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Abstract
This paper focuses on finding reinforcement learning policies for control systems with hard state
and action constraints. Despite its success in many domains, reinforcement learning is challenging
to apply to problems with hard constraints, especially if both the state variables and actions are
constrained. Previous works seeking to ensure constraint satisfaction, or safety, have focused on
adding a projection step to the policy during learning. Yet, this approach requires solving an opti-
mization problem at every policy execution step, which can lead to significant computational costs
and has no safety guarantee with the projection step removed after training. To tackle this problem,
this paper proposes a new approach, termed Vertex Networks (VNs), with guarantees on next step
safety during both the exploration and execution stage, by incorporating the safety constraints into
the policy network architecture. Leveraging the geometric property that all points within a convex
set can be represented as the convex combination of its vertices, the proposed algorithm first learns
the convex combination weights and then uses these weights along with the pre-calculated vertices
to output an action. Numerical examples illustrate that the proposed VN algorithm outperforms
projection-based reinforcement learning methods.
Keywords: safe reinforcement learning, network architecture, convex polytope

1. Introduction

Over the last couple of years, reinforcement learning (RL) algorithms have yielded impressive re-
sults on a variety of applications. These successes include playing video games with super-human
performance (Mnih et al., 2015), robot locomotion and manipulation (Lillicrap et al., 2015; Levine
et al., 2016), autonomous vehicles (Sallab et al., 2017), and many benchmark continuous control
tasks (Duan et al., 2016). In RL, an agent learns to make sequential decisions by interacting with
the environment, gradually improving its performance at the task as learning progresses.

Policy optimization algorithms (Lillicrap et al., 2015; Schulman et al., 2015) for RL assume
that agents are free to explore any behavior during learning, as long as it leads to performance im-
provement. However, in many real-world applications, there are often additional safety constraints,
or specifications that lead to constraints, on the actions or the states of the system. For instance, a
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robot arm should avoid behaviors that could cause it to damage itself or the objects around it, and
autonomous vehicles must avoid crashing into others while navigating (Amodei et al., 2016). In
fact, constraints are integral to many real-world problems, and maintaining constraint satisfaction
during learning is critical. In addition, these are often hard constarints that must be satisfied at all
times. Therefore, in this work, our goal is to maintain constraint satisfaction at each step throughout
the whole learning process. This problem is sometimes called the safe RL problem (Garcıa and
Fernández, 2015). In particular, we define safety as staying within some pre-specified safety sets
for both states and actions.

In existing safe RL literature, a “safety layer” is often leveraged to maintain constraint satisfac-
tion during training under different problem settings (Wabersich and Zeilinger, 2018a; Dalal et al.,
2018; Li et al., 2018). In these approaches, the action of the policy at each time step is not directly
executed, but sent to the safety layer which projects it into the required safety region. However,
these approaches either involve solving a computationally expensive optimization problem at each
time step (Wabersich and Zeilinger, 2018a; Li et al., 2018), or has strict assumptions about the
constraints (Dalal et al., 2018). As a matter of fact, if real-time optimization is allowed by the appli-
cation, then it is often more advantageous to solve a model predictive control (MPC) problem than
to ask for a policy learned by RL. Moreover, if the projection is not differentiable, these methods
decouple the action with the policy, which may result in an unstable policy with the projection step
removed after training.

To alleviate the above limitation of projection-based approaches, we propose Vertex Networks
(VNs), where we encode the safety constraints into the policy via neural network architecture de-
sign. In VNs, we design a novel safety layer, where instead of solving a projection optimization
problem, we compute the vertices of the safety region at each time step and design the action to be
the convex combination of those vertices, allowing policy optimization algorithms to explore only
the interior of the safe region during training. Therefore we are able to integrate the constraints into
the learning process by design and leverage standard policy optimization training techniques.

The contributions of this work can be briefly summarized as follows: (1) To the best of our
knowledge, this is the first attempt to encode safety constraints into policies by explicit network
design. (2) In simulation on benchmark inverted pendulum and hovercraft control examples, the
proposed method achieves better performance as well as constraint satisfaction compared with
projection-based methods.

