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Abstract
The paper presents a data-driven predictive control framework based on an implicit input-output
mapping derived directly from the signal matrix of collected data. This signal matrix model is
derived by maximum likelihood estimation with noise-corrupted data. By linearizing online, the
implicit model can be used as a linear constraint to characterize possible trajectories of the system
in receding horizon control. The signal matrix can also be updated online with new measurements.
This algorithm can be applied to large datasets and slowly time-varying systems, possibly with
high noise levels. An additional regularization term on the prediction error can be introduced to
enhance the predictability and thus the control performance. Numerical results demonstrate that
the proposed signal matrix model predictive control algorithm is effective in multiple applications
and performs better than existing data-driven predictive control algorithm.
Keywords: Predictive control, data-driven optimization, maximum likelihood estimation

1. Introduction

In control applications, despite the wide use of data to understand the response of a system, conven-
tional methods are focused on identifying a compact model of the system based on first principle
model structures or low-order approximation (Ljung (1999)). This enables the design of simple but
effective feedback control laws. However, this idea of model-based control is challenged by the
increasing complexity of modern systems, where compact models are hard to obtain (Hjalmarsson
(2005)). On the other hand, modern systems are usually associated with a large set of available
data. Therefore, model-free approaches have been proposed to learn the control action directly
from collected data without an explicit formulation of the system model, e.g., reinforcement learn-
ing (Lagoudakis and Parr (2003); Powell (2007)). However, it has been observed in Recht (2019)
that these approaches tend to perform in a much less data-efficient manner in simple tasks compared
to model-based methods.

In this paper, we focus on a control design strategy which lies in between the model-based
and the model-free approaches. This strategy still aims to obtain a description of the system, but
in the form of a non-parametric input-output mapping instead of a compact parametric model. In
detail, the input-output mapping is derived based on the Willems’ fundamental lemma proposed
in Willems et al. (2005) that characterizes all possible trajectories of length up to the order of
persistency of excitation by constructing Hankel matrices from data. This implicit representation of
the system has been successfully applied to simulation and control problems with noise-free data in
Markovsky and Rapisarda (2008); Coulson et al. (2019a); De Persis and Tesi (2020). These results
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in the noise-free case are extended to noise-corrupted datasets by maximum likelihood estimation
in Yin et al. (2020). The derived data-driven input-output mapping, dubbed the signal matrix model
(SMM), provides a statistically optimal formulation to predict the response of the system.

This paper focuses on the application of SMM to receding horizon predictive control algorithms.
This optimization-based control algorithm is suitable to solve optimal trajectory tracking problems
with constraints. When a model of the system is available, it is commonly known as model pre-
dictive control (MPC) (Camacho and Bordons (2016)). In this work, the model-based predictor is
replaced with a linearized SMM constraint obtained directly from the data-based signal matrix. This
algorithm is efficient in handling large datasets by data preconditioning without increasing online
computational complexity. It is demonstrated by numerical examples that this algorithm performs
better than existing data-driven predictive control algorithm with noisy data. This paper proposes
multiple novel extensions of the algorithm and analyzes their performances with numerical exam-
ples. Online data can be incorporated in the signal matrix to make the algorithm adaptive. This
improves our knowledge of the system online, and extend the algorithm to slowly time-varying
systems. When data with high noise levels are treated, better initial condition estimation can be
achieved with longer past trajectory measurements. The predictability along the close-loop trajecto-
ries is enhanced by introducing a prediction error regularization term in the objective function, and
thus the control performance can be improved as well.

2. Data-Driven Predictive Control

Consider a minimal discrete-time linear time-invariant (LTI) dynamical system with output noise,
given by {

xt+1 = Axt +But,

yt = Cxt +Dut + wt,
(1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , wt ∈ Rny are the states, inputs, outputs, and output noise
respectively. The model parameters (A,B,C,D) are unknown, but input-output trajectory data
(udi , y

d
i )N−1i=0 of the system have been collected.

