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Abstract

We propose a new approach to model the
collective dynamics of a population of parti-
cles evolving with time. As is often the case
in challenging scientific applications, notably
single-cell genomics, measuring features for
these particles requires destroying them. As
a result, the population can only be moni-
tored with periodic snapshots, obtained by
sampling a few particles that are sacrificed
in exchange for measurements. Given only
access to these snapshots, can we reconstruct
likely individual trajectories for all other par-
ticles? We propose to model these trajectories
as collective realizations of a causal Jordan-
Kinderlehrer-Otto (JKO) flow of measures:
The JKO scheme posits that the new config-
uration taken by a population at time t + 1
is one that trades off an improvement, in the
sense that it decreases an energy, while re-
maining close (in Wasserstein distance) to the
previous configuration observed at t. In order
to learn such an energy using only snapshots,
we propose JKOnet, a neural architecture
that computes (in end-to-end differentiable
fashion) the JKO flow given a parametric en-
ergy and initial configuration of points. We
demonstrate the good performance and ro-
bustness of the JKOnet fitting procedure,
compared to a more direct forward method.

1 Introduction

Population Dynamics ... Many fields in science
carry out experiments by monitoring complex systems
composed of evolving particles. That monitoring con-
sists in sampling, every now and then, a few representa-
tive particles in the system, and measure their features.
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Figure 1: Given an observed trajectory (µ0, . . . , µT )
of point clouds (gray), we seek parameters ξ for the
energy Jξ such that the predictions ρ1, . . . , ρT (blue)
following a JKO flow from ρ0 = µ0 are close the ob-
served trajectory (gray), by minimizing (as a function
of ξ) the sum of Wasserstein distances between ρt+1,
the JKO step from ρt−1 using Jξ, and data µt+1.

As a result, the observer has access to a collection of
time-resolved point-clouds describing partially the dy-
namic of that population on aggregate. Such problems
arise in many fields, when for instance, observing a
population of cells in biology (Schiebinger et al., 2019;
Moon et al., 2019), densities in meteorology (Fisher
et al., 2009; Sigrist et al., 2015) or multi-target track-
ing (Luo et al., 2020; Sheldon et al., 2007; Sheldon and
Dietterich, 2011; Haasler et al., 2019, 2021a,b).

... Without Individual Paths. While modeling
and estimating parametric dynamics using datasets
of point trajectories is the core subject of time series
analysis (see Li et al. 2020; Krishnan et al. 2017 and
references therein), the setting we consider makes it
difficult to track the evolution of individual particles.
Indeed, this would require tagging and measuring re-
peatedly the same particles, which can be costly or even
impossible: For instance, measuring a cell’s transcrip-
tome requires splitting the cell o. With this constraint
in mind, our goal is to better understand the evolu-
tion of single particles, using only the aggregate data
described in point clouds.
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Inferring Particle Paths from Cloud Trajecto-
ries. When the observer only seeks to reconstruct
particles’ paths given starting and ending point cloud
configurations, the machinery of optimal transport
(OT) (Schiebinger et al., 2019; Yang et al., 2020; Yang
and Uhler, 2019) or likelihood-based normalizing flows
(NF) (Rezende and Mohamed, 2015; Grathwohl et al.,
2019) can be used, either separately, or even combined:
Tong et al. (2020) use OT to motivate a regularizer
(squared norm of displacements) in their NF estimation
pipeline; Huang et al. (2021) restrict their attention
to flows expressed as gradients of convex functions.
This choice is motivated by OT because it agrees with
the Brenier (1987) principle that displacements arising
from convex potentials give rise to optimal flows. When
the observer seeks instead a causal model, namely one
that is able to explain/predict future configurations
of the point cloud (and not only interpolate between
configurations), the parameters of that model can also
be fitted with OT, as proposed by Hashimoto et al.
(2016). Their model assumes a Langevin dynamic for
the particles, driven by the gradient flow of a (neu-
ral) energy function; They fit the parameters of that
network by minimizing regularized OT distances (Cu-
turi, 2013) between their model’s predictions and the
corresponding ground truth snapshots.

Modeling Particle Dynamics as a JKO Scheme.
In this paper, we draw inspiration from both approaches
above—the intuition from the recent NF literature that
flows should mimic an optimal transport (OT as prior),
and be able, through training, to predict future config-
urations (OT as a loss)—to propose a causal model for
population dynamics. Our approach relies on a pow-
erful hammer: the Jordan-Kinderlehrer-Otto (JKO)
flow (Jordan et al., 1998), widely regarded as one of the
most influential mathematical breakthroughs in recent
history. While the JKO flow was initially introduced
as an alternative method to solve the Fokker-Planck
partial differential equation (PDE), its flexibility can
be showcased to handle more complex PDEs (Santam-
brogio, 2017, §4.7), or even describe the gradient flows
of non-differentiable energies that have no PDE repre-
sentation. On a purely mechanical level, a JKO step is
to measures what the proximal step (Combettes and
Pesquet, 2011) is to vectors: In a JKO step, particles
move to decrease collectively an energy (a real-valued
function defined on measures), yet remain close (in
Wasserstein sense) to the previous configuration. Our
goal in this paper is to treat JKO steps as parameterized
modules, and fit their parameter (the energy function)
so that its outputs agree repeatedly over time with
observed data. This approach presents several chal-
lenges: While numerical approaches to solve JKO steps
have been proposed in low dimensional settings (Burger
et al., 2010; Carrillo et al., 2021; Peyré, 2015; Benamou

et al., 2016a), scaling it to higher dimensions is an open
problem. Moreover, minimizing a loss involving a JKO
step w.r.t. energy requires not only solving the JKO
problem, but also computing the (transpose) Jacobian
of its output w.r.t. energy parameters.

Contributions. Our contributions are two-fold.
First, we propose a method, given an input configura-
tion and an energy function, to compute JKO steps us-
ing input convex neural networks (ICNN) (Amos et al.,
2017; Makkuva et al., 2020) (see also concurrent works
that have proposed similar approaches (Alvarez-Melis
et al., 2021; Mokrov et al., 2021)). Second, we view the
JKO step as an inner layer, a JKOnet module param-
eterized by an energy function, which is tasked with
moving the particles of an input configuration along an
OT flow (the gradient of an optimal ICNN), trading off
a lower energy with proximity to the previous configu-
ration. We propose to estimate the parameters of the
energy by minimizing a fitting loss computed between
the outputs of the JKOnet module (the prediction)
and the ground truth displacements, as illustrated in
Figure 1. We demonstrate JKOnet’s range of ap-
plications by applying in on synthetic potential- and
trajectory-based population dynamics, as well as devel-
opmental trajectories of human embryonic stem cells
based on single-cell genomics data.