1.1. Related work

Safe RL or learning-based control with safety certification methods have gained significant atten-
tion in recent years. A common technique is to employ a “safety layer” or “safety framework”
(Akametalu et al., 2014; Fisac et al., 2018; Wabersich and Zeilinger, 2018a,b; Dalal et al., 2018;
Li et al., 2018; Cheng et al., 2019; Taylor et al., 2020), which consists of a projection-based su-
pervisory element between the agent and the system. If the action generated by the agent would
cause the system to leave the safe region, the safety layer intervenes and projects to the closest
action where the system would stay in the safety region. The techniques proposed in (Akametalu
et al., 2014; Fisac et al., 2018) are based on a differential game formulation that results in solving
a min-max optimal control problem, which can provide the largest possible safe set, but offers very
limited scalability. MPC-like schemes are used in (Wabersich and Zeilinger, 2018a,b), which are
computationally expensive if executed online. A closed-form solution can be obtained by locally
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linearizing the learned model (Dalal et al., 2018). However, this approach assumes that only one
of the half-space constraints to be violated, which is unlikely to always hold during exploration.
These projection-based methods have also been leveraged in the settings where the constraints are
defined by control barrier functions (Cheng et al., 2019; Taylor et al., 2020). Special policies can be
designed for tailored applications, e.g., power system frequency regulation (Cui and Zhang, 2020,
2021). Finally, most similar to our setting, Li et al. (2018) consider polytope constraints and propose
projected DDPG algorithm to maintain safety during learning.

2. Model Setup

Consider a discrete time affine control system in which the system evolves according to

xt+1 = f(xt) +H(xt)ut + wt, (1)

where x ∈ Rn, u ∈ Rm, and f and H are known functions of appropriate dimensions. The
unknown disturbance wt is assumed to be in a compact setW , whereW = {w|w ≤ w ≤ w}. Our
goal is to maximize the cumulative reward over time horizon T , subject to safety constraints on x
and actuator constraints on u:

max
u

T∑
t=1

R(xt,ut) (2a)

s.t. xt+1 = f(xt) +H(xt)ut + wt (2b)

xt ∈ X (2c)

ut ∈ U , (2d)

where X and U are convex polytopes. A convex polytope can be defined as an intersection of linear
inequalities (half-space representation) or equivalently as a convex combination of a finite number
of points (convex-hull representation) (Grünbaum, 2013). This type of constraints are widely used
in theory and practice—for example, see (Blanchini and Miani, 2008) and the references within. In
this paper, we assume that the problem defined in (2) is feasible for all possible disturbances inW .

The goal of safe RL is to find an optimal feedback controller ut = πθ(xt), that maximizes
the overall system reward (2a) while satisfies the safety constraints (2c) and the actuator con-
straints (2d). Solving (2) is a difficult task, even for linear systems with only the actuator constraints,
except for a class of systems where analytic solutions can be found (Gokcek et al., 2001). Therefore,
RL (and its different variants) have been proposed to search for a feedback controller.

Numerous learning approaches have been adopted to solve the problem when the constraints
(2c) and (2d) are not present. However, there are considerably less successful applications of RL
to problems with hard constraints. In contrast to the popular projection-based approaches (see
Section 1.1), we propose a novel vertex policy network that encodes the geometry of the constraints
into the network architecture, which makes a differentiable policy that can be trained by any policy
optimization algorithm in an end-to-end way. We will discuss the proposed vertex policy network
framework in detail in the next section.

3. Vertex Policy Network

The key idea of our proposed Vertex Network (VN) is based on the geometry property of a convex
polytope. Given a bounded convex polytope P , it is always possible to find a finite number of
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vertices such that the convex hull is P . In addition, there is no smaller set of points whose convex
hull forms P (Grünbaum, 2013). Then, the next proposition follows directly.

Proposition 1 Let P be a convex polytope with vertices P1, . . . , PN . For every point p ∈ P , there
exists λ1, . . . , λN , such that

p = λ1P1 + · · ·+ λNPN ,

where λi ≥ 0,∀i and λ1 + · · ·+ λN = 1.

The preceding proposition implies that we can search for the set of weights λi’s instead of directly
finding a point inside polytope.