We are interested in designing a data-driven controller that obtains optimal tracking to a refer-
ence trajectory r in the sense of minimizing the total cost:

Jtot =

Nc−1∑
t=0

Jt =

Nc−1∑
t=0

(∥∥y0t − rt∥∥2Q + ‖ut‖2R
)
, (2)

where Jt is the stage cost at time t, y0t is the noise-free output, Q and R are the output and the
input cost matrices respectively, and Nc is the length of the control task. This can be achieved
by receding horizon predictive control. In detail, at each time instant t, the controller predicts an
admissible input-output trajectory of length L′ of the system that minimizes the predicted cost of
future L′ steps online, i.e.,

minimize
û,ŷ

Jctr :=

L′−1∑
k=0

(
‖ŷk − rt+k‖2Q + ‖ûk‖2R

)
subject to

([
up
û

]
,

[
yp
ŷ

])
is a possible trajectory of (1),

û ∈ U , ŷ ∈ Y,

(3a)

(3b)

(3c)
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where up = (ui)
t−1
i=−∞, yp = (yi)

t−1
i=−∞ are the immediate past input-output trajectory, and U ⊆

RL′nu , Y ⊆ RL′ny are the sets of admissible inputs and outputs respectively. Then, the first entry in
the newly optimized input sequence is applied to the system in a receding horizon fashion.

In standard model predictive control, the constraint (3b) is enforced based on a known model of
the system, such as (1) with a state estimation scheme. Alternatively, in the data-driven predictive
control framework, this constraint is directly formulated from the collected data of the systems,
namely (udi , y

d
i )N−1i=0 , without knowing the model parameters. In this regard, it is proved in Willems

et al. (2005) and, in a state-space context, De Persis and Tesi (2020); van Waarde et al. (2020) that
all the possible trajectories of a linear system within a time horizon can be captured by a single
persistently exciting trajectory of the system when no noise is present. Based on these results, the
following proposition holds.

Proposition 1 Assume that 1) the system is noise-free, i.e., ∀i, wi = 0; 2) the collected input
trajectory is persistently exciting of order (L + nx), i.e., the block Hankel matrix constructed from
(udi )

N−1
i=0 with (L+ nx) block rows has full row rank; and 3) L0 := L− L′ ≥ nx. Then constraint

(3b) is equivalent to the following statement: there exists g, such that


uini(t)
û(t)

yini(t)
ŷ(t)

 =

[
U
Y

]
g(t) :=



ud0 ud1 · · · udM−1
...

...
. . .

...
udL−1 udL · · · udN−1
yd0 yd1 · · · ydM−1
...

...
. . .

...
ydL−1 ydL · · · ydN−1


g(t), (4)

where uini(t) = (ui)
t−1
i=t−L0

, yini(t) = (yi)
t−1
i=t−L0

, and M = N − L+ 1.

Proof This is a direct extension of Proposition 1 in Markovsky and Rapisarda (2008).

Equation (4) provides an implicit input-output mapping between û and ŷ with an intermediate
parameter g, by constructing the matrix col (U, Y ). This matrix is constructed from offline mea-
surement data and referred to as the signal matrix in the remainder of the paper. By replacing the
constraint (3b) with the parametric relation (4), the predictive controller can be designed without
any knowledge of the model parameters in (1). This method is known as the data-enabled predictive
control (DeePC) algorithm (Coulson et al. (2019a)).

3. The Maximum Likelihood Signal Matrix Model

A strong assumption in Proposition 1 is that the data are noise-free, under which the signal matrix is
rank deficient with rank (col (U, Y )) = nx + nuL as shown in Theorem 2 of Moonen et al. (1989).
This guarantees that, though (4) is a highly underdetermined linear system when a large dataset is
available, the input-output mapping from û to ŷ is still well-defined. However, when the data are
noise-corrupted, the signal matrix has full row rank almost surely, and thus for any û, ŷ, there exists
g that satisfies (4) almost surely. The input-output mapping becomes ill-conditioned.
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In order to extend the DeePC algorithm to noise-corrupted data, empirical regularization terms
on g have been introduced in the objective function. The optimization problem becomes

minimize
û,ŷ,g

Jreg := Jctr + λg ‖g‖pp + λy ‖Ypg − yini‖pp

subject to col(uini, û, ŷ) = col(U, Yf ) g, û ∈ U , ŷ ∈ Y,
(5)

where Yp is the first L0 · ny rows of Y , Yf is the last L′ · ny rows of Y , and p = 1 or 2 depending
on the noise model. This is known as the regularized DeePC algorithm (Coulson et al. (2019b)).
However, this method requires tuning of the hyperparameters λg, λy, and the input-output mapping
obtained from the regularized problem is affected by the control cost Jctr.