2 Background

Optimal Transport. For two probability measures
µ, ν in P(Rd), their squared 2-Wasserstein distance is

W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

∫∫
‖x− y‖22γ(dx, dy), (1)

where Γ(µ, ν) is the set of couplings on Rd × Rd with
respective marginals µ, ν. When instantiated on finite
discrete measures, such as µ =

∑n
i=1 aiδxi and ν =∑m

j=1 bjδyj , this problem translates to a linear program,
which can be regularized using an entropy term (Cuturi,
2013; Peyré and Cuturi, 2019). For ε ≥ 0, set

Wε(µ, ν) := min
P∈U(a,b)

〈P, [‖xi − yj‖2]ij〉 − εH(P), (2)

whereH(P) := −
∑
ij Pij(logPij−1) and the polytope

U(a, b) is the set of n×m matrices {P ∈ Rn×m+ ,P1m =
a,P>1n = b}. Notice that the definition above reduces
to the usual (squared) 2-Wasserstein distance when
ε = 0. Setting ε > 0 yields a faster and differentiable
proxy to approximate W0, but introduces a bias, since
Wε(µ, µ) 6= 0 in general. In the rest of this work, we
therefore use the Sinkhorn divergence (Ramdas et al.,
2017; Genevay et al., 2019; Salimans et al., 2018; Feydy
et al., 2019) as a valid non-negative discrepancy,

W ε(µ, ν) := Wε(µ, ν)− 1

2
(Wε(µ, µ) +Wε(ν, ν)) . (3)



Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, Marco Cuturi

OT and Convexity. An alternative formulation for
OT is given by the Monge (1781) problem

W 2
2 (µ, ν) = inf

T :T#µ=ν

∫

X
||x− T (x)||2dµ(x) (4)

where # is the push-forward operator, and the optimal
solution T ? is known as the Monge map between µ and
ν. The Brenier theorem (1987) states that if µ has a
density, the Monge map T ? between µ and ν can be
recovered as the gradient of a unique (up to constants)
convex function ψ whose gradient pushes forward µ to
ν. Namely, if ψ : Rd → R is convex and (∇ψ)#µ = ν,
then T ?(x) = ∇ψ(x) and

W 2
2 (µ, ν) =

∫

X
||x−∇ψ(x)||2dµ(x) . (5)

JKO Flows. In their seminal paper, Jordan et al.
(1998) study diffusion processes under the lens of the
OT metric (see also Ambrosio et al., 2006) and intro-
duce a scheme that is now known as the JKO flow:
Starting with ρ0, and given a real-valued energy func-
tion J : P(Rd)→ R driving the evolution of the system,
they define iteratively for t ≥ 0, :

ρt+1 = arg min
ρ∈P2(Rd)

J(ρ) +
1

2τ
W 2(ρ, ρt) , (6)

where τ is a time step parameter. These successive
minimization problems result in a sequence of probabil-
ity measures in P(Rd). The JKO flow can thus be seen
as the analogy of the usual proximal descent scheme,
tailored for probability measures (Santambrogio, 2015,
p.285). Jordan et al. (1998) show that as step size
τ → 0, and for a specific energy J that is the sum of a
linear term and the negentropy, the measures describ-
ing the JKO flow recover solutions to a Fokker-Planck
equation. In this work, following in the footsteps of
more general applications of the JKO scheme (San-
tambrogio, 2017, §4.8), we model dynamics without
necessarily having in mind PDE solutions in mind,
to interpret instead the JKO step as a more general
parametric type of dynamic for probability measures,
exclusively parameterized by the energy J itself.

Convex Neural Architectures. Input convex neu-
ral networks are neural networks ψθ(x) with specific
constraints on the architecture and parameters θ, such
that their output is a convex function of some (or all)
elements of the input x (Amos et al., 2017). We con-
sider in this work fully input convex neural networks
(ICNNs), such that the output is a convex function of
the entire input x. A typical ICNN is a L-layer, fully
connected network such that, for l = 0, . . . , L− 1:

zl+1 = al(W
x
l x+W z

l zl + bl) and ψθ(x) = zL, (7)

where by convention, z0 and W z
0 are 0, al are con-

vex non-decreasing (non-linear) activation functions,
θ = {bl,W z

l ,W
x
l }

L−1
l=0 are the weights and biases of the

neural network, with weight matrices W z
l associated to

latent representations z that have non-negative entries.
Since Amos et al. (2017)’s work, convex neural architec-
tures have been further extended and shown to capture
relevant models despite these constraints (Amos et al.,
2017; Makkuva et al., 2020; Huang et al., 2021). In par-
ticular, Chen et al. (2019) provide a theoretical analysis
that any convex function over a convex domain can be
approximated in sup norm by an ICNN.

3 Proximal Optimal Transport Model

Given T discrete measures µ0, . . . , µT describing the
time evolution of a population, we posit that such
an evolution follows a JKO flow for the free energy
functional J , and assume that energy does not change
throughout the dynamic. We parameterize the energy
J as a neural network with parameters ξ, and fit ξ so
that the JKO flow model matches the observed data.

Fitting parameter ξ with a reconstruction loss requires,
using the chain rule, being able to differentiate the JKO
step’s output w.r.t. ξ (see Fig. 1), and more precisely
provide a way to apply that transpose Jacobian to an
arbitrary vector when using reverse-mode differentia-
tion. To achieve this, we introduce a novel approach
to numerically solve JKO flows using ICNNs (§ 3.1),
resulting in a bilevel optimization problem targeting
the energy Jξ (§ 3.2).

