect) confounding variable can be mitigated in two different ways. If the path fromw7 tow1 can
be “blocked” by an additional node signal that can be measured, like node w4 in Figure 5 (right),
then w4 is included as predictor input, leading to the predictor model (w1, w3, w4, w6) → w2. Al-
ternatively node w1 can be added to the output, where the correlated disturbances are modelled
through a 2× 2 noise model in the predictor model (w1, w3, w6)→ (w1, w2).

The construction of an appropriate predictor model can now be performed according to the
following steps:

8



LEARNING LOCAL MODULES IN DYNAMIC NETWORKS

Figure 5: Handling of an indirect confounding variable. Left Figure: w7 is an indirect confounding
variable for the estimation problem (w1, w3, w6)→ w2; Right Figure: an additional node
signal w4 is included in wD that blocks the path from w7 to w1.

1. Select wD = wi and wY = wj ;

2. Add predictor inputs in wD to satisfy the parallel path and loop condition;

3. Mitigate the effect of indirect and direct confounding variables, by adding predictor inputs
and/or adding predicted outputs;

This leads to a description of the relation between the node variables that are incorporated in the
predictor model, as:

wY(t) = ḠwD(t) + R̄rP(t) + H̄ξY(t) (10)

where only those r signals are included in rP that warrant matrix R̄ to be a known selection matrix,
and so non-dynamic. The effect of all remaining r-signals is incorporated in the noise term H̄ξY .
The prediction error that forms the basis for the estimation algorithm then becomes

ε(t, θ) = H̄(q, θ)−1
[
wY(t)− Ḡ(q, θ)wD(t)− R̄rP(t)

]
. (11)

It has to be noted that there can be a set of node signals, denoted by wQ that appear both in wD
and in wY , as also illustrated in Example 1.

Path-based conditions for the construction of an appropriate predictor model have been formu-
lated in Ramaswamy and Van den Hof (2021). The results provide multiple options for the user
to choose from, in terms of how many and which node signals to include in the estimation setup,
dependent on the availability of measured node signals.

Data-informativity conditions are typically formulated in the form of a positive definite sig-
nal spectrum of a specified signal vector, and thus requiring sufficient (external) excitation, either
through excitation or through disturbance signals. Also for this property path-based conditions are
formulated that guarantee data-informativity generically, and that are based on a sufficient number
of paths that connect particular externals signals r, e to the predictor inputs, see Van den Hof and
Ramaswamy (2020). One of the specific results on data-informativity is that dim(r) ≥ dim(wQ),
i.e. there should be at least as many external excitation signals as there are node signals in wQ.

9



LEARNING LOCAL MODULES IN DYNAMIC NETWORKS

5. Algorithmic aspects - kernel based methods

The (non-convex) optimization problems (5) that need to be solved for the different identification
approaches will typically grow in dimension of the number of unknown parameters, to a large extent
because the number of modules that needs to be estimated in the resulting MISO or MIMO predictor
models will grow. Rather than solving for the large scale non-convex optimization problems, algo-
rithms inspired by machine learning that more effectively handle the complexity of the estimation
problem are favoured.

By incorporating kernel-based method, the impulse response(s) of the modules are modeled as
zero-mean Gaussian processes whose covariance(s) are described by a kernel that ensures smooth-
ness and stability of the model. A probabilistic description of the model is obtained and the coef-
ficients of the impulse response(s) are obtained by estimating the hyperparameters of the kernel by
maximizing the marginal likelihood of the data. In this way, the impulse response of each module
is obtained through estimating only a few hyperparameters (eg. 2 hyperparamters per module for
stable spline kernel).
In Chiuso and Pillonetto (2012), this has been applied in a time domain non-parametric approach for
estimating models in a MISO setup with white output noise. Following a semi-parametric approach
to a dynamic network with only sensor noise (no process noise), the increase in variance due to high
order modeling in a two-stage method is reduced in Everitt et al. (2018) by applying a kernel-based
method.
Similarly, the direct method demands a model order selection step for all modules in the MISO
setup, which increases the complexity and induces estimation of large number of nuisance parame-
ters. In Ramaswamy et al. (2018), a kernel-based method has been presented to tackle these prob-
lems by modeling the target module as a parametric model and the remaining modules in the MISO
setup as Gaussian processes, thus avoiding the model order selection step and decreasing the num-
ber of parameters. This offers a substantially reduced variance of the target module estimate. In
Rajagopal et al. (2020) this approach has been extended to the situation of MIMO predictor models.

6. Identifiability

When considering network identifiability (Weerts et al. (2018a)), conditions can be formulated for
identifiability of a single module in a network model set. This typically leads to rank conditions
on particular transfer functions from external signals to particular node signals. In a generic sense,
this can be translated to path-based conditions on the graph of the network model set (Hendrickx
et al. (2019) and followed up by Weerts et al. (2018b)). A synthesis procedure to assign and locate
the minimum number of external excitation signals for guaranteeing local module generic identi-
fiability, is provided in Shi et al. (2020). These results are typically independent of the particular
identification method considered.

7. Conclusions

We have surveyed a class of data-driven modeling methods for learning the dynamics of a single
module that is embedded in a dynamic network of which the topology is a priori given.
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