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Abstract

Reinforcement learning (RL) methods provide state-of-art performance in complex control tasks.
However, it has been widely recognized that RL methods often fail to generalize due to unaccounted
uncertainties. In this work, we propose a game theoretic framework for robust reinforcement learning
that comprises many previous works as special cases. We formulate robust RL as a constrained
minimax game between the RL agent and an environmental agent which represents uncertainties such
as model parameter variations and adversarial disturbances. To solve the competitive optimization
problems arising in our framework, we propose to use competitive mirror descent (CMD). This
method accounts for the interactive nature of the game at each iteration while using Bregman
divergences to adapt to the global structure of the constraint set. leveraging Lagrangian duality,
we demonstrate an RRL policy gradient algorithm based on CMD. We empirically show that our
algorithm is stable for large step sizes, resulting in faster convergence on constrained linear quadratic
games.

Keywords: robust reinforcement learning, zero-sum game, adversarial training, competitive opti-
mization, policy gradient

1. Introduction

Robustness is crucial for RL. Environmental uncertainties such as unmodeled dynamics, distur-
bances, and variations of model parameters, are ubiquitous in real-world control tasks (Zhou and
Doyle, 1998; Lötjens et al., 2019). It is crucial for reinforcement learning (RL) agents to learn
policies robust to environmental uncertainties for them to be reliable (Christiano et al., 2016; Garcıa
and Fernández, 2015). For example, policies trained on simulations should account for uncertainties
arising from the gap between simulation and reality. Similarly, RL policies trained on data from
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a single robot/vehicle, might be deployed on a fleet of robots, and therefore should account for
variations in the manufacturing process. The robustness issue becomes especially important for
model-free RL methods that are often trained exclusively on simulations due to their poor sample
efficiency. To allow for their safe deployment, it is mandatory for them to be robust to the differences
between simulation and real world.

Adversarial training. To improve robustness, robust reinforcement learning (RRL) introduces
adversarial attacks such as disturbances during training (Pinto et al., 2017; Tessler et al., 2019). This
is generally referred to as adversarial training, where an adversary is modeled against the RL agent
to generate adversarial learning conditions. Previous works differ mostly in the modeling of the
adversary, the type of policy gradient method employed, and the optimization algorithms.

We provide a unifying perspective on these methods by proposing a general constrained competitive
game between the RL agent and an environmental agent that learns to create adversarial environ-
mental uncertainties. In particular, our game-theoretical framework has the flexibility of modeling
either a static or dynamic environmental agent, where a dynamic agent’s actions depend on current
observations while a static environmental agent learns a static distribution of some environmental
parameters. Moreover, our framework can incorporate general, possibly non-convex constraints on
both the RL and environmental agents.

Algorithms for competitive optimization. Classical RL agents can be trained by solving a mini-
mization problem using policy gradient descent. In contrast, our adversarial formulation requires
solving a competitive optimization problem where the RL agent tries to minimize its cost, while the
environmental agent tries to maximize it. While often used in practice, simultaneous (policy) gradient
descent can be shown to diverge even on simple toy problems. To address these issues, numerous
methods such as opponent learning awareness (LOLA) (Foerster et al., 2017), optimism (Daskalakis
et al., 2017), extragradient methods (Korpelevich, 1977; Gidel et al., 2018), or two-timescale update
rules (Heusel et al., 2017) have been proposed.

The iterates of competitive gradient descent (CGD) (Schäfer and Anandkumar, 2019) are obtained as
Nash equilibria of a local bilinear approximation of the objective function and therefore explicitly
account for the interactive nature of the game. Applying CGD to multi-agent reinforcement learning,
Prajapat et al. (2020) observe that it learns more sophisticated and efficient policies than simultaneous
policy gradient. Schäfer et al. (2020) extend CGD to competitive mirror descent (CMD) that uses
Bregman divergences to incorporate a wide range of constraints central to control applications
including the positive, second order, and positive definite cones. The explicit treatment of player
interactions and flexible inclusion of constraints makes CMD a natural tool to solve competitive
optimization problems in our framework.