Proposition 1 can be applied to find a feedback control policy. Since both the constraint sets
X , U andW are convex polytopes, the feasible control action at each time step must also live in a
convex polytope. If its vertices are known, it suffices for the policy to learn the weights λi’s. The
benefit of having the weights as the output is threefold. Firstly, it is much easier to normalize a
set of real numbers to be all positive and to sum to unity (the probability simplex) than to project
into an arbitrary polytope. For this paper, we use a softmax layer for this purpose. Secondly, this
approach allows us to fully explore the interior of the feasible space, where projections could be
biased towards the boundary of the set. Thirdly, we are able to use standard policy optimization
training techniques by plugging in this policy network design.

For general policy optimization algorithm, the parameterized policy neural network πθ is up-
dated by

θ ← θ + α∇θJ(θ), (3)

where J(θ) is the expected return of the current policy and is defined by

J(θ) = E

[
T∑
t=1

R(xt,ut)

]
. (4)

J(θ) is often approximated by 1
N

∑N
i=1

∑T
t=1R(xi,t,ui,t), where N are the number of sampled

trajectories generated by running the current policy πθ(ut|xt) and T is the trajectory length. The
overall algorithm procedure with the proposed VN framework is provided in Fig. 1.

Below, we discuss the two major components of VN in detail: (1) the safety region and vertex
calculation, and (2) the neural network architecture design for the safety layer.

3.1. Evolution of the Action Constraint Set

We require that at each time step the states of the system stay in the set X subject to all possible
disturbances in W , and the control actions at constrained to be in the set U . As stated earlier, we
assume X , U andW to be convex polytopes. The main algorithmic challenge comes from the need
to repeatedly intersect translated versions of these polytopes. To be concrete, suppose we are given
xt. Then for the next step, we require that xt+1 ∈ X . This translates into an affine constraint on ut,
since the control action mush satisfy

H(xt)ut ∈ X 	W − f(xt). (5)

where 	 represents Pontryagin set difference, and X 	W = {x|x+W ⊆ X} is a polytope. Since
xt is known, H(xt) is a constant matrix in the above equation, and the constraint on ut imposed
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by (5) is again polytopic. We denote this polytope as St. The set to which ut must belong is the
intersection of St and the actuator constraints:

Ut = St ∩ U . (6)

After identifying the vertices of Ut, the algorithm in Fig. 1 can be used to find the optimal feedback
policies.

Remark 2 Note that the safety requirement here is “one step ahead”. One could use the methods
in (Gilbert and Tan, 1991; Kolmanovsky and Gilbert, 1998) to compute a tighter “infinity steps
ahead” invariant set St for linear systems. See (Blanchini, 1999) for more discussions on controlled
invariant set. However, this is computationally more complicated and out of the scope of this work.

State 𝑥!

Polytope
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network

Vertex
calculation Safe layer

Action 𝑢!

⨂

Run policy
for 𝑻 steps

Use collected samples to estimate policy return
𝐽 𝜃 = ∑ 𝑅(𝑥! , 𝑢!)"

!#$
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Max iteration?

Stop

Yes
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Figure 1: Flowchart of policy optimization with
the proposed VN framework.

In general, it is fairly straightforward to find
the convex hull or the half-space representa-
tions of St, since it just requires a linear trans-
formation of X 	 W . However, the intersec-
tion step in (6) and extracting the vertices are
non-trivial. Below, we walk through a simple
example to illustrate the steps and then discuss
how to overcome the computational challenges
in Section 3.2.

Example 1 (Intersection Step) Consider the
following two–dimensional linear system:

xt+1 =

[
1 0
0 1

]
xt +

[
1 0
0 1

]
ut.

