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Abstract
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems

with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust
LQG controller for open-loop stable plants. This is achieved using a robust synthesis procedure,
where we first estimate a model from a single input-output trajectory of finite length, identify an H-
infinity bound on the estimation error, and then design a robust controller using the estimated model
and its quantified uncertainty. Our synthesis procedure leverages a recent control tool called Input-
Output Parameterization (IOP) that enables robust controller design using convex optimization.
For open-loop stable systems, we prove that the LQG performance degrades linearly with respect
to the model estimation error using the proposed synthesis procedure. Despite the hidden states
in the LQG problem, the achieved scaling matches previous results on learning Linear Quadratic
Regulator (LQR) controllers with full state observations.

1. Introduction

There has been a surging interest in applying machine learning techniques to the control of dy-
namical systems with continuous action spaces (see e.g., Duan et al. (2016); Recht (2019)). An
increasing body of recent studies have started to address theoretical and practical aspects of deploy-
ing learning-based control policies in dynamical systems (Recht, 2019). An extended review of
related work is given in Appendix A of Zheng∗ and Furieri∗ et al. (2020)1.

For data-driven reinforcement learning (RL) control, the existing algorithmic frameworks can
be broadly divided into two categories: (a) model-based RL, in which an agent first fits a model for
the system dynamics from observed data and then uses this model to design a policy using either the
certainty equivalence principle (Åström and Wittenmark, 2013; Tu and Recht, 2019; Mania et al.,
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2019) or classical robust control tools (Zhou et al., 1996; Dean et al., 2019; Tu et al., 2017); and (b)
model-free RL, in which the agent attempts to learn an optimal policy directly from the data with-
out explicitly building a model for the system (Fazel et al., 2018; Malik et al., 2018; Furieri et al.,
2020). Another interesting line of work formulates model-free control by using past trajectories to
predict future trajectories based on so called fundamental lemma (Coulson et al., 2019; Berberich
et al., 2019; De Persis and Tesi, 2019). For both model-based and model-free methods, it is crit-
ical to establish formal guarantees on their sample efficiency, stability and robustness. Recently,
the Linear Quadratic Regulator (LQR), one of the most well-studied optimal control problems, has
been adopted as a benchmark to understand how machine learning interacts with continuous con-
trol (Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019;
Dean et al., 2018; Malik et al., 2018). It was shown that the simple certainty equivalent model-
based method requires asymptotically less samples than model-free policy gradient methods for
LQR (Tu and Recht, 2019). Besides, the certainty equivalent control (Mania et al., 2019) (scaling
as O(N−1), where N is the number of samples) is more sample-efficient than robust model-based
methods (scaling as O(N−1/2)) that account for uncertainty explicitly (Dean et al., 2019).

In this paper, we take a step further towards a theoretical understanding of model-based learning
methods for Linear Quadratic Gaussian (LQG) control. As one of the most fundamental control
problems, LQG deals with partially observed linear dynamical systems driven by additive white
Gaussian noises (Zhou et al., 1996). As a significant challenge compared to LQR, the internal
system states cannot be directly measured for learning and control purposes. When the system
model is known, LQG admits an elegant closed-form solution, combining a Kalman filter together
with an LQR feedback gain (Bertsekas, 2011; Zhou et al., 1996). For unknown dynamics, however,
much fewer results are available for the achievable closed-loop performance. One natural solution is
the aforementioned certainty equivalence principle: collect some data of the system evolution, fit a
model, and then solve the original LQG problem by treating the fitted model as the truth (Åström and
Wittenmark, 2013). It has been recently proved in Mania et al. (2019) that this certainty equivalent
principle enjoys a good statistical rate for sub-optimality gap that scales as the square of the model
estimation error. However, this procedure does not come with a robust stability guarantee, and it
might fail to stabilize the system when data is not sufficiently large. Sample-complexity of Kalman
filters has also been recently characterized in Tsiamis et al. (2020).