3.1 Reformulation of JKO Flows via ICNNs

Given a starting condition ρt and energy functional
Jξ, the JKO step consists in producing a new measure
ρt+1 implicitly defined as the minimizer of (6). Solving
directly (6) on the space of measures, involves substan-
tial computational costs. Different numerical schemes
have been developed, e.g., based notably on Eulerian
discretization of measures (Carrillo et al., 2021; Ben-
amou et al., 2016b), and/or entropy-regularized optimal
transport (Peyré, 2015). However, these methods are
limited to small dimensions since the cost of discretiz-
ing such spaces grows exponentially. Except for the
Eulerian approach proposed in (Peyré, 2015), obtained
as the fixed point of a Sinkhorn type iteration, the
differentiation would also prove extremely challenging
as a function of the energy parameter ξ.

To reach scalability and differentiability, we build upon
the approach outlined in Benamou et al. (2016b) to
reformulate the JKO scheme as a problem solved over
convex functions, rather than on measures ρ. Effec-
tively, this is equivalent to making a change of variables
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in (6): Introduce a (variable) convex function ψ, and
replace the variable ρ by the variable ∇ψ#ρt. Writing

EJ(ρ, ν) := J(ρ) +
1

2τ
W 2

2 (ρ, ν), (8)

this identity states that, assuming µ and ν being
absolutely continuous w.r.t. Lebesgue measure that

min
ρ
EJ(ρ, ν) = min

ψ convex
FJ(ψ, ν) := EJ(∇ψ#ν, ν) ,

simplifying the Wasserstein term in (8), using the as-
sumption that ψ is convex and Brenier’s theorem (§ 1):

FJ(ψ, ν) = J(∇ψ#ν) +
1

2τ

∫
‖x−∇ψ(x)‖2dν(x) (9)

We pick an ICNN architecture to optimize over a re-
stricted family of convex functions, {ψθ}, and define,
starting from ρ0(ξ) := µ0, the recursive sequence for
t ≥ 0,

ρt+1(ξ) := ∇ψθ?(ξ,ρt(ξ)) # ρt(ξ) , (10)

with θ?(ξ, ρt) defined implicitly using ξ and any ν as

θ?(ξ, ν) := arg min
θ
FJ(ψθ, ν) (11)

Strong Convexity of ψθ. The strong convexity and
smoothness of a potential ψ impacts the regularity
of the corresponding OT map ∇ψ (Caffarelli, 2000;
Figalli, 2010), since one can show that for a `-strongly
convex, L-smooth ψ one has (Paty et al., 2020) that

`‖x− y‖ ≤ ‖∇ψ(x)−∇ψ(y)‖ ≤ L‖x− y‖.

While it is more difficult to enforce the L-smoothness
of a neural network, and more generally its Lipschitz
constants (Scaman and Virmaux, 2018) it is easy to
enforce its strong convexity, by simply adding a term
`‖x‖2/2 to the corresponding potential, or a residual
rescaled term `x to the output ∇ψ(x). This approach
can be used to enforce that the push-forward of the
gradient of an ICNN does not collapse to a single point,
maintaining spatial diversity.

3.2 Learning the Free Energy Functional

The energy function Jξ : P(Rd) → R can be any pa-
rameterized function taking a measures as an input.
Since our model assumes that the observed dynamic is
parameterized entirely by that energy (and the initial
observation ρ0), the more complex this dynamic, the
more complex one would expect the energy Jξ to be.
We focus in this first attempt on linear functions in
the space of measures, that is expectations over ρ of a
vector-input neural network Eξ

Jξ(ρ) :=

∫
Eξ(x)dρ(x), (12)

where Eξ : Rd → R is a multi-layer perceptron (MLP).

Algorithm 1 JKOnet Algorithm.
Input: Dataset D = {{µ0

t}Tt=0, . . . , {µNt }Tt=0} of N
population trajectories, ξ0 energy parameter
initialization, θ0 ICNN parameter initializa-
tion, learning rates lrθ and lrξ, step τ , regular-
izer ε, tolerance α, TeacherForcing flag.

Output: Free energy Jξ explaining underlying popu-
lation dynamics of snapshot data.

1 ξ ← ξ0

2 for {µt}Tt=0 ∈ D do
3 for t← 0 to T − 1 do
4 θ ← θ0

5 if TeacherForcing then
6 ν ← µt

7 else
8 ν ← ρt(ξ)

9 while
∑
i‖∇θiFJξ (θ)‖

2∑
i count(θi)

≥ α do
10 θ ← θ − lrθ ×∇θFJξ,ν(θ)

11 ρt+1(ξ)← ∇ψθ#ν
12 ξ ← ξ − lrξ ×∇ξW ε(ρt+1(ξ), µt+1)

13 return Jξ
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Figure 2: Optimization of the ICNN used in JKO
steps. The bumps correspond to a change in the outer
iteration, the smooth decrease in between correspond
to a single minimization (11) of a time step ti.

Inferring nonlinear energies accounting for population
growth and decline, as well as interactions between
points, using the formalism of (De Bie et al., 2019),
transformers (Vaswani et al., 2017) or set pooling meth-
ods (Edwards and Storkey, 2017; Zaheer et al., 2017),
is an exciting direction for future work.

To address slow convergence and instabilities for dy-
namics with many snapshots, we use teacher forcing
(Williams and Zipser, 1989) to learn Jξ through time.
In those settings, during training, Jξ uses the ground
truth as input instead of predictions from the previous
time step. At test time, we do not use teacher forcing.
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Spiral Trajectory Semicircle TrajectoryQuadratic Potential Styblinski Potential Noisy Semicircle Trajectory

Figure 3: Overview on different tasks including trajectory- and potential-based dynamics.

(a) Quadratic Potential. (b) Styblinski Potential. (c) Semicircle Trajectory
with teacher forcing.
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⇢̂4

(d) Predicted Population Evolution on
Semicircle Trajectory.

Figure 4: Results of JKOnet on Potential- and Trajectory-based Dyanamics. (a)-(c) Contour plots
of the energy functionals Jξ of JKOnet on potential- and trajectory-based population dynamics in different
training settings (i.e., trained with or without teacher forcing § 3.2), color gradients depict the magnitude of Jξ.
(d) Predicted population snapshots (ρ̂1, . . . , ρ̂4) (blue) and data trajectory (µ0, . . . , µ4) (gray).