Our contribution. (1): We formulate a general framework for RRL as a constrained minimax
game that provides a unified perspective to a variety of robust reinforcement learning research.
Our framework allows to explicitly promote specific robustness properties in the RL agent and can
be combined with most policy gradient algorithms. (2): We provide novel gradient and Hessian
estimation results (Lemma 1) that are applicable in general RRL settings. (3): We develop an
RRL algorithm based on competitive mirror descent (CMD) of Schäfer et al. (2020) to solve the
constrained minimax game arising from the proposed framework. Independent of the choice of
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CMD as the optimization method, we show how to incorporate the Lagrangian formulation to handle
general constraints for the agents in our game-theoretical framework.

Related work. In linear control theory, there is well-established connection between differential
games and robust control (Başar and Bernhard, 2008). On the other hand, as early as Littman (1994),
minimax games were explored for enhancing robustness of RL agents. In (Morimoto and Doya,
2005), an actor-critic network is used to optimize both the RL agent and a dynamic adversary with
robust control inspired objective function for the minimax game. Pinto et al. (2017) assume that
uncertainties enter the environment as disturbance forces acting on predefined locations and train
the RL agent and a dynamic adversary with projected gradient descent ascent. In the same setting,
Kamalaruban et al. (2020) use Langevin dynamics for sampling and optimization. In a similar vein,
Tessler et al. (2019) treat the adversary as an additive disturbance on the actions taken by the RL
agent and solves a minimax game with policy iteration. Deviating from the exact formulation of a
minimax game, Mehta et al. (2019) seek to sample difficult uncertainty parameters for the RL agent
to learn by requiring an additional reference environment and provide a surrogate objective function
for the adversary agent that is optimized using Stein variational policy gradient. Rajeswaran et al.
(2016) also sample an ensemble of "worst-case" trajectories defined by conditional value at risk and
have the RL agent learn on these trajectories. Both Rajeswaran et al. (2016) and Mehta et al. (2019)
consider a static adversary whose policy does not dynamically depend on observations or actions
taken by the RL agent. Our approach is also related to distributionally robust optimization (Rahimian
and Mehrotra, 2019; Derman and Mannor, 2020) where the minimax problem is not directly solved
but rather implicitly incorporated through regularization. Finally, we point out the connection of this
work to (Prajapat et al., 2020) where competitive gradient descent (CGD) (Schäfer and Anandkumar,
2019) is applied to multi-agent RL.

2. A constrained minimax game framework for RRL

We consider uncertain Markov Decision Processes defined by tuples of the form 〈S,A,R, Tµ,P0, γ〉
where S, A are continuous states and actions space respectively, with reward functionR and state
transition probability Tµ with uncertainties parametrized by µ; initial state distribution P0, and
discount factor γ ∈ [0, 1]. An episode starts with an initial state s0 ∼ P0(s0) and at each time
step t, transitions to the next state as st+1 ∼ Pµ(st+1|st, at) with uncertainty parameter µ after
receiving action at. Denote the RL agent’s policy as πθ(at|st) parametrized by θ. For a fixed
time horizon T + 1, a trajectory τ := {s0, a0, s1, a1, . . . , sT+1} is therefore jointly distributed
as Pµ,θ(τ) := P0(s0)ΠT

t=0Pµ(st+1|st, at)πθ(at|st). The RL agent leans a policy πθ(at|st) robust
against the environmental agent that decides on parameter µ.

We cast RRL as a constrained minimax game between the RL agent’s policy parameterized by θ and
an environmental agent’s policy parameterized by ξ for the environmental uncertainty parameter µ:

min
θ∈Θ

max
ξ∈Ξ

Eµ∼pξ(µ);τ∼Pµ,θ(τ) [r(τ)] . (1)

where Θ and Ξ are general constraint sets and pξ(µ) is either a static distribution over environmental
parameter µ or a dynamic policy. Note that the objective of the RL agent is to minimize the cost
r(τ) :=

∑T
t=0 rt(at, st) whereas the objective of the environmental agent is the opposite. We now

discuss three important aspects of formulation (1).
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2.1. Modeling of the Environmental Agent