Leveraging recent advances in control synthesis (Furieri et al., 2019) and non-asymptotic sys-
tem identification (Oymak and Ozay, 2019; Tu et al., 2017; Sarkar et al., 2019; Zheng and Li, 2020),
we establish an end-to-end sample-complexity result of learning LQG controllers that robustly sta-
bilize the true system with a high probability. In particular, our contribution is on developing a
novel tractable robust control synthesis procedure, whose sub-optimality can be tightly bounded as
a function of the model uncertainty. By incorporating a non-asymptotic H∞ bound on the system
estimation error, we establish an end-to-end sample complexity bound for learning robust LQG con-
trollers. Dean et al. (2019) performed similar analysis for learning LQR controllers with full state
measurements. Instead, our method includes noisy output measurements without reconstruting an
internal state-space representation for the system. Despite the challenge of hidden states, for open-
loop stable systems, our method achieves the same scaling for the sub-optimality gap as Dean et al.
(2019), that is,O (ε), where ε is the model uncertainty level. Specifically, the highlights of our work
include:

• Our design methodology is suitable for general multiple-input multiple-output (MIMO) LTI sys-
tems that are open-loop stable. Based on a recent control tool, called Input-Ouput Parameteriza-
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tion (IOP) (Furieri et al., 2019), we derive a new convex parameterization of robustly stabilizing
controllers. Any feasible solution from our procedure corresponds to a controller that is robust
against model uncertainty. Our framework directly aims for a class of general LQG problems,
going beyond the recent results (Dean et al., 2019; Boczar et al., 2018) that are built on the
system-level parameterization (SLP) (Wang et al., 2019).

• We quantify the performance degradation of the robust LQG controller, scaling linearly with the
model error, which is consistent with Dean et al. (2019); Boczar et al. (2018). Our analysis re-
quires a few involved bounding arguments in the IOP framework (Furieri et al., 2019) due to
the absence of direct state measurements. We note that this linear scaling is inferior to the sim-
ple certainty equivalence controller (Mania et al., 2019), for which the performance degradation
scales as the square of parameter errors for both LQR and LQG, but without guarantees on the
robust stablility against model errors. This brings an interesting trade-off between optimality and
robustness, which is also observed in the LQR case (Dean et al., 2019).

The rest of this paper is organized as follows. We introduce Linear Quadratic Gaussian (LQG)
control for unknown systems and overview our contributions in Section 2. In Section 3, we first
leverage the IOP framework to develop a robust controller synthesis procedure taking into account
estimation errors explicitly, and then derive our main sub-optimality result. This enables our end-to-
end sample complexity analysis discussed in Section 4. We conclude this paper in Section 5. Proofs
are postponed to the appendices of Zheng∗ and Furieri∗ et al. (2020)

Notation. We use lower and upper case letters (e.g. x andA) to denote vectors and matrices, and
lower and upper case boldface letters (e.g. x and G) are used to denote signals and transfer matrices,
respectively. Given a stable transfer matrix G ∈ RH∞, whereRH∞ denotes the subspace of stable
transfer matrices, we denote itsH∞ norm by ‖G‖∞ := supω σmax(G(ejω)).

2. Problem Statement and Our contributions

2.1. LQG formulation

We consider the following partially observed output feedback system

xt+1 = A?xt +B?ut,

yt = C?xt + vt,

ut = π(yt, . . . , y0) + wt ,

(1)

where xt ∈ Rn is the state of the system, ut ∈ Rm is the control input and π(·) is an output-
feedback control policy, yt ∈ Rp is the observed output, and wt ∈ Rm, vt ∈ Rp are Gaussian noise
with zero-mean and covariance σ2wI, σ

2
vI . The setup in (1) is convenient from an external input-

output perspective, where the noise wt affects the input ut directly.2 This setup was also considered
in Tu et al. (2017); Boczar et al. (2018); Zheng et al. (2019). When C = I, vt = 0, i.e., the state
xt is directly measured, the system is called fully observed. Throughout this paper, we make the
following assumption.

Assumption 1 (A?, B?) is stabilizable and (C?, A?) detectable.

2. Letting ŵt = B?wt, (1) is an instance of the classical LQG formulation where the process noise ŵt has variance
σ2
wB?B

T
? . The setting (1) enables a concise closed-loop representation in (6), facilitating the suboptimality analysis

in the IOP framework. We leave the general case with unstructured covariance for future work.
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The classical Linear Quadratic Gaussian (LQG) control problem is defined as

min
u0,u1,...