In this paper, we investigate an alternative approach to obtain a tuning-free, statistically optimal,
and well-defined input-output mapping with noise-corrupted data by maximum likelihood estima-
tion. This input-output mapping, known as the signal matrix model (Yin et al. (2020)), can then be
applied in place of constraint (3b) in the optimization problem when noisy data are available.

Specifically, consider the case where both the signal matrix and online measurements of yini are
corrupted with i.i.d. Gaussian output noise:{

ydi = yd,0i + wdi , (wdi )
N−1
i=0 ∼ N (0, σ2I),

yini = y0
ini + wp, wp ∼ N (0, σ2pI),

(6)

where for simplicity of exposition, we assume ny = 1. Define ỹ = col (εy, ŷ) = Y g−col (yini,0) ,
where εy := Ypg − yini is the total deviation of the past output trajectory from the noise-free
case. Then the parameter g can be estimated by maximizing the conditional probability density of
observing the realization ỹ corresponding to the available data given g, i.e., maxg p(ỹ|g). This is
equivalent to the following optimization problem:

min
g∈G

logdet(Σy(g)) +

[
Ypg − yini

0

]T
Σ−1y (g)

[
Ypg − yini

0

]
. (7)

where G is the parameter space defined by the noise-free input trajectory, namely G = {g ∈
RM |Ug = col (uini, û)}, and Σy(g) is the covariance of ỹ given g with entries

(Σy(g))i,j = σ2
M−|i−j|∑
k=1

gkgk+|i−j| +

{
σ2p, i = j ≤ L0

0, otherwise
. (8)

To find a computationally efficient algorithm to solve (7), we relax the problem by neglecting
the cross-correlation between elements in the signal matrix, and thus the off-diagonal elements
in Σy(g). This leads to the following iterative algorithm:

gk+1 = argmin
g∈G

λ(gk) ‖g‖22 + ‖Ypg − yini‖22 , λ(gk) =
L′σ2p

‖gk‖22
+ Lσ2. (9)

For details on the derivation of the maximum likelihood estimator and the associated iterative algo-
rithm, readers are referred to Section IV in Yin et al. (2020).

The maximum likelihood signal matrix model can be compactly represented as follows:

ŷSMM = Yf gSMM(û;uini,yini, U, Yp), (10)

where gSMM(·) is the converged solution of the iterative algorithm (9). This model provides a data-
driven input-output mapping when signals are measured with i.i.d. Gaussian output noise. Similar
signal matrix models can be developed for alternative noise models, such as process noise.
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4. Data-Driven Predictive Control with the Signal Matrix Model

In this section, the signal matrix model is applied to the data-driven predictive control framework
as the predictor. Throughout this section, numerical examples tested on the following fourth-order
LTI system:

G(z) =
0.1159(z3 + 0.5z)

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
(11)

are considered. The goal is to achieve optimal output tracking of a sinusoidal reference trajectory
rt = 0.5 sin

(
π
10 t
)
. The control design parameters are chosen as Q = 1, R = 1, L′ = 10, and

L0 = nx = 4 with no input and output constraints, i.e., U = Y = RL′
, unless otherwise specified.

The length of the control task Nc is 120. The offline input-output trajectory data are collected with
unit i.i.d. Gaussian input signals, and the noise levels σ2 and σ2p are assumed known. To benchmark
the performance, we consider the ideal deterministic MPC algorithm with knowledge of the true
state-space model and the noise-free state measurements, which will be indicated by MPC in the
following figures.