Formulation (1) subsumes the design principles of many RRL methods. In the case of a static
environmental agent as in (Mehta et al., 2019; Rajeswaran et al., 2016), the environmental agent’s
policy is pξ(µ) := Pξ(µ), a static distribution parameterized by ξ over the uncertain environmental
parameter µ. Such static environmental agent can represent model parameter uncertainties. In the
dynamic case as treated by Pinto et al. (2017); Kamalaruban et al. (2020), the environmental agent
explicitly learns a dynamic policy pξ(µ) := πξ(µt | st) that acts according to the observations. Such
dynamic environmental agents can model adversarial disturbances and counteracting forces.

2.2. Policy Gradient Methods

In most RL applications, the game (1) is non-convex and therefore need not admit a canonical
solution such as a Nash equilibrium. Nevertheless, we can use it to guide the learning of the RL
agent and update the players’ policies by descending and ascending along their policy gradients. For
most RL tasks, the transition probability and cost function are not accessible. Therefore, we present a
gradient estimation result whose derivation is deferred to the Appendix in the full version of the paper
online. In the following, we denote the cost function in (1) as J(θ, ξ) := Eµ∼pξ(µ);τ∼Pµ,θ(τ) [r(τ)].

Lemma 1 When the environmental agent is a static agent µ ∼ Pξ(µ), the gradient and mixed
Hessian of J(θ, ξ) with respect to θ and ξ are:

∇θJ(θ, ξ) = Eµ∼Pξ(µ)

[
Eτ∼Pµ,θ(τ)

[
r(τ)

T∑
t=0

∇θlog πθ(at | st) |µ

]]
(2a)

∇ξJ(θ, ξ) = Eµ∼Pξ(µ)

[
∇ξlogPξ(µ) · Eτ∼Pθ,µ(τ) [r(τ) |µ]

]
(2b)

D2
θξJ(θ, ξ) = Eµ∼Pξ(µ)

[
∇ξlogPξ(µ) · Eτ∼Pµ,θ(τ)

[
r(τ)

T∑
t=0

∇θlog πθ(at | st) |µ

]]
. (2c)

When the environmental agent is dynamic with policy µt ∼ πξ(µt | st) where the environmental
agent’s decision is independent of the current action of the RL agent. Let τ ′ denote augmented
trajectory {s0, a0, µ0, . . . , sT } distributed according to

Pξ,θ(τ ′) := P0(s0)ΠT
t=0P(st+1|st, at, µt)πθ(at|st)πξ(µt|st),

the policy gradients are:

∇θJ(θ, ξ) = Eτ ′∼Pξ,θ(τ ′)

[
r(τ)

T∑
t=0

∇θlog πθ(at | st)

]
(3a)

∇ξJ(θ, ξ) = Eτ ′∼Pξ,θ(τ ′)

[
r(τ)

T∑
t=0

∇ξlog πξ(µt | st)

]
(3b)

D2
θξJ(θ, ξ) = Eτ ′∼Pξ,θ(τ ′)

[
r(τ)

T∑
t=0

∇θlog πθ(at | st) ·
T∑
t=0

∇ξlog πξ(µt | st)

]
. (3c)

where r(τ) =
∑T

t=0 rt(at, st).
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The expectation in Lemma 1 can be approximated by averaging over independently sampled tra-
jectories τ for the present policies. Note that Lemma 1 is an analog of the single-agent policy
gradient theorem (Sutton et al., 2000). Therefore, established methods for variance reduction such as
the subtraction of a baseline can be readily applied. One can also replace r(τ) with an estimated
Q-function Q̂πθ,pξ(µ)(st, at, µt) or variants of advantage functions Âπθ,pξ(µ)(st, at, µt) such as the
t-step TD residual and generalized advantage estimation (Schulman et al., 2015). Lemma 1 is
applicable to general policy gradient methods under the framework of (1). We point out that similar
expressions for the mixed Hessian were derived by Prajapat et al. (2020) in order to apply CGD to
RL in two-player games.