lim
T→∞

E

[
1

T

T∑
t=0

(
yTt Qyt + uTt Rut

)]
subject to (1),

(2)

where Q and R are positive definite. Without loss of generality and for notational simplicity, we
assume that Q = Ip, R = Im, σw = σv = 1. When the dynamics (1) are known, this problem has
a well-known closed-form solution by solving two algebraic Riccati equations (Zhou et al., 1996).
The optimal solution is ut = Kx̂t with a fixed p × n matrix K and x̂t is the state estimation from
the observation y0, . . . , yt using the Kalman filter. Compactly, the optimal controller to (2) can be
written in the form of transfer function u(z) = K(z)y(z), with K(z) = Ck(zI −Ak)−1Bk +Dk,
where z ∈ C, u(z) and y(z) are the z−transform of the input ut and output yt, and the transfer
function K(z) has a state-space realization expressed as

ξt+1 = Akξt +Bkyt,

ut = Ckξt +Dkyt,
(3)

where ξ ∈ Rq is the controller internal state, and Ak, Bk, Ck, Dk depends on the system matrices
A,B,C and solutions to algebraic Riccati equations. We refer interested readers to Zhou et al.
(1996); Bertsekas (2011) for more details.

Throughout the paper, we make another assumption, which is required in both plant estimation
algorithms (Oymak and Ozay, 2019) and the robust controller synthesis phase.

Assumption 2 The plant dynamics are open-loop stable, i.e., ρ(A?) < 1, where ρ(·) denotes the
spectral radius.

2.2. LQG for unknown dynamics

In the case where the system dynamics A?, B?, C? are unknown, one natural idea is to conduct
experiments to estimate Â, B̂, Ĉ (Ljung, 2010) and to design the corresponding controller based on
the estimated dynamics, which is known as certainty equivalence control. When the estimation is
accurate enough, the certainty equivalent controller leads to good closed-loop performance (Mania
et al., 2019). However, the certainty equivalent controller does not take into account estimation
errors, which might lead to instability in practice. It is desirable to explicitly incorporate the esti-
mation errors

‖Â−A?‖, ‖B̂ −B?‖, ‖Ĉ − C?‖, (4)

into the controller synthesis, and this requires novel tools from robust control. Unlike the fully
observed LQR case (Dean et al., 2019), in the partially observed case of (1), it remains unclear how
to directly incorporate state-space model errors (4) into robust controller synthesis. Besides, the
state-space realization of a partially observed system is not unique, and different realizations from
the estimation procedure might have an impact on the controller synthesis.

Instead of the state-space form (1), the system dynamics can be described uniquely in the fre-
quency domain in terms of the transfer function as

G?(z) = C?(zI −A?)−1B? ,
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where z ∈ C. Based on an estimated model Ĝ and an upper bound ε on its estimation error
‖∆‖∞ := ‖G? − Ĝ‖∞, we consider a robust variant of the LQG problem that seeks to minimize
the worst-case LQG performance of the closed-loop system

min
K

sup
‖∆‖∞<ε

lim
T→∞

E

[
1

T

T∑
t=0

(
yTt Qyt + uTt Rut

)]
,

subject to y = (Ĝ + ∆)u + v , u = Ky + w,

(5)

where K is a proper transfer function. When ∆ = 0, (5) recovers the standard LQG formulation
(2). Additionally, note that the cost of (5) is finite if and only if K stabilizes all plants G such that
G = Ĝ + ∆ and ‖∆‖∞ < ε.

2.3. Our contributions

Although classical approaches exist to compute controllers that stabilize all plants Ĝ with ‖∆‖∞ ≤
ε , (Zhou et al., 1996), these methods typically do not quantify the closed-loop LQG performance
degradation in terms of the uncertainty size ε. In this paper, we exploit the recent IOP frame-
work (Furieri et al., 2019) to develop a tractable inner approximation of (5) (see Theorem 3.2). In
our main Theorem 3.3, if ε is small enough, we bound the suboptimality performance gap as

Ĵ − J?
J?

≤Mε ,

where J? is the globally optimal LQG cost to (2), and Ĵ is the LQG cost when applying the robust
controller from our procedure to the true plant G?, ε > ‖G?−Ĝ‖∞ is an upper bound of estimation
error, andM is a constant that depends explicitly on true dynamics G?, its estimation Ĝ, and the true
LQG controller K?; see (17) for a precise expression. Adapting recent non-asymptotic estimation
results from input-output trajectories (Oymak and Ozay, 2019; Sarkar et al., 2019; Tu et al., 2017;
Zheng and Li, 2020), we derive an end-to-end sample complexity of learning LQG controllers as

Ĵ − J?
J?