3.3 Bilevel Formulation of JKOnet

Learning the free energy functional Jξ while solving
each JKO step via an ICNN results in a challenging
bilevel optimization problem. At each time step, the
predicted dynamics are compared to the ground truth
trajectory (µ0, µ1, . . . , µT ) with a Sinkhorn loss (3),

min
ξ

T−1∑

t=0

W ε(ρt+1(ξ), µt+1),

s.t. ρ0(ξ) := µ0,

ρt+1(ξ) := ∇ψθ? # ρt(ξ) ,

θ? := arg min
θ
FJξ(ψθ, ρt(ξ))

(13)

The dependence of the Sinkhorn divergence losses in
(13) on ξ only appears in the fact that the predictions
ρt+1(ξ) are themselves implicitly defined as solving a
JKO step parameterized with the energy Jξ. Learn-
ing Jξ through the exclusive supervision of data ob-
servations requires therefore to differentiate the arg-
minimum of a JKO problem, down therefore through to
the lower-level optimization of the ICNN. We achieve
this by implementing a differentiable double loop in
JAX, differentiating first the Sinkhorn divergence us-
ing the OTT1 package (Cuturi et al., 2022), and then
backpropagating through the ICNN optimization by
unrolling Adam steps (Kingma and Ba, 2014; Metz
et al., 2017; Lorraine et al., 2020).

1github.com/ott-jax/ott

Inner Loop Termination. A question that arises
when defining ρt+1(ξ) lies in the budget of gradient
steps needed or allowed to optimize the parameters θ
of the ICNN, before taking a new gradient step on ξ
in the outer loss. A straightforward approach in JAX
(Bradbury et al., 2018) would be to use a preset number
of iterations with a for loop (jax.lax.scan). We do
observe, however, that the number of iterations needed
to converge in relevant scenarios can vary significantly
with the ICNN architecture and/or the hardness of the
underlying task. We propose to use instead a differen-
tiable fixed-point loop to solve each JKO step up to a de-
sired convergence threshold. We measure convergence
of the optimization of the ICNN via the average norm
of the gradient of the JKO objective w.r.t. the ICNN
parameters θ, i.e.,

∑
i

∥∥∇θiFJξ(θi, ξ)
∥∥

2
/
∑
i count(θi).

We observe that this approach is robust across datasets
and architectures of the ICNN. An exemplary training
curve for the ICNNs updated successively along a time
sequence is shown in Figure 2.

Reverse-Mode Differentiation. The Jacobian
∂ρt+1/∂ξ arising when computing the gradient
∇ξW ε(ρt+1(ξ), µt+1) is obtained by unrolling the while
loop above. The gradient term of the Sinkhorn diver-
gence w.r.t the first argument is given by the Danskin
envelope theorem (Danskin, 1967).

Setting τ in (9). In usual JKO applications, τ needs
to be tuned manually. In this work, the energy Jξ
is not fixed, but trained to fit data. Since we put

https://github.com/ott-jax/ott
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(a) JKOnet on 30% corrupted
data.

Noise Level: 10.0

(b) Forward method on 30%
corrupted data.

(c) Wε (2) vs. noise level on
20% corrupted data.

(d) Wε (2) vs. noise level
on 30% corrupted data.

Figure 5: Comparison between JKOnet and the forward method in settings of increasing noise on corrupted
data on the semicircle trajectory task.

(a) Forward method,
with teacher forcing.

(b) Forward method,
no teacher forcing.

(c) JKOnet,
with teacher forcing.

(d) JKOnet,
no teacher forcing.

Figure 6: Comparison between energy functionals Jξ of the spiral trajectory task (see 3) between the forward
method and JKOnet, trained with or without teacher forcing § 3.2). When using teacher forcing, the forward
method overfits a gap on the lower-right corner of the spiral, outputting a highly irregular energy. When taking
into account the entire trajectory recursively, the Forward method does better overall, but is unable to recover an
energy as precise as that returned by JKOnet.

no constraints on the scaling of Jξ, τ can be set to
1 without loss of generality, as the parameter ξ will
automatically adjust so that the scale of Jξ induces
steps of a relevant length to fit data. This only holds (as
with a usual JKO step) if the trajectories are sampled
regularly. For irregularly spaced time series, τ can
be adapted at train and test time to the spacing of
timestamps (shorter steps requiring larger τ).

4 Evaluation

In the following, we evaluate our method empirically
on a variety of tasks. This includes recovering synthetic
potential- and trajectory-based population dynamics
(see Fig. 3), as well as the evolution of high-dimensional
single-cell populations during a developmental process.

4.1 Synthetic Population Dynamics

Energy-Driven Trajectories. The first task in-
volves evolutions of partial differential equations with
known potential. We hereby consider both convex (e.g.,
the quadratic function J(x) = ‖x‖22) and nonconvex

potentials (e.g., Styblinski function) (see Fig. 3). These
two-dimensional synthetic flows are generated using the
Euler-Maruyama method (Kloeden and Platen, 1992).
For details, see § B.1. To recover the true potential
via JKOnet, we parameterize both energy Jξ and
ICNN ψθ with linear layers (ε = 1.0, τ = 1.0, § C.3).
More details on the architectures can be found in § C.2.
Figure 4a-b demonstrate JKOnet’s ability to recover
convex and nonconvex potentials via energy Jξ.

Arbitrary Trajectories. As a sanity check, we eval-
uate if JKOnet can recover an energy functional Jξ
from trajectories that are not necessarily arising from
the gradient of an energy. Here, a 2-dimensional Gaus-
sian moves along a predefined trajectory with noncon-
stant speed. For details on the data generation, see
§ B.2. We consider a line, a spiral, and movement along
a semicircle (Fig. 3). As visible in Figure 4c (5 snap-
shots), Figure 10b (2 snapshots), and Figure 6c-d (10
snapshots), JKOnet learns energy functionals Jξ that
can then model the ground truth trajectories. These
trajectory-based dynamics are learned using the strong
convexity regularizer (` = 0.8, see § 3.1).
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Table 1: Evaluation of predictive performance w.r.t. the entropy-regularized Wasserstein distance Wε (2) of
JKOnet and the forward method on the embryoid body scRNA-seq data per time step (using 3 runs).