The signal matrix model (10) can be directly incorporated in the receding horizon predictive
control scheme (3) by replacing (3b) with the SMM. However, the maximum likelihood estimator
gSMM(·) involves an iterative algorithm which does not have a closed-form solution. This makes
the optimization problem computationally challenging to solve, especially in an online scheme. To
address this problem, we propose warm-starting the iterative algorithm with the value of g at the
previous time instant and approximating gSMM(·) with the first iterate, i.e.,

gt(û;uini,yini, U, Yp, g
t−1) = P(gt−1)yini +Q(gt−1) col (uini, û) , (12)

where, with an abuse of notation, gt(·) denotes the approximation of gSMM(·) with one iteration at
time instant t, and the right hand side is the closed-form solution of the quadratic program (9) with
gk = gt−1. This leads to the linearized signal matrix model:

ŷLSMM = Yf
(
P(gt−1)yini +Q(gt−1) col (uini, û)

)
, (13)

and thus the predictive control problem (3) becomes a quadratic program:

minimize
û,ŷ

Jctr

subject to ŷ = Yf
(
P(gt−1)yini +Q(gt−1) col (uini, û)

)
, û ∈ U , ŷ ∈ Y.

(14)

The value of g is initialized with the pseudo-inverse solution to the reference output trajectory,
i.e., gini = [col (Up, Yp, Yf )]† col (u0,y0, r0), where u0 = (ui)

−1
i=−L0

, y0 = (yi)
−1
i=−L0

, and r0 =

(ri)
L′−1
i=0 .
To assess the validity of the linearized SMM, we investigate the discrepancy between the lin-

earized SMM and the iterative nonlinear SMM in the following example.

Example 1 Consider input-output trajectory data of length N = 50 with noise level σ2 = 0.1.
The online measurement noise level is σ2p = 0.1. The data-driven predictive control is conducted
by solving (14) with the linearized SMM constraint. At each time instant t = 0, 1, . . . , Nc − 1, the
results of the linearized SMM predictor (13) and the iterative SMM predictor (10) are compared
with the newly optimized input sequence and quantify their discrepancy by

E =
‖ŷLSMM − ŷSMM‖2
‖ŷSMM‖2

. (15)
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The histogram of E is plotted in Figure 1.

Figure 1: Normalized discrepancy between the linearized SMM and the iterative SMM.

It can be seen from Figure 1 that the error resulting from the linearization of SMM is less than 5%
for most time instants, which shows that the linearized SMM can obtain an accurate input-output
mapping. Therefore, in the following analysis, the linearized SMM (13) will be employed.

In the first test, we compare the signal matrix model predictive control (SMM-PC) with the
regularized DeePC algorithm in the following example.

Example 2 Consider an MPC problem with the same trajectory data and online measurement noise
as in Example 1. In addition to SMM-PC, the regularized DeePC algorithm (5) is also applied. The
hyperparameter λg is selected from a nine-point logarithmic grid between 10 and 1000 with an
oracle (choosing the value with the optimal performance a posteriori); λy is fixed to 1000 since
the control performance is not sensitive to it in this example. 50 Monte Carlo simulations are
conducted, and the closed-loop input-output trajectories within one standard deviation are plotted
in Figure 2.
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Figure 2: Closed-loop input-output trajectories with regularized DeePC and linearized SMM.

As shown in Figure 2, the output trajectory obtained with the SMM-PC algorithm is closer to the
reference trajectory with smaller inputs compared to the regularized DeePC algorithm. In addition,
the applied input trajectory is much smoother for the SMM-PC algorithm, which indicates that the
input-output mapping predicted by the linearized SMM is more accurate compared to the regular-
ization method. For more detailed comparison with the DeePC algorithm, readers are referred to
Section VI.C in Yin et al. (2020).
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The data-driven formulation of the input-output mapping with the linearized signal matrix model
enables flexible extensions to the algorithm under multiple scenarios, including large datasets, poor
data quality, and time-varying systems. These extensions will be discussed as follows.

When a large set of input-output trajectory data are collected, i.e., N � L, the dimension of the
intermediate parameter g ∈ RM will be much larger than the time horizon of the predictive control.
This is an undesired feature as it leads to high computational complexity online. Therefore, we
propose the following strategy to compress the dimension of g to 2L regardless of the data length.

Proposition 2 Let the singular value decomposition (SVD) of the signal matrix be col (U, Y ) =
WSV T ∈ R2L×M . Define the compressed signal matrix as col (Ũ , Ỹ ) = WS2L ∈ R2L×2L, where
S2L is the first 2L columns of S. Then the SMM-PC algorithm with the signal matrix col (U, Y ) is
equivalent to that with the compressed signal matrix col (Ũ , Ỹ ).