2.3. Competitive Optimization Algorithms

Due to the non-convex nature of (1), the choice of competitive optimization algorithm can significantly
affect the solution obtained from Equation (1). For example, Schäfer and Anandkumar (2019) provide
evidences where bilinear approximation in first-order gradient descent ascent (GDA) significantly
improves convergence speed and robustness to the choice of learning rate over simultaneous. Schäfer
et al. (2019) show that in GANs training, opponent-aware modeling of the generator and discriminator
can significantly stabilize GANs training. Further, Prajapat et al. (2020) observe that policies trained
using opponent-aware optimization algorithms are more sophisticated and competitive policies than
those trained using GDA variants that myopically optimize each agent’s objective.

3. Robust Policies via Competitive Mirror Descent

Under the framework of (1), we develop an RRL algorithm based on competitive mirror descent
(CMD) (Schäfer et al., 2020). In what follows, we provide an overview of CMD and present the
main algorithm for RRL based on the proposed framework. The introduction of the algorithm is
accompanied by an illustrative linear quadratic game example.

3.1. Competitive Mirror Descent

CMD (Schäfer et al., 2020) is a generalization of the mirror descent (Nemirovsky and Yudin, 1983)
to the two-player competitive case. Given a constrained minimax problem:

min
θ∈Θ

max
ξ∈Ξ

J(θ, ξ),

we define strongly convex and continuously differentiable distance-generating function (DGFs)
(Mertikopoulos et al., 2018) for constraint sets Θ and Ξ to be ΨΘ : Θ → R and ΨΞ : Ξ → R,
respectively. Similar to mirror descent, DGFs in CMD are used to inform the local update rule of the
global structure of the constraint set, and in particular guaranteeing feasibility of all iterates within
the constraint set: (θk, ξk) ∈ Θ × Ξ, ∀k. The CMD updates for (θk+1, ξk+1) from the previous
iteration (θk, ξk) at each time step k can be summarized as:

θk+1 = ∇Ψ−1
Θ

(
∇ΨΘ(θk) +

[
D2ΨΘ(θk)

]
δθk

)
(4a)

ξk+1 = ∇Ψ−1
Θ

(
∇ΨΞ(ξk) +

[
D2ΨΞ(ξk)

]
δξk

)
, (4b)

where∇ΨΘ(θk) is the DGF function ΨΘ evaluated at θk and D2 denotes the Hessian of a function.
∇Ψ−1

Θ (z) is the preimage of z under ∇ΨΘ. Since DGFs are strongly convex and continuously
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differentiable, the preimage is unique. Moreover, (δθk, δ
ξ
k) is the Nash equilibrium to a local, bilinear

approximation of (1) around (θk, ξk) computed as follows:

δθk = argminδθk

〈
∇θJ(θk, ξk), δ

θ
k

〉
+ δθk

T [
D2
θξJ(θk, ξk)

]
δξk +

1

2ηθ
δθk
T [
D2ΨΘ(θk)

]
δθk (5)

δξk = argmax
δξk

〈
∇ξJ(θk, ξk), δ

ξ
k

〉
+ δξk

T [
D2
ξθJ(θk, ξk)

]
δθk −

1

2ηξ
δξk
T [
D2ΨΞ(ξk)

]
δξk, (6)

where the learning rate parameters (ηθ, ηξ) regularize the difference between iterates on the constraint
manifold specified by the DGFs. The unique Nash equilibrium of (5) has the following closed form:

δθk = −
( 1

ηθ

[
D2ΨΘ

]
+ ηξ

[
D2
θξJ
] [
D2ΨΞ

]−1 [
D2
ξθJ
] )−1 (

∇θJ + ηξ
[
D2
θξJ
] [
D2ΨΞ

]−1∇ξJ
)

δξk =
( 1

ηξ

[
D2ΨΞ

]
+ ηθ

[
D2
ξθJ
] [
D2ΨΘ

]−1 [
D2
θξJ
] )−1 (

∇ξJ − ηθ
[
D2
ξθJ
] [
D2ΨΘ

]−1∇θJ
)
,

(7)

where all gradients and Hessians are evaluated at the current step (θk, ξk).