Method Prediction Loss (Wε)

Day 6 to 9 Day 12 to 15 Day 18 to 21 Day 24 to 27

One-Step Ahead
Forward Method 0.187± 0.001 0.162± 0.010 0.185± 0.020 0.203± 0.004
JKOnet 0.133± 0.020 0.133± 0.008 0.172± 0.0130 0.169± 0.004

All-Steps Ahead
Forward Method 0.225± 0.023 0.160± 0.001 0.171± 0.016 0.183± 0.007
JKOnet 0.148± 0.015 0.144± 0.013 0.154± 0.024 0.138± 0.034

Comparison to Forward Methods. Instead of pa-
rameterizing the next iteration ρt+1(ξ) as we do in the
JKOnet formulation (6), the forward scheme states
that the prediction at time t+ 1, ηt+1, can be obtained
as (∇Fξ)#ηt(ξ), where Fξ is any arbitrary neural net-
work, as considered in Hashimoto et al. (2016), namely
η0 := µ0 and subsequently ηt+1(ξ) := (∇Fξ)#ηt(ξ).
Although OT still plays an important role in that pa-
per, since the potential F is estimated by minimizing
a Sinkhorn loss W ε(ηt+1, µt+1), as we do in (13), the
forward displacement operator (∇Fξ)# has no spatial
regularity. Because of that, we observe that the forward
method can get more easily trapped in local minima,
and, in particular, overfits the training data (see § A.2)
as shown by a substantial decrease in performance in
the presence of noise. We demonstrate this in different
scenarios: First, we compare the robustness of both
JKOnet and the forward method to noise. For this, we
corrupt 20% or 30% of the training data on the example
of the semicircle trajectory with different levels of noise
(see Fig. 3). We insist that noise is only added at train-
ing time, as random shifts on both feature dimensions,
while we test on the original semicircle trajectory. In
low noise regimes, where train and test data are similar,
the forward method overfits and performs marginally
better than JKOnet (see Fig. 5c,d). As noise increases,
the performance of the forward method deteriorates
(Fig. 5b), while JKOnet, constrained to move points
with OT maps, is robust (Fig. 5a).

In a second experiment, we evaluate the capacity of
JKOnet and the forward method to extrapolate and
generalize the learned trajectories, e.g., when vertically
translating a line during test time (Fig. 11). Due to the
less constrained energy, the forward method perfectly
resembles the seen trajectory during training, but fails
to extrapolate to shifted test data (Table 3 in § A.2).

Lastly, we compare the resulting energy functionals Fξ
and Jξ of the forward method and JKOnet, respec-
tively, on the spiral trajectory (see Fig. 6). When learn-
ing long and complex population dynamics, teacher
forcing improves training (see additional results in

Fig. 8c-d as well as Fig. 4c-d). While facilitating train-
ing of the forward method in some settings, it like-
wise results in wrong energy functionals Fξ (Fig. 6a).
JKOnet, on the other hand, is able to globally learn
the energy functional Jξ, despite being only exposed
to a one-step history of snapshots during training with
teacher forcing (see Fig. 6c).

4.2 Single-Cell Population Dynamics

We investigate the ability of JKOnet to predict the
evolution of cellular and molecular processes through
time. The advent of single cell profiling technologies
has enabled the generation of high-resolution single-cell
data, making it possible to profile individual cells at
different states in the development. A key difficulty in
learning the evolution of cell populations is that a cell
is (usually) destroyed during a measurement. Thus,
although one is able to collect features at the level
of individual cells, the same cell cannot be measured
twice. Instead, we collect independent samples at each
snapshot, resulting in unaligned distributions across
snapshots, without access to ground-truth single-cell
trajectories. The goal of learning individual dynamics
is to identify ancestor and descendant cells, and get
a better understanding of biological differentiation or
reprogramming mechanisms.

We apply JKOnet to embryoid body single-cell RNA
sequencing (scRNA-seq) data (Moon et al., 2019), de-
scribing the differentiation of human embryonic stem
cells grown as embryoid bodies into diverse cell lineages
over a period of 27 days. During this time, cells are
collected at 5 different snapshots (day 1 to 3, day 6
to 9, day 12 to 15, day 18 to 21, day 24 to 27) and
measured via scRNA-seq (resulting in 15,150 cells). For
details on the dataset and data preprocessing see § B.3.
We run JKOnet as well as the baseline on the first 20
components of a principal component analysis (PCA)
of the 4000 highly differentiable genes (see Fig. 12).
We split the dataset into train and test data (∼ 15%)
and parameterize both energy Jξ and ICNN ψθ with
linear layers (ε = 1.0, τ = 1.0, § C.3).
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(a) PCA embedding of the
embryoid body scRNA-seq data
colored by the snapshot time.
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(b) PCA embedding of the
embryoid body scRNA-seq data

colored by the lineage branch class.
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(c) Distribution of cell lineage branch
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(e) PCA embedding of JKOnet
predictions colored by the lineage

branch class.

Figure 7: Analysis of population dynamics predictions of JKOnet
on the embryoid body scRNA-seq data.

Table 2: Evaluation of cell lineage branch
classification performance of JKOnet and
the forward method on the embryoid body
scRNA-seq data based on the `1-distance of
the histograms and the Hellinger distance
H2 (14) of the predicted branch class distri-
butions (using 3 runs).

Method Cell Lineage Classification
`1 H2

One-Step Ahead
Forward Method 132.27± 5.00 0.026± 0.002
JKOnet 88.80± 0.57 0.016± 0.001

All-Steps Ahead
Forward Method 185.47± 12.18 0.033± 0.002
JKOnet 215.60± 12.53 0.034± 0.004

Capturing Spatio-Temporal Dynamics. Given
the samples from the cell population at day 1 to 3
(µ0), JKOnet learns the underlying spatio-temporal
dynamics giving rise to the developmental evolution of
embryonic stem cells. As no ground truth trajectories
are available in the data, we use distributional distances,
i.e., the entropy-regularized Wasserstein distance Wε

(2) (Flamary et al., 2021), to measure the correctness
of the predictions at each time step. We hereby mea-
sure the Wε discrepancy between data and predictions
for one-step ahead as well as inference of the entire
evolution (all-steps ahead) for each time step ti, see
results in Table 1. JKOnet outperforms the forward
method in terms of Wε (2) distance for both one-step
ahead and all-steps ahead predictions for all time steps.
The performance of both methods is relatively stable
even until day 24 to 27, i.e., the Wε distance does not
significantly grow for future snapshots. We further
visualize the first two principal components of the en-
tire dataset (Fig. 7a) and of JKOnet’s predictions on
the test dataset (∼ 500 cells per snapshot, Fig. 7d).
Visualization of predictions of the forward method can
be found in the Appendix (Fig. 9a).