Proof This is a direct extension of Proposition 1 in Yin et al. (2020).

Proposition 2 shows that regardless of the size of the dataset, an SVD operation can be conducted
offline to reduce the size of the signal matrix to a square matrix while obtaining exactly the same
results as with the original signal matrix. In this way, the online computational complexity is only
dependent on the control horizon.

4.1. Incorporation of Online Data

In addition to the offline data (udi , y
d
i )N−1i=0 , online measurements can also be used to construct the

signal matrix. By doing so, the knowledge of the unknown system improves as the predictive
controller is deployed. This is particularly useful when the quality of the offline data is poor or the
model parameters are varying online. This strategy can be interpreted as an equivalent of adaptive
MPC (Fukushima et al. (2007)) for the signal matrix model.

At each time instant t ≥ L, a new column can be added to the signal matrix with[
Ut+1

Yt+1

]
=

[
γUt (ui)

t
i=t−L+1

γYt (yi)
t
i=t−L+1,

]
(16)

where col (Ut, Yt) is the adaptive signal matrix applied to the SMM-PC algorithm at time t, and
γ is the forgetting factor of previous trajectories. The factor γ is chosen as 1 for LTI systems and
γ ∈ (0, 1) when model parameter variations are expected. Similar to the offline signal matrix, the
adaptive signal matrix can also be compressed online to maintain 2L columns. The incremental
singular value decomposition algorithm in Brand (2002) can be applied to reduce the computational
complexity of updating the compressed signal matrix, which makes use of the property that the SVD
of col (Ut, Yt) in (16) is already known from the previous timestep.

In the following two examples, the effects of incorporating online data are investigated under
high noise levels and with slowly varying parameters respectively.

Example 3 Consider the case where the output measurements are very noisy with σ2 = σ2p =
1. The offline data length is N = 100. The SMM-PC algorithms are compared with the fixed
signal matrix col (U, Y ) and the adaptive signal matrix col (Ut, Yt) with γ = 1. The deviations of
the closed-loop trajectories from the ideal MPC trajectory are plotted on the left of Figure 3. In
addition, 200 Monte Carlo simulations are conducted, and the boxplot of the total cost Jtot is shown
on the right of Figure 3.
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Figure 3: Effects of online data adaptation in SMM-PC for datasets with high noise levels. Left:
deviation from ideal MPC, right: boxplot of total cost Jtot.

Example 4 Consider the case where one of the model parameters drifts slowly online with

G(z) =
0.1159(z3 + 0.5z)

z4 − 2.2z3 + 2.42z2 − θ(t)z + 0.7225
, θ(t) =

1.87

1 + t/1500
. (17)

The offline data length and the noise levels are N = 50, σ2 = σ2p = 0.01 respectively. The SMM-
PC algorithms are compared with the fixed signal matrix col (U, Y ) and the adaptive signal matrix
col (Ut, Yt) with γ = 1, 0.9, 0.7, 0.5. The stage costs Jt are plotted on the left of Figure 4, and the
boxplot of the total cost Jtot is shown on the right of Figure 4 with 50 Monte Carlo simulations.
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Figure 4: Effects of online data adaptation in SMM-PC for slowly time-varying systems. Left:
stage cost Jt, right: boxplot of total cost Jtot.

As can be seen from Examples 3, the control performance improves by using adaptive signal matri-
ces, as more online data are accumulated, though it cannot converge to the ideal MPC performance
since the noise in yini still exists. For Example 4, the controller further benefits from a forgetting
factor γ < 1 to reduce the weight of previous trajectories with less accurate model parameters.
The best performance is achieved with γ = 0.9. These results demonstrate that incorporating on-
line data is effective in achieving better control performance for both high noise levels and slowly
time-varying systems.
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4.2. Initial Condition Estimation

Another problem of measurements with high noise levels is the accuracy of initial condition esti-
mation with the past trajectory measurements col (uini,yini). Although the large prediction errors
due to poor offline measurements can be compensated by online data adaptation as shown in the
previous subsection, the validity of the linearized SMM still suffers from deviated initial conditions.
In the noise-free case, Proposition 1 holds for any L0 ≥ nx, which gives the exact initial condition
of the trajectory. So it is always reasonable to select L0 = nx to reduce computational complexity.
This is also the choice in previous examples. However, in the presence of noise, the signal matrix
model only gives an estimate of the initial condition, whose accuracy depends on the choice of L0.
Therefore, when abundant data are available but the noise level is high, it can be beneficial to select
L0 > nx to obtain a more accurate initial condition estimation, as shown in the following example.