Suppose the action safety set U is a convex poly-
tope defined by: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 and
u1 + u2 ≤ 1.5. The state safety set X is a
square defined by 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 and
the initial state is x1 =

[
0.5 0.5

]T . By simple
calculation, S1 = {−0.5 ≤ u1 ≤ 0.5,−0.5 ≤
u2 ≤ 0.5} and U1 is the box bounded by
{(0, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)}. Fig. 2(a)
(left) visualizes the intersection operations.
Now suppose a feasible action u1 = [0.1 0.1]>

is chosen and the system evolves. Then,
S2 = {−0.6 ≤ u1 ≤ 0.4,−0.6 ≤ u2 ≤
0.4}. Performing the intersection of S2 and
U , we get that U2 is a rectangle defined by the
vertices {(0, 0), (0, 0.4), (0.4, 0), (0.4, 0.4)} as
depicted in Fig. 2(a) (right).
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Figure 2: (a) Evolution of action constraint set of Example 1. The left plot visualizes the safety set
at time t = 1, and the right plot shows the safety set at time t = 2. (b) Illustration of
the proposed safety layer architecture. The output of the policy network is modified to
predict the weights λi, i ∈ [1, N ]. These weights are normalized to λ̄i, i ∈ [1, N ] that
satisfies λ̄i ≥ 0 and

∑N
i=1 λ̄i = 1, via the softmax activation function. The action output

is calculated as
∑N

i=1 λ̄iP
(t)
i , where P (t)

i are the safety polytope vertices.

3.2. Intersection of Polytopes

It should be noted that finding the vertices of an intersection of polytopes is not easy (Tiwary,
2008). If the polytopes are in half-space representation, then their intersection can be found by
simply stacking the inequalities. However, finding the vertices of the resulting polytope can be
computationally expensive. Similarly, directly intersecting two polytopes based on their convex-
hull representation is also intractable in general.

Luckily, in many applications, we are not intersecting two generic polytopes at each step.
Rather, as illustrated in Example 1, they are two polytopes with fixed shapes, where the position
of U is fixed as well and only the position of St depends on xt. It turns out that for many systems
(see Section 4), we can find the resulting vertices by hand-designed rules. In addition, there are
heuristics that work well for low-dimensional systems (Broman and Shensa, 1990). Applying the
proposed VN technique to high-dimensional systems is the main future direction for this work.

For the case that St and U do not overlap, we pick the point in U that closest to St to be the
vertex. By design, the output of the VN is the action within set U , meanwhile transiting to the state
closest to the safe state set X . One could also choose to terminate the current training episode and
reset the environment.

3.3. Safety Layer

Once we obtain Ut, the next step is to encode the geometry information into the policy network such
that the generated action stays in Ut. According to Proposition 1, it suffices for the policy network
to generate the weights (or coefficients) of that convex combination.

Suppose that Ut can have at most N vertices, labeled P (t)
1 , . . . , P

(t)
N . In the policy network

architecture design, we add an intermediate safety layer that first generates N nodes λ1, . . . , λN .
The value of these nodes, however, are not positive nor do they sum to 1. Therefore, a softmax unit
is included as the activation function in order to guarantee the non-negativity and the summation
constraints. In particular, we define λ̄i = eλi/(

∑N
j=1 e

λj ), the weights of a convex combination.
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The final output layer (action ut) is defined as the multiplication of these normalized weights λ̄i and
the corresponding vertex values,

ut =
N∑
i=1

λ̄iP
(t)
i . (7)

An illustration diagram is provided in Fig. 2(b).
Note that the exact number of vertices of the polytope intersection may vary from state to state.

In our design, we simply set N to be the largest possible number, since the convex combination
with repeated vertices still captures all points in the polytope. Also, our method relies on an offline
hand-designed rule to compute the vertices. Such hand-designed rule is a mapping from state to a
sequence of vertices, which is “standardized” as the vertices are in a fixed order.

4. Simulation

In this section, we present and analyze the performance of the proposed VN experimentally. We
first describe the baseline algorithms and then demonstrate the performance comparisons in two
benchmark control tasks: (i) inverted pendulum and (ii) hovercraft tracking. The code for our
experiments is available at https://github.com/LeoZhengZLY/vertex-net.