≤ O
(

T√
N

+ ρ(A?)
T

)
,

with high probability provided N is sufficiently large, where T is the length of finite impulse re-
sponse (FIR) model estimation, and N is the number of samples in input-output trajectories (see
Corollary 4.3). When the true plant G? is an FIR, the sample complexity scales as O

(
N−1/2

)
.

If G? is unstable, the residual ∆ = G? − Ĝ might be unstable as well, and thus ‖∆‖∞ =∞.
Instead, ∆ is always a stable residual when G? is stable, and thus ‖∆‖∞ is finite. Also, it is hard to
utilize a single trajectory for identifying unstable systems. Finally, unstable residues in the equality
constraints of IOP pose a challenge for controller implementation; we refer to Section 6 of Zheng
et al. (2019) for details. We therefore leave the case of unstable systems for future work.

3. Robust controller synthesis

We first derive a tractable convex approximation for (5) using the recent input-output parameteri-
zation (IOP) framework (Furieri et al., 2019). This allows us to compute a robust controller using
convex optimization. We then provide sub-optimality guarantees in terms of the uncertainty size ε.
The overall principle is parallel to that of Dean et al. (2019) for the LQR case.
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3.1. An equivalent IOP reformulation of (5)

Similar to the Youla parameterization (Youla et al., 1976) and the SLP (Wang et al., 2019), the
IOP framework (Furieri et al., 2019) focuses on the system responses of a closed-loop system. In
particular, given an arbitrary control policy u = Ky, straightforward calculations show that the
closed-loop responses from the noises v,w to the output y and control action u are[

y
u

]
=

[
(I −G?K)−1 (I −G?K)−1G?

K(I −G?K)−1 (I −KG?)
−1

] [
v
w

]
. (6)

To ease the notation, we can define the closed-loop responses as[
Y W
U Z

]
:=

[
(I −G?K)−1 (I −G?K)−1G?

K(I −G?K)−1 (I −KG?)
−1

]
. (7)

Given any stabilizing K, we can write K = UY−1 and the square root of the LQG cost in (2) as

J(G?,K) =
∥∥∥[Y W

U Z

]∥∥∥
H2

, (8)

with the closed-loop responses (Y,U,W,Z) defined in (7); see Furieri et al. (2019); Zheng et al.
(2020) for more details on IOP. We present a full equivalence derivation of (8) in (Zheng∗ and
Furieri∗ et al., 2020, Appendix G).

Our first result is a reformulation of the robust LQG problem (5) in the IOP framework.

Theorem 3.1 The robust LQG problem (5) is equivalent to

min
Ŷ,Ŵ,Û,Ẑ

max
‖∆‖∞<ε

J(G?,K) =

∥∥∥∥[Ŷ(I −∆Û)−1 Ŷ(I −∆Û)−1(Ĝ + ∆)
Û(I −∆Û)−1 (I − Û∆)−1Ẑ

]∥∥∥∥
H2

(9)

subject to
[
I −Ĝ

] [Ŷ Ŵ
Û Ẑ

]
= [I 0] , (10)[

Ŷ Ŵ
Û Ẑ

] [
−Ĝ
I

]
=
[
0
I

]
, (11)

Ŷ,Ŵ, Û, Ẑ ∈ RH∞, ‖Û‖∞ ≤
1

ε
,

where the optimal robust controller is recovered from the optimal Û and Ŷ as K = ÛŶ−1.

The proof relies on a novel robust variant of IOP for parameterizing robustly stabilizing con-
troller in a convex way. We provide the detailed proof and a review of the IOP framework in (Zheng∗

and Furieri∗ et al., 2020, Appendix C). Here, it is worth noting that the feasible set in (9) is convex
in the decision variables (Ŷ,Ŵ, Û, Ẑ), which represent four closed-loop maps on the estimated
plant Ĝ. Using the small-gain theorem (Zhou et al., 1996), the convex requirement ‖Û‖∞ ≤ 1

ε

ensures that any controller K = ÛŶ−1, with Ŷ, Û feasible for (9), stabilizes the real plant G? for
all ∆ such that ‖∆‖∞ < ε.