Example 5 Consider the same trajectory data and online measurement noise as in Example 3. The
controller performance of SMM-PC is compared with L0 = nx = 4 and L0 = 10. As another com-
parison, we introduce an additional MPC algorithm with a finite impulse response model obtained
by simulating the signal matrix model with an impulse of uini = 0, yini = 0, u = col(1,0), σp = 0.
This impulse MPC algorithm does not require the noisy past output measurements, so it circumvents
the initial condition estimation problem. The stage costs Jt are plotted in Figure 5.
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0.15

J
t

MPC without online data with online data Impulse

0 20 40 60 80 100 120
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0

0.05
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J
t

Figure 5: Stage costs with different L0. Left: L0 = 4, right: L0 = 10.

Although the impulse MPC algorithm only uses a fixed predictor identified offline, the results from
Figure 5 demonstrate that when L0 = 4, SMM-PC performs worse than impulse MPC without
online data and similarly when online data are incorporated, due to inaccurate initial condition
estimation. When a larger value of L0 = 10 is selected, the SMM-PC performs significantly better
than impulse MPC and close to the ideal MPC algorithm.

4.3. Regularized Signal Matrix Model Predictive Control

In addition to the input-output mapping, the signal matrix model also gives an uncertainty model
of the output prediction with cov(ŷ|g) = Σyf , where Σyf denotes the last L′ rows and columns of
Σy. So the variance of the output prediction is given by

(
Σyf

)
i,i

= σ2 ‖g‖22. In order to enhance
the robustness of the SMM-PC algorithm, an additional regularization term can be introduced to the
objective function:

JReg-SMM = Jctr + ζ · σ2
∥∥gt∥∥2

2
. (18)
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Despite their similar forms, this regularization term is different from the λg-term in regularized
DeePC, where the regularization is required to fix the underdetermined input-output mapping. In
regularized SMM-PC, the input-output mapping is well-defined via the linearized SMM constraint
(13) and the regularization term is used to penalize trajectories that result in large prediction errors.
Tuning of the hyperparameter ζ is also easier than regularized DeePC since the dependence of the
noise level σ2 is already separated in the prediction error formulation.

In the following example, the performance of SMM-PC is compared for different choices of ζ.

Example 6 Consider the same data generation parameters as in Example 1 (N = 50, σ2 = σ2p =
0.1). The regularized SMM-PC algorithm is applied for ζ = 0, 1, 10, 102, 103, 104 with 50 Monte
Carlo simulations each. The boxplot of average

∥∥gt∥∥2
2

is shown in Figure 6(a) as a measure of
prediction errors. The boxplots of the total cost Jtot and the input cost Jutot :=

∑Nc−1
t=0 ‖ut‖

2
R are

plotted in Figures 6(b) and (c) respectively.
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Figure 6: Performance of regularized SMM-PC with ‖g‖22-regularization.

As can been seen from Figure 6, by increasing the hyperparameter ζ, the SMM-PC algorithm tends
to select trajectories with smaller prediction errors, which also correspond to more conservative
input trajectories with smaller magnitudes. As a result, the average performance first increases due
to better prediction and then decrease due to large output tracking errors with the increase of ζ.

5. Conclusions

In this paper, a novel data-driven predictive control algorithm with the signal matrix model is in-
vestigated. The algorithm uses a linearized SMM to provide a close approximation to the maxi-
mum likelihood estimator of input-output trajectories. It combines the benefits of model-based and
model-free methods by providing a non-parametric input-output mapping to characterize the sys-
tem. By using the linearized SMM to implicitly parametrize future trajectories, the algorithm and
its regularized version show good performance in complex scenarios with large datasets, poor data
quality, parameter variation.
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