Capturing Biological Heterogeneity. Besides
measuring the ability of JKOnet to model and predict

the spatio-temporal dynamics of embryonic stem cells,
we would like to guarantee, at a more macroscopic
level, that JKOnet is also able to learn the cell’s dif-
ferentiation into various cell lineages. Embryoid bodies
differentiation covers key aspects of early embryogen-
esis and thus captures the development of embryonic
stem cells (ESC) into the mesoderm, endoderm, neu-
roectoderm, neural crest and others.

Following Moon et al. (2019, Fig. 6, Suppl. Note 4),
we compute lineage branch classes (Fig. 13c) for all
cells based on an initial k-means clustering (k = 30)
in a 10-dimensional embedding space using PHATE, a
non-linear dimensionality reduction method capturing
a denoised representation of both local and global struc-
ture of a dataset (Fig. 13b). For details, see § B.3.2.
We then train a k-nearest neighbor (k-NN) classifier
(k = 5) to infer the lineage branch class based on a
20-dimensional PCA embedding of a cell (classes: ESC:
0, neural crest: 1, neuroectoderm: 2, endoderm: 3,
mesoderm: 4, other: 5).

We analyze the captured lineage branch heterogeneity
of the population predicted by JKOnet and the for-
ward method by estimating the lineage branch class
of each cell using the trained k-NN classifier. The
predicted populations colored by the estimated lin-



Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, Marco Cuturi

eage branch as well as the data with the true lineage
branch labels are visualized in Figure 7e and Figure 7b,
respectively. The corresponding predicted and true
distributions of lineage branch classes are shown in
Figure 7c. To quantify how well JKOnet and the
forward method capture different cell lineage branches,
we compute the `1 distance between the predicted and
true histograms as well as the Hellinger distance

H2(a, b) =
1

2

k∑

i=1

(√
ai/‖a‖1 −

√
bi/‖b‖1

)2

(14)

between both true and predicted class discrete distribu-
tions a and b. Figure 7c and Table 2 demonstrate that
both, JKOnet and the forward method, capture most
lineage branches during the differentiation of embryonic
stem cells. Both methods, however, have difficulties
recovering cells of the neural crest (class 1) and the
endoderm (class 3), lineage branches which are scarcely
represented in the original data. The analysis further
suggests that both methods reduce in performance
w.r.t. biological heterogeneity when predicting the en-
tire trajectory (all-steps ahead), instead of inferring
the next snapshot only (one-step ahead).

5 Conclusion

We proposed JKOnet, a model to infer and predict
the evolution of population dynamics using a proximal
optimal transport scheme, the JKO flow. JKOnet
solves local JKO steps using ICNNs and learns the
energy that parameterizes these steps by fitting JKO
flow predictions to observed trajectories using a fully
differentiable bilevel optimization problem. We vali-
date its effectiveness through experiments on synthetic
potential- and trajectory-based population dynamics,
and observe that it is far more robust to noise than
a more direct Forward approach. We use JKOnet
to infer the developmental trajectories of human em-
bryonic stem cells captured via high-dimensional and
time-resolved single-cell RNAseq. Our analysis also
shows that JKOnet captures diverse cell fates dur-
ing the incremental differentiation of embryonic cells
into multiple lineage branches. Using proximal optimal
transport to model real complex population dynam-
ics thus makes for an exciting avenue of future work.
Extensions could include modeling higher-order interac-
tions among population particles in the energy function,
e.g., cell-cell communication.
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Appendix

A Additional Evaluation

A.1 Synthetic Population Dynamics

JKOnet provides a model to understand complex population dynamics, by inferring the mechanism driving the
population’s time evolution. This is achieved via solving a proximal gradient descent step in the Wasserstein space,
which in our case is approximated using ICNNs. Forward methods, on the other hand, estimate the population
at the next time step t+ 1 by directly moving along the gradient direction. Thus, ηt+1 is inferred via (∇Fξ)#ηt,
where Fξ is any arbitrary neural network (Hashimoto et al., 2016) and ηt the predicted population at time point
t. In Figure 8 we further evaluate the forward method on convex (9a) and non-convex (9b) potential-based
dynamics, as well as trajectory-based dynamics (9c and d). Similarly as in the JKOnet setting, teacher forcing
generally stabilizes and improves training of the energy functional Fξ (see Fig. 8c vs. 8d). Figure 9 further shows
the performance of the forward method on predicting embryoid body developmental trajectories. For further
discussion of the results, see § 4.2.

(a) Quadratic Potential. (b) Styblinski Potential. (c) Semicircle Trajectory
with teacher forcing.

(d) Semicircle Trajectory.

Figure 8: Results of the Forward Method on Potential- and Trajectory-based Dyanamics. (a)-(d)
Contour plots of the energy functionals Fξ of the forward method on potential- and trajectory-based population
dynamics in different training settings (i.e., trained with or without teacher forcing § 3.2), color gradients depict
the magnitude of Fξ.

Day 6 to 9
Day 24 to 27
Day 12 to 15

Day 18 to 21
Day 0 to 3

(a) PCA embedding of predictions of the forward
method colored by the snapshot time.

Neural Crest 
Other
Neuroectoderm

Endoderm Mesoderm
ESC

(b) PCA embedding of predictions of the forward
method colored by the lineage branch class.

Figure 9: Predictions of the forward method on time-resolved embryoid body scRNA-seq data.
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A.2 Comparison to Forward Methods

(a) Forward method. (b) JKOnet.

Figure 10: Comparison between energy functionals Jξ of
the line trajectory task between the forward method and
JKOnet.

Table 3: Comparison of JKOnet to the forward
method for predicting and extrapolating linear
translations (see Figure 10) (using 3 runs).