Due to the uncertainty ∆, the cost in (9) is nonconvex in the decision variables. We therefore
proceed with deriving an upper-bound on the functional J(G?,K), which will be exploited to derive
a quasi-convex approximation of the robust LQG problem (5).
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3.2. Upper bound on the non-convex cost in (9)

It is easy to derive (see Appendix B of Zheng∗ and Furieri∗ et al. (2020)) that

J(G?,K)2 = ‖Ŷ(I −∆Û)−1‖2H2
+ ‖Û(I −∆Û)−1‖2H2

+ ‖(I − Û∆)−1Ẑ‖2H2
+ ‖Ŷ(I −∆Û)−1(Ĝ + ∆)‖2H2

.
(12)

Similarly to Dean et al. (2019) for the LQR case, it is relatively easy to bound the first three terms
on the right hand side of (12) using small-gain arguments. However, dealing with outputs makes
it challenging to bound the last term. The corresponding result is summarized in the following
proposition (see Appendix D.1 of Zheng∗ and Furieri∗ et al. (2020) for proof).

Proposition 3.1 If ‖Û‖∞ < 1
ε , ‖∆‖∞ < ε and Ĝ ∈ RH∞, then, we have

‖Ŷ(I −∆Û)−1(Ĝ + ∆)‖H2 ≤
‖Ŵ‖H2 + ε‖Ŷ‖H2(2 + ‖Û‖∞‖Ĝ‖∞)

1− ε‖Û‖∞
, (13)

where Ŵ = ŶĜ.

We are now ready to present an upper bound on the LQG cost. The proof is based on Proposi-
tion 3.1 and basic inequalities; see (Zheng∗ and Furieri∗ et al., 2020, Appendix D.2).

Proposition 3.2 If ‖Û‖∞ ≤ 1
ε , ‖∆‖∞ < ε and Ĝ ∈ RH∞, the robust LQG cost in (9) is upper

bounded by

J(G?,K) ≤ 1

1− ε‖Û‖∞

∥∥∥∥∥
[√

1 + h(ε, ‖Û‖∞)Ŷ Ŵ

Û Ẑ

]∥∥∥∥∥
H2

, (14)

where Ŷ,Ŵ, Û, Ẑ satisfy the constraints in (9), and the factor h(ε, ‖Û‖∞) is defined as

h(ε, ‖Û‖∞) := ε‖Ĝ‖∞(2 + ‖Û‖∞‖Ĝ‖∞) + ε2(2 + ‖Û‖∞‖Ĝ‖∞)2. (15)

3.3. Quasi-convex formulation

Building on the LQG cost upper bound (14), we derive our first main result on a tractable approxi-
mation of (9). The proof is reported in (Zheng∗ and Furieri∗ et al., 2020, Appendix D.3).

Theorem 3.2 Given Ĝ ∈ RH∞, a model estimation error ε, and any constant α > 0, the robust
LQG problem (9) is upper bounded by the following problem

min
γ∈[0,1/ε)

1

1− εγ
min

Ŷ,Ŵ,Û,Ẑ

∥∥∥∥[√1 + h(ε, α)Ŷ Ŵ

Û Ẑ

]∥∥∥∥
H2

subject to (10)− (11), Ŷ,Ŵ, Ẑ ∈ RH∞, ‖Û‖∞ ≤ min (γ, α) ,

(16)

where h(ε, α) = ε‖Ĝ‖∞(2 + α‖Ĝ‖∞) + ε2(2 + α‖Ĝ‖∞)2.

The hyper-parameter α in (16) plays two important roles: 1) robust stability: the resulting
controller has a guarantee of robust stability against model estimation error up to 1

α , thus suggesting
α < 1

ε , as we will clarify it later; 2) quasi-convexity: the inner optimization problem (16) is convex
when fixing γ, and the outer optimization is quasi-convex with respect to γ, which can effectively
be solved using the golden section search.
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Remark 3.1 (Numerical computation)

1. The inner optimization in (16) is convex but infinite dimensional. A practical numerical
approach is to apply a finite impulse response (FIR) truncation on the decision variables
Ŷ, Û,Ŵ, Ẑ, which leads to a finite dimensional convex semidefinite program (SDP) for each
fixed value of γ; see Appendix B of Zheng∗ and Furieri∗ et al. (2020). The degradation in
performance decays exponentially with the FIR horizon (Dean et al., 2019).

2. Since Ĝ ∈ RH∞ is stable, the IOP framework is numerically robust (Zheng et al., 2019),
i.e., the resulting controller K = ÛŶ−1 is stabilizing even when numerical solvers induce
small computational residues in (16).

3.4. Sub-optimality guarantee

Our second main result offers a sub-optimality guarantee on the performance of the robust controller
synthesized using the robust IOP framework (16) in terms of the estimation error ε. The proof is
reported in (Zheng∗ and Furieri∗ et al., 2020, Appendix E).