4.1. General Experimental Details

Baseline Learners and Comparators. In our simulations, we compare against two baseline algo-
rithms. (1) We compare against DDPG algorithm (Lillicrap et al., 2015), which is a state-of-the-art
continuous control RL algorithm, to optimize the controller policy. To add safety constraints to the
vanilla DDPG algorithm, a natural approach is to artificially shape the reward such that the agent will
learn to avoid undesired areas. This can be done by setting a low or negative reward to the unsafe
states and actions (termed as penalty method in (Garcıa and Fernández, 2015)). In our experiments,
we include such a soft penalty in the reward function and train a standard policy network with
DDPG algorithm as the first baseline.1 (2) We also compare against the projected DDPG algorithm
in (Li et al., 2018) as the second baseline algorithm (refer to as PDDPG). This approach introduces
a projection-based supervisory element between the agent and the system, which projects the unsafe
actions into the safety set at each time step during training. According to (Li et al., 2018), after the
training, the supervisor is removed and the agent acts as a conventional RL-based controller.

Implementation Details. We use the following hyperparameters for all experiments. For DDPG
and PDDPG, we use a three-layer feed-forward neural network, with 256 nodes in each hidden
layer. For our approach, we use the proposed VN to represent the policy and leverage DDPG to
optimize it directly (refer to as VN-DDPG). It has two feed-forward layers (with 256 nodes in each
hidden layer) and a final safety layer as described in Section 3.3.

4.2. Pendulum

Experiment Setup. For the inverted pendulum problem, we use the OpenAI gym environment
(pendulum-v0), with the following specifications: mass m = 1, length l = 1. The system
state is two-dimension that include angle θ and angular velocity ω of the pendulum, and the control

1. The reward function is consistent among all methods, meaning that our method also includes such soft penalty.
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Figure 3: (a) Comparison of accumulated reward and constraint violation (max angle) for the pen-
dulum problem. (b) Representative trajectories (angle vs. time) generated by the policy
before training and after training.

variable is the applied torque u. We set the safe region to be θ ∈ [−1, 1] (radius) and torque limits
u ∈ U = [−15, 15]. The reward function is defined as r = −(θ2 + 0.1ω2 + 0.001u2), with the
goal of learning an optimal feedback controller. With a discretization step size of ∆ = 0.05, the
following are the discretized system dynamics:

θt+1 = θt + ωt∆ +
3g

2l
sin(θt)∆

2 +
3

ml2
u∆2 + dt (8a)

ωt+1 = ωt +
3g

2l
sin(θt)∆ +

3

ml2
u∆ (8b)

where dt is the disturbance random variable uniformly drawn from [−0.05, 0.05].

Technical Details. To keep the next state in the safe region θt+1 ∈ [−1, 1], we can compute the
corresponding upper and lower bound of u to represent set St by (8a). Therefore, the vertices of
VN can be found by intersecting St and U . Under the case where St and U have no overlap, we
pick −15 as the vertices if the upper bound of St is less than −15. Otherwise, we pick 15 as the
vertices. For comparison, the output of normal policy network is constrained in [−15, 15] by using
tanh activation function in the final layer. The initial state of each episode is randomly sampled in
the safe state region [−1, 1].

Results. In Fig. 3(a), we show a comparison of the accumulated reward and the max angle of each
episode in the training of DDPG, PDDPG, and VN-DDPG. We observe that both PDDPG and VN-
DDPG maintain safety throughout the training process, and as a result, it achieves higher reward in
the early stage. It is also interesting to observe that the DDPG also becomes “safe” after training,
since the reward function itself drives θ to be small. This suggests if we can train the DDPG with soft
penalty offline, it might be able to obey the safety constraint for some control systems. However,
the plot on max angle shows that even a well-trained policy may occasionally violate constraints if
these hard constraints are not explicitly taken into account.

Fig. 3(b) shows the pendulum angle trajectories of representative episodes before training versus
after training generated by PDDPG and VN-DDPG. For VN-DDPG before training, the pendulum
angle is maintained near the edge of the safe region.2 However, the PDDPG fails to maintain safety

2. Since we initialize the neural network near to zero, the policy before training is simply the average of all vertices.
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Figure 4: (a) Hovercraft example. u1 and u2 denote starboard and port fan forces. θ, x, y are the tilt
angle and the coordinate position. (b) Comparison of accumulated reward and constraint
violation (max tile angle) from Hovercraft control with different constraint upper bound.

with the projection supervisor removed. Once the training is finished, both of the learned controllers
are safe. These suggest that PDDPG could be unsafe if the training has not converged but VN-DDPG
maintains safety regardless of the neural network initialization.