We remark that common DGFs include the negative log-determinant function ΨSn++
(X) := −logdet(X)

for the positive definite matrix cone Sn++ and translated negative Gibbs-Shannon entropy function
Ψ[a,b]n(x) :=

∑n
i=1(xi − a)log(xi − a) + (b− xi)log(b− xi) for box constraints [a, b]n.

3.2. Algorithm for RRL

We propose a learning algorithm in Algorithm 1 for RRL based on CMD. In particular, the algorithm
uses CMD iterates to numerically solve (1). The output of the algorithm, after N iterations, is the
parameter θN for the RL policy πθN (at | st), robust against an environmental policy ξN .

Algorithm 1: Model-free Robust Policy via Competitive Mirror Descent
Input: Model of the RL agent’s policy πθ(at|st) parameterized by θ ;

Model of the environmental agent’s policy πξ(µt|st) (dynamic) or Pξ(µ) (static) ;
Constraint set Θ and Ξ for policy parameters θ and ξ respectively ;
Associated distance-generating functions ΨΘ,ΨΞ.

Initialize parameters (θ0,ξ0)
for 0 ≤ k ≤ N − 1 do

Sample trajectories {τi}Mi=1 ;
Estimate the policy gradients and Hessians∇θJ ,∇ξJ , D2

ξθJ , D2
θξJ ;

Compute local Nash Equilibrium (δθk, δ
ξ
k) as in (7) with (θk, ξk) ;

∇ΨΘ(θk+1) = ∇ΨΘ(θk)−
[
D2ΨΘ(θk)

]
δθk ;

∇ΨΞ(ξk+1) = ∇ΨΞ(ξk) +
[
D2ΨΞ(ξk)

]
δξk ;

end
return (θN , ξN )

To elaborate on the choice of CMD as the main competitive optimization machinery, we discuss two
key perspectives of the proposed framework outlined in Section 2.
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Player interaction. For competitive games, Schäfer and Anandkumar (2019) point out that even
in the unconstrained case, oscillatory behavior and sensitivity to step sizes are commonly observed
in first-order methods. To mitigate this problem, CMD considers a bilinear local approximation
in (5) to the original game (1) and update the two players by taking a step in the direction of the
Nash equilibrium (7) of the local bilinear game (5). The competitive interaction between the two
players is explicitly captured through the mixed hessian terms in the mirror gradient step (7). On the
other hand, (7) utilizes DGFs corresponding to both Agents’ constraint sets to adapt the local update
rule to the global structure of the constraints. The incorporation of the bilinear approximation make
unconstrained minimax games converge faster and more stably than other first- and second-order
methods, even when taking the computational complexity of matrix inversion into account (Schäfer
and Anandkumar, 2019). By using iterative methods such as conjugate gradient (Shewchuk et al.,
1994) and fast Hessian vector products for computing the update (7), CGD has been applied to
generative adversarial networks with millions of degrees of freedom (Schäfer et al., 2019).

Constraint handling. The incorporation of general (non-convex) constraints for the RL agent and
the environmental agent in (1) is crucial when there are known safety or physical requirements for
the RL policy in control applications. Previous works on RRL commonly use projected gradient
descent ascent (PGDA) to jointly take gradient steps that are projected back to the constraint sets for
the RL and the environmental agent Pinto et al. (2017); Kamalaruban et al. (2020).

On the other hand, mirror descent Beck and Teboulle (2003) has seen success in constrained
optimization problems. It exploits the geometry of the constraint sets via the DGFs corresponding
to the constraints. By incorporating the DGFs of both agents’ objectives, one obtains local updates
that respect both local agent interaction and the global structure of the constraint set (Mertikopoulos
et al., 2018; Schäfer et al., 2020).

Recall that mirror descent for minx∈X f(x) with an associated DGF Φ has the closed-form update:
∇Φ(xt+1) = ∇Φ(xt) − ηt∇xf(xt). Similar mirror descent, CMD makes gradient updates (4) in
the "dual" space parameterized by the DGFs. When the constraints include parametric (in)equalities
without known DGFs, we consider the Lagrangian of (1) with respect to the (in)equality constraints.
We augment the two agents with Lagrange multipliers who are either unconstrained or constrained to
Sn++ and transform the general constrained minimax game (1) to one that only has constraints with
readily available DGFs. This process is illustrated in Section 3.3.