Theorem 3.3 Let K? be the optimal LQG controller in (2), and the corresponding closed-loop
responses be Y?,U?,W?,Z?. Let Ĝ be the plant estimation with error ‖∆‖∞ < ε, where ∆ =

G?−Ĝ. Suppose that ε < 1
5‖U?‖∞ , and choose the constant hyper-parameter α ∈

[ √
2‖U?‖∞

1−ε‖U?‖∞ ,
1
ε

)
.

We denote the optimal solution to (16) as γ?, Ŷ?, Û?,Ŵ?, Ẑ?. Then, the controller K = Û?Ŷ
−1
?

stabilizes the true plant G? and the relative LQG error is upper bounded by

J(G?,K)2 − J(G?,K?)
2

J(G?,K?)2
≤ 20ε‖U?‖∞ + h(ε, α) + g(ε, ‖U?‖∞), (17)

where h(·, ·) is defined in (15) and

g(ε, ‖U?‖∞) = ε‖G?‖∞(2 + ‖U?‖∞‖G?‖∞) + ε2(2 + ‖U?‖∞‖G?‖∞)2. (18)

Theorem 3.3 shows that the relative error in the LQG cost grows as O(ε) as long as ε is suffi-
ciently small, and in particular ε < 1

5‖U?‖∞ . Previous results in Dean et al. (2019) proved a similar
convergence rate of O(ε) for LQR using a robust synthesis procedure based on the SLP (Wang
et al., 2019). Our robust synthesis procedure using the IOP framework extends Dean et al. (2019)
to a class of LQG problems. Note that our bound is valid for open-loop stable plants, while the
method Dean et al. (2019) works for all systems at the cost of requiring direct state observations.
Similar to Dean et al. (2019) and related work, the hyper-parameters ε and α have to be tuned in
practice without knowing U?.

Remark 3.2 (Optimality versus Robustness) Note that recent results in Mania et al. (2019) show
that the certainty equivalent controller achieves a better sub-optimality scaling of O(ε2) for both
fully observed LQR and partially observed LQG settings, at the cost of a much stricter requirement
on admissible uncertainty ε. Quoting from Mania et al. (2019), “the price of obtaining a faster rate
for LQR is that the certainty equivalent controller becomes less robust to model uncertainty.” Our
result in Theorem 3.3 shows that this trade-off may hold true for the LQG problem as well.

8
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4. Sample complexity

Based on our main results in the previous section, here we discuss how to estimate the plant G?,
provide a non-asymptotic H∞ bound on the estimation error, and finally establish an end-to-end
sample complexity of learning LQG controllers. By Assumption 2, i.e., G? ∈ RH∞, we can write

G?(z) =

∞∑
i=0

1

zi
G?,i =

T−1∑
i=0

1

zi
G?,i +

∞∑
i=T

1

zi
G?,i, (19)

where G?,i ∈ Rp×m denotes the i-th spectral component. Given the state-space representation (1),
we have G?,0 = 0 , G?,i = C?A

i−1
? B?, ∀i ≥ 1 . As ρ(A?) < 1, the spectral component G?,i decays

exponentially. Thus, we can use a finite impulse response (FIR) truncation of order T for G?:

G? =
[
0 C?B? · · · C?A

T−2
? B?

]
∈ Rp×Tm.

Many recent algorithms have been proposed to estimate G?, e.g., Oymak and Ozay (2019); Tu
et al. (2017); Sarkar et al. (2019); Zheng and Li (2020), and these algorithms differ from the estima-
tion setup; see Zheng and Li (2020) for a comparison. All of them can be used to establish an end-to-
end sample complexity. Here, we discuss a recent ordinary least-squares (OLS) algorithm (Oymak
and Ozay, 2019). This OLS estimator is based on collecting a trajectory {yt, ut}T+N−1t=0 , where ut
is Gaussian with variance σ2uI for every t. The OLS algorithm details are provided in Zheng∗ and
Furieri∗ et al. (2020, Appendix F.1). From the OLS solution Ĝ, we form the estimated plant

Ĝ :=
T−1∑
k=0

1

zk
Ĝk. (20)

To bound theH∞ norm of the estimation error ∆ := G?− Ĝ, we define Φ(A?) = supτ≥0
‖Aτ?‖
ρ(A?)τ

.