Method Sinkhorn Distance (W ε)
Validation Test

Forward Method 1.94 ± 0.06 26.10 ± 1.76
JKOnet 2.90 ± 0.37 20.30 ± 0.65

?

Line Trajectory

Figure 11: Out-of-Sample
Predictions along a Line.

In the following, we extend the comparison of JKOnet to the forward method
(see also § 4.1) and further demonstrates, that in the absence of any prior, we
observe that the forward method can get more easily trapped in local minima, and
overfit the training data. Figure 10 shows a simple experiment, in which we want
to learn a population evolution along a line. During evaluation, we shift the line
(see Fig. 11) and evaluate the prediction performance w.r.t. the Sinkhorn distance
(3). Due to the less constrained energy, the forward method perfectly resembles the
seen trajectory during training, but fails to generalize and extrapolate on shifted
test data (see Table 3).

B Datasets

To evaluate JKOnet, we use multiple datasets comprising different examples of
population dynamics. This includes synthetic population dynamics (potential- and trajectory-based dynamics),
whose results are described in § 4.1, as well as single-cell dynamics of a human developmental process, which we
cover in § 4.2.

B.1 Potential-Based Dynamics

In the following, we assume a random diffusion process evolving according to an Îto stochastic difference equation
(SDE) across time

dXt = −∇Φ(Xt)dt+
√

2σ2dBt,

where B(t) is the unit Brownian motion (standard Wiener process with magnitude σ > 0) and the drift is defined
via a potential function Φ(x) : Rd → R. The population-level inference problem on Xt at each t then satisfies the
Fokker-Planck equation with fixed diffusion coefficient

∂ρt
∂t

= div (∇Φ(x)ρt) + σ−1∆ρt

with given initial condition ρ0 = ρ0. We generate the potential-based data by approximating trajectories Xt via
the Euler-Maruyama method (Kloeden and Platen, 1992, § 9.2). Then given a drift (i.e., ∇Φ), one step of the
Euler-Maruyama method is defined as

X = X + drift(X) * dt + np.random.normal(scale=sd , size=X.shape) * np.sqrt(dt).

In our experiments, we consider examples of convex, i.e., the quadratic potential Ψ(x) = ‖x‖22, and nonconvex
potentials, i.e., Styblinski flow Ψ(x) = ‖3x3−32x+5‖22. For the convex potential, we simulate the trajectories using
the Euler-Maruyama method with dt = 0.25 and sd = 0.2 for n = t/dt iterations, where t = 1.0. Trajectories of
the nonconvex potential are generated with dt = 0.06 and sd = 0.4 for n = t/dt iterations, where t = 0.5.
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Figure 12: Proportion of explained variance per principal component of the embryoid body scRNA-seq data after
preprocessing.

B.2 Trajectory-Based Dynamics

Besides population dynamics evolving according to a potential Ψ, we consider population dynamics following
trajectories in space. To achieve this, we generate data by moving a 2-dimensional Gaussian distribution along a
pre-defined trajectory. We compute 2-dimensional trajectories along the coordinates x and y via

x = r * np.cos(theta)
y = r * np.sin(theta)

with radius r and angles theta. The semicircle trajectory is computed using r = 10 and theta = np.linspace(2
* np.pi, 0, 100). For the spiral trajectory, r = np.linspace(10, 1, 100) and theta = np.linspace(2.75
* np.pi, 0, 100) is used. The line trajectory is generated using x = np.linspace(-10, -2.5, 100) and
y = np.zeros(100), where at test time, x is shifted to x = np.linspace(-5, 7.5, 100). Trajectory-based
dynamics are then simulated by moving a 2-dimensional Gaussian distribution along these trajectories. For the
semicircle trajectories, this results in T = 5 snapshots, the spiral-based population dynamics contain T = 10
snapshots, and the line T = 2 snapshots.

B.3 Single-Cell Dynamics

Developmental processes in biology involve tissue and organ development, body axis formation, cell division, and
cell differentiation, e.g., the development of stem cells into functional cell types. An example of such a process is
the differentiation of embryonic stem cells (ESCs) into hematopoietic, cardiac, neural, pancreatic, hepatocytic and
germ lineages. This development can be approximated in vitro using embryoid bodies (EBs) (Martin and Evans,
1975), three-dimensional aggregates of pluripotent stem cells, including ESCs (Shamblott et al., 2009). Recently,
Moon et al. (2019) conducted a scRNA-seq analysis to unveil the developmental trajectories, as well as cellular and
molecular identities through which early lineage precursors emerge from human ESCs. The dataset is available
via Mendeley Data (V6N743H5NG)2. In the following, we describe the preprocessing of the raw scRNA-seq data
as well as the lineage branch analysis extracting the functional cell types emerging in this developmental process.

B.3.1 Data Preprocessing

To preprocess the data, we follow the analysis of Moon et al. (2019) as well as Luecken and Theis (2019). For the
analysis, we use the Python package scanpy (Wolf et al., 2018).

Moon et al. (2019) originally measure approximately 31,000 cells over a 27 days differentiation time course,
comprising gene expression matrices and barcodes, i.e., DNA tags used to identify reads originating from the
same cell. The measured cells are then filtered in a quality control stage, their gene expression levels normalized
and further processed in a feature selection step, where only highly-differentiated genes are selected. The resulting
data is then visualized using standard PCA as well as the dimensionality reduction method PHATE (Moon et al.,
2019), in order to extract biological labels.

The data quality control is based on the number of counts per barcode (count depth), the number of genes per
barcode, and the fraction of counts from mitochondrial genes per barcode. We only keep cells with at least 4000

2Dataset available via https://data.mendeley.com/datasets/v6n743h5ng.

https://data.mendeley.com/datasets/v6n743h5ng
https://data.mendeley.com/datasets/v6n743h5ng
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and at most 10000 counts, as well as more than 550 expressed genes and less than 20% of mitochondrial counts,
as a high fraction is indicative of cells whose cytoplasmic mRNA has leaked out through a broken membrane
(Luecken and Theis, 2019). For the subsequent analysis, we further only keep genes which are expressed in at least
10 genes. After quality control, the dataset consists of 15150 cells and 17945 genes. We normalize each cell by
total counts over all genes and logarithmize the data matrix. We extract 4000 highly variable genes (HVG) using
the 10X genomics preprocessing software Cell Ranger (Zheng et al., 2017) to further reduce the dimensionality
of the dataset and include only the most informative genes. Given the resulting data matrix with 15150 cells
and 4000 genes across 5 different time points, we compute a corresponding low-dimensional embedding using
PCA. Figure 12 shows the proportion of explained variance of each principal component (PC). We use the first
20 PCs for predicting population dynamics using JKOnet and the forward method. This is in alignment with
previous analysis of developmental trajectories, which use 5 (Tong et al., 2020) and 30 PCs (Schiebinger et al.,
2019), respectively.