3.3. Linear Quadratic Games: An Illustration

We demonstrate the proposed RRL algorithm with minimax linear quadratic (LQ) games, a class
of well-studied dynamic games with deep connections to theH∞ robust control theory (Başar and
Bernhard, 2008). LQ games have the discrete-time linear dynamics where one player chsoses action
ut ∈ Rm while the other chooses action wt ∈ Rp:

xt+1 = Axt +But + Cwt, (8)

with xt ∈ Rn as the state vector. This formulation is closely related to single-player linear quadratic
regulator (LQR) problems (Fazel et al., 2018; Al-Tamimi et al., 2007) where C = 0. In LQR, a linear
RL agent minimizes an infinite-horizon quadratic cost: Ex0∼P

[∑∞
t=0(xTt Qxt + uTt R

uut)
]

where
Q ∈ Rn×n and Ru ∈ Rm×m are positive definite.
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The two-player dynamics in (8) adds an environmental agent to the LQR formulation where the
environmental agent adversarially chooses disturbance wt that affect the states xt+1 through C. LQ
games consider the following minimax objective:

inf
ut,t≥0

sup
wt,t≥0

Ex0∼P

[ ∞∑
t=0

(xTt Qxt + uTt R
uut − wTt Rwwt)

]
. (9)

Zhang et al. (2019) shows that the solution to the zero-sum LQ game (9) subject to (8) corresponds
to the solution to a mixed H2/ H∞ problem (D’Andrea, 1996). Therefore, the LQ game can be
interpreted both as finding a robust LQR policy against dynamic disturbances and as an optimal
controller for a mixedH2/H∞ problem.

Let the policy for the RL agent (who seeks to minimize the cost) and the environmental agent (who
seeks to maximize the cost) take the form of ut = Kxt and wt = Lxt with K ∈ Rm×n and
L ∈ Rp×n. We denote the objective in (9) to be C(K,L) to emphasize its dependence on the policy
parameters. Under the condition L ∈ Ω := {L |Q− LTRwL � 0} and other technical assumptions
(Zhang et al., 2019), a globally unique and obtainable Nash equilibrium of the LQ game exists. We
can pose an equivalent constrained minimax game for (9) as:

min
K

max
L∈Ω

C(K,L). (10)

In this game, the RL agent finds the best linear policy that is robust against the worst dynamic
environmental disturbances. The solution to the LQ game can be obtained via linear matrix inequality
(D’Andrea, 1996). However, when the system matrices and the objective function are unknown, our
proposed framework for robust policy via CMD can be applied.

We first illustrate how to handle conic constraints that are closely related to stability and safety of the
resulting policy, such as L ∈ Ω, in Algorithm 1. Consider the Lagrangian of (10) with Lagrangian
multiplier Λ ∈ Sn++:

L(Λ,K, L) = C(K,L)−
〈
Λ, LTRwL−Q

〉
. (11)

where 〈X,Y 〉 := tr(XTY ) denotes the matrix inner product. We augment the RL agent (K) with
the Lagrangian multiplier Λthat penalizes the adversary (L) if it does not satisfy the constraint
L ∈ Ω. Using the Lagrangian as the augmented objective function, we arrive at the following
constrained minimax game, conforming to the general formulation proposed in (1), for the proposed
RRL algorithm:

min
K,Λ∈Sn++

max
L
L(Λ,K, L). (12)

Note that the Lagrangian multiplier that enforces the constraint on the maximizing player is assigned
to the minimizing player. It is straight forward to verify that the solution to (10) is the solution to
(12) and vice versa because of the complimentary slackness at KKT points. Intuitively, (12) means
that whenever the constraints on the maximizing player is not satisfied, the minimizing player can
improve its objective by increasing the Lagrange multiplier.