We assume Φ(A?) is finite (Oymak and Ozay, 2019). We start from (Oymak and Ozay, 2019,
Theorem 3.2) to derive two new corollaries. The proofs rely on connecting the spectral radius of
Ĝ − G? with the H∞ norm of Ĝ −G?; see Zheng∗ and Furieri∗ et al. (2020, Appendix F.2) for
details.

Corollary 4.1 Under the OLS estimation setup in Theorem 3.2 of Oymak and Ozay (2019), with
high probability, the FIR estimation Ĝ in (20) satisfies

‖G? − Ĝ‖∞ ≤
Rw +Rv +Re

σu

√
T

N
+ Φ(A?) ‖C?‖ ‖B?‖

ρ(A?)
T

1− ρ(A?)
. (21)

where N is the length of one input-output trajectory, and Rw, Rv, Re ∈ R are problem-dependent3.

Corollary 4.2 Fix an ε > 0. Let the length of FIR truncation satisfy

T >
1

log (ρ(A?))
log

ε(1− ρ(A?))

2Φ(A?)‖C?‖‖B?‖
. (22)

3. See Oymak and Ozay (2019) for precise formula and probabilistic guarantees. Note that the dynamics in (1) are
slightly different from Oymak and Ozay (2019), with an extra matrix B? in front of wt. By replacing the matrix F
in Oymak and Ozay (2019) with G?, all the analysis and bounds stay the same.
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Under the OLS estimation setup in Theorem 3.2 of Oymak and Ozay (2019), and further letting

N > max

{
4T

σ2uε
2
(Rw +Rv +Re)

2, cTm log2 (2Tm) log2 (2Nm)

}
, (23)

with high probability, the FIR estimation Ĝ in (20) satisfies ‖G? − Ĝ‖∞ < ε.

The lower bound on the FIR length T in (22) guarantees that the FIR truncation error is less
than ε/2, while the lower bound on N in (23) makes sure that the FIR approximation part is less
than ε/2, thus leading to the desired bound with high probability. We note that the termsRw, Rv, Re
depend on the system dimensions and on the FIR length asO(

√
T (p+m+n)). Corollary 4.2 states

that the number of time steps to achieve identification error ε inH∞ norm scales as O(T 2/ε2).
We finally give an end-to-end guarantee by combining Corollary 4.2 with Theorem 3.3:

Corollary 4.3 Let K? be the optimal LQG controller to (2), and the corresponding closed-loop
responses be Y?,U?,W?,Z?. Choose an estimation error 0 < ε < 1

5‖U?‖∞ , and the hyper-

parameter α ∈
[ √

2‖U?‖∞
1−ε‖U?‖∞ ,

1
ε

)
. Estimate Ĝ (20) with a trajectory of length N in (23) and an FIR

truncation length T in (22). Then, with high probability, the robust controller K from (16) yields a
relative error in the LQG cost satisfying (17).

Since the bound on the trajectory length N in (23) scales as Õ(ε−2) (where the logarithmic
factor comes from the FIR length T ), the suboptimality gap on the LQG cost roughly scales as
Õ
(

1√
N

)
when the FIR length T is chosen large-enough accordingly. In particular, when the true

plant is FIR of order T and T ≥ T , via combining Corollary 4.1 with Theorem 3.3, we see that with
high probability, the suboptimality gap behaves as

J(G?,K)2 − J(G?,K?)
2

J(G?,K?)2
∼ O

(
1√
N

)
.

Despite the additional difficulty of hidden states, our sample complexity result is on the same level
as that obtained in Dean et al. (2019) where a robust SLP procedure is used to design a robust LQR
controller with full observations.

5. Conclusion and future work

We have developed a robust controller synthesis procedure for partially observed LQG problems,
by combining non-asymptotic identification methods with IOP for robust control. Our procedure is
consistent with the idea of Coarse-ID control in Dean et al. (2019), and extends the results in Dean
et al. (2019) from fully observed state feedback systems to partially observed output-feedback sys-
tems that are open-loop stable.

One interesting future direction is to extend these results to open-loop unstable systems. We note
that non-asymptotic identification for partially observed open-loop unstable system is challenging
in itself; see Zheng and Li (2020) for a recent discussion. It is also non-trivial to derive a robust
synthesis procedure with guaranteed performance, and using a pre-stabilizing controller might be
useful (Simchowitz et al., 2020; Zheng et al., 2019). Finally, extending our results to an online
adaptive setting and performing regret analysis are exciting future directions as well.
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