4.3. Hovercraft

Experiment Setup. Consider the task of controlling a hovercraft that tracks a target position il-
lustrated in Fig. 4(a). The system dynamics are defined as follows (Hespanha, 2018):

xt+1 = xt + vx,t∆ +
1

2m
sin θt(u1 + u2)∆

2 (9a)

vx,t+1 = vx,t +
1

m
sin θt(u1 + u2)∆ (9b)

yt+1 = yt + vy,t∆ +
1

2m
(cos θt(u1 + u2)− g)∆2 (9c)

vy,t+1 = vy,t +
1

m
(cos θt(u1 + u2)− g)∆ (9d)

θt+1 = θt + vθ,t∆ +
1

2l
(u1 − u2)∆2 (9e)

vθ,t+1 = vθ,t +
1

l
(u1 − u2)∆ (9f)

where m = l = 1, g = 10. The initial state of the hovercraft is set at position (0, 0) and the target
position is (5, 5). To keep the tilt angle of the hovercraft in a safety region, we set the safe state
region to be θ ∈ [−θ, θ]. To better investigate the effect of the constraint, we did two experiments
where the tilt angle upper bounds are set to be θ = 0.01 and θ = 0.25 radians, respectively.
Considering the force exerted on two fans are coupled and subject to a total energy budget, the
actuator constraint set is defined as U = {u1, u2|u1 ≥ 0, u2 ≥ 0, u1 + u2 ≤ 20}.

Technical Details. For all the learners, we define the reward function r = −(x − x0)2 − (y −
y0)

2 − θ2 − 0.1(v2x + v2y + v2θ) − 0.001(u21 + u22) where (x0, y0) denotes the target position. The
learner is incentivized to track the target position while keeping the tile angle and force small for
the safety constraint. In addition, for DDPG and PDDPG, the output of policy network is truncated
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Figure 5: (a) Illustration of polytope intersection of hovercraft examples. (b) Trajectories (distance
to target ||(x, y)− (x0, y0)||2 and tilt angles θ) of trained policies with different θ̄.

to be within the actuator constraint set U . For the proposed VN-DDPG approach, Fig. 5(a) shows
how to use at most five vertices to represent the intersection of safe state region and the actuator
constraint region. The gray area is the actuator constraint set U , the blue area are the constraint on
u1, u2 imposed by θt+1 ∈ [−θ, θ] and (9e). The orange vertices can be computed in closed-form by
intersecting boundary equations.

Results. Fig. 4(b) compares the accumulated reward and max tilt angle of each episode in the
training of DDPG, PDDPG, and VN-DDPG. We observe that even trained DDPG could still con-
stantly violate the constraint. Both PDDPG and VN-DDPG are able to maintain constraint satisfac-
tion during training and we can observe that when θ = 0.01, they converge to suboptimal controllers
with lower episode reward since the constraint is too restricted and contradicts with the task (track-
ing the target position). Fig. 5(b) visualizes the trajectories of trained policies. In both choices of
the tilt angle upper limit θ, the constraint is never violated in the whole trajectory executing learned
policies of VN-DDPG. When θ = 0.01, the hovercraft has a strict constraint on its tilt angle and
fails to track the target position but with θ = 0.25, it is able to reach the target. On the contrary, run-
ning the learned DDPG and PDDPG policies will have tilt angle violation even with the soft penalty
added in the reward. Note that the trained policy of PDDPG with θ = 0.01 has poor performance
as it completely fails to track the target and violates the constraint. This is due to the fact that the
constraint during training is too restricted and the projected actions deviate a lot from the original
unconstrained policy. As a matter of fact, the decoupling of the action and the policy results in an
unstable policy with the projection step removed after training.

5. CONCLUSIONS

We design a novel policy network architecture called Vertex Network (VN), which is motivated
by the problem of training an RL algorithm with hard state and action constraints. Leveraging the
geometric property that a convex polytope can be equivalently represented as the convex hull of
a finite set of vertices, the output of VN satisfies the safety constraints by design. Empirically, we
show that VN yields significantly better safety performance compared with a normal policy network
with a constraint violation penalty or with a projection-based supervisor in two benchmark control
systems.
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