We choose the log-determinant function as the associated DGF for the Lagrange multiplier Λ ∈ Sn++.
For all other variables in (12) that are unconstrained, matrix Euclidean norm whose derivative is
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the identity mapping and the hessian is the identity matrix can be used as the DGF. Following the
notations in Algorithm 1, the DGFs for both players are

ΨΘ(K,Λ) = −logdet(Λ) +
1

2
‖K‖2F , ΨΞ(L) =

1

2
‖L‖2F .

Note that due to the structure of the Lagrangian function L, its partial derivatives and mixed hessians
required for Algorithm 1, are decoupled into the model-free and modeled portions during computation.
More specifically, The gradients for the RL agent as the minimizing player and the environmental
agent as the maximizing player are

∇(K,Λ)L(Λ,K, L) =

[
∇KC(K,L)

∇Λ

〈
Λ, LTRwL−Q

〉]
∇LL(Λ,K, L) = ∇LC(K,L) +∇L

〈
Λ, LTRwL−Q

〉
,

where ∇KC(K,L) and ∇LC(K,L) can be estimated by sampling trajectories per Lemma 1 and
∇Λ

〈
Λ, LTRwL−Q

〉
and∇L

〈
Λ, LTRwL−Q

〉
are the derivatives of a known constraint. Similar

decoupling happens when one takes the mixed Hessians. This feature of separability is instrumental
in using Algorithm 1 to solve (1) with arbitrary and potentially non-convex constraints. In general,
the constraint sets for the RL agent and the environmental variables are known a priori. This mean
the Lagrangian multiplier component of the augmented reward function is known and its gradients
can be analytically computed for each agents, independent of the unknown original reward function
for the RL agent. Therefore, separability property demonstrated here holds for general constraints
and robust RL formulation that falls under the proposed framework

4. Simulation

We now consider a double integrator LQ game with A =

[
1 1
0 1

]
, B =

[
0
1

]
, and C =

[
0.5
1

]
. The

quadratic cost has Q = I , Ru = 1, Rw = 20. We randomly generate a stabilizing K0 and initialize
the environmental agent’s parameter L0 in the interior of the constraint set. We sample trajectories of
length T = 15 as the finite-horizon approximation to the the infinite-horizon LQ cost and compute
the corresponding gradient and Hessian estimations.

We compare our method against projected nested gradient descent (PNGD) proposed in Zhang et al.
(2019) and projected gradient descent ascent (PGDA) as baseline. The result is shown in Figure 1.
For each of the method, we test a variety of steps sizes for both minimizing player and maximizing
player varying from 10−3 to 10−5. We observe that for steps sizes larger than 10−5, both PNGD
with 50 inner loop iteration and PGDA diverges. On the other hand, Figure 2 shows that our method
is stable for step sizes larger than the ones tolerable for other presented methods. As in similar
experiments by Schäfer and Anandkumar (2019), the bilinear approximation employed in our method
facilitates the learning process and results in faster convergence.
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Figure 1: Comparison of Various Methods: We tested step sizes varying from 10−3 to 10−5 for the
proposed algorithm, PNGD with inner loop iteration number set to 10, and PGDA. For each method,
we plot the fastest converging trajectory against the number of outer iterations. The two step sizes are
specified for minimizing player and maximizing player, respectively. Optimal closed-form solution
is K∗ = [−0.4913,−1.3599]T .

Figure 2: Various Step Sizes for the Proposed Algorithm: The proposed algorithm based on CMD is
robust to a large range of step sizes. The two panels show the iteration trajectory for the coordinates
of parameter K. The two step sizes are specified for minimizing player and maximizing player,
respectively. Optimal closed-form solution is K∗ = [−0.4913,−1.3599]T .
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5. Conclusion and Outlook

We propose a constrained minimax game between the reinforcement learning agent and a modelled
environmental agent as a unifying perspective on robust reinforcement learning. We develop a
learning algorithm based on competitive mirror descent to solve the minimax game arises from our
framework. The algorithm employs Lagrangian duality and Bregman divergences to handle general
constraints and inherits robustness against large step sizes from competitive mirror descent. We
demonstrate this feature on numerical experiments on linear quadratic games. In future work we
plan to study the performance of our approach on high-dimensional control tasks.
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