B.3.2 Lineage Branch Analysis of the Embryoid Body scRNA-Seq Data

To annotate the developmental process and detect lineage branches originating from the differentiation of
embryonic stem cells, we follow the analysis of Moon et al. (2019). Using a 10-dimensional PHATE embedding of
the embryoid body scRNA-seq data (see the first two PHATE components in Fig. 13a), we segment the dataset
into 30 clusters using k-means. PHATE is a non-linear dimensionality reduction method capturing a denoised
representation of both local and global structure of a dataset (Moon et al., 2019). We then assign the resulting
cluster to a lineage subbranch (i - x ), using the following assignment of subbranch to cluster identification (see
Fig. 13b):

i. 2, 20
ii. 5, 19
iii. 9, 11, 23

iv. 3, 6, 8, 13, 15, 21, 24
v. 0, 7, 14, 25, 28
vi. 16, 18, 27

vii. 4, 10, 12, 17, 22
viii. 1
ix. 26

x. 29.

Then, subbranches are summarized to lineage branches using the assignment in Moon et al. (2019, Suppl. Note 4):

ESC. i, ii
Neural Crest. iii

Neuroectoderm. iv
Endoderm. v

Mesoderm. vi, vii
Other. viii, ix, x.

The resulting lineage branch annotation of the embryoid body scRNA-seq data can be found in Figure 13c.

C Experimental Details

In the following, we describe the baselines considered, as well as provide details on network architectures and
hyperparameters used.

C.1 Baselines

We compare JKOnet with explicit integration schemes (forward methods) such as Hashimoto et al. (2016). In our
proximal method, the prediction of the population ρt at the next time step t+ 1 is parameterized via a separate
function (ψθ (10)) and is thus decoupled from the free energy functional Jξ driving the underlying dynamics.
When learning forward methods, however, the prediction is based on the gradient of an energy functional Fξ.
Given a distribution ρt at time t and energy Fξ, the population particles at time t+ 1 are thus predicted via

ρt+1 := (∇Fξ)#ρt.

We parameterize Fξ(x) with a MLP similar as in JKOnet (see C.2.2 for more details). In this work we only
consider linear functions in the space of measures, i.e., expectations over ρ of a vector-input neural network Eξ
(12). In these cases, we can compare JKOnet to the forward methods described above. Considering energies
which take particle interactions into account, however, is not straightforward when using forward methods.

C.2 Network Architectures

In the following, we describe network architectures used in JKOnet to parameterize the Brenier map ψθ
(Section C.2.1) as well as the free energy functional Jξ (Section C.2.2).
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C.2.1 Parameterization of Brenier Map

In the following, we describe the architectural details of the ICNN, parametrizing the Brenier map ψθ. We set
the hidden layer size of W x

l and W z
l (7) to 64 and use 3 hidden layers before the final output layer (L = 4 layer).

Similar to (Makkuva et al., 2020), we use a squared leaky ReLU function with a small positive constant β as
convex activation function for the first layer, i.e., a0(x) = max(βx, x)2, and leaky ReLU al(x) = max(βx, x), l =
1, . . . , L− 1 as monotonically non-decreasing and convex activation functions the remaining layers. Crucial for the
stability of training ICNNs is the choice of weight initialization. We initialize W x

l and W z
l (7) from the standard

normal distribution with standard deviation of 0.1, significantly improving in performance over the initialization
strategies for standard MLPs (He et al., 2016; LeCun et al., 2012).

We further tested the performance of the vanilla ICNN to advanced formulations such as input-augmented ICNNs
(Huang et al., 2021), whereby no difference in performance is evident. In addition, we evaluated the performance
of JKOnet when relaxing the convexity constraints of ψθ by adding a penalty

R (θ) = λ
∑

W z
l ∈θ
‖max (−W z

l , 0)‖2F ,

instead of enforcing its weights W z
l to only take values > 0 as suggested in Makkuva et al. (2020). This, however,

did not increase performance of our method.

C.2.2 Parameterization of Energy Functional

The free energy functional Jξ can take various forms, accounting for diffusion as well as potentials of interaction.
In this work, we concentrate on linear functions in the space of measures (12). We parametrize Eξ as a MLP
with 2 hidden layers of size 64 with softplus activation functions, followed by a one-dimensional output layer.
Future work will involve an extension of the framework to energy functionals covering higher-level interactions
and population growth and decline, i.e., via deep sets (Zaheer et al., 2017) or set transformers (Lee et al., 2019).

C.3 Hyperparameters and Training

For all experiments, we use a batch size of 250. For training the ICNN ψθ, we use the Adam optimizer (Kingma
and Ba, 2014) with learning rate lrθ = 0.01 (β1 = 0.5, β2 = 0.9). The fixed-point loop runs for minimally 50 and
maximally 100 iterations with α = 1. When using a static number of iterations, we set the number of iterations
to 100. We again use the Adam optimizer for learning the energy functional Jξ with learning rate ranging from
lrξ = 0.001 to 0.0001 (β1 = 0.5, β2 = 0.9). In our experiments, we use a constant JKO step size τ = 1.0. For all
experiments, we use ε = 1.0 for the Sinkhorn loss (13). Trajectory-based dynamics are trained with an additional
strong convexity regularizer using ` = 0.8. Both, JKOnet and the forward method, are trained with gradient
clipping with maximum global norm for an update of 10 (Pascanu et al., 2013).

D Reproducability

An implementation of JKOnet can be found on github.com/bunnech/jkonet.

https://github.com/bunnech/jkonet
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Day 6 to 9

Day 24 to 27

Day 12 to 15
Day 18 to 21

Day 0 to 3
Snapshots

(a) PHATE embedding hued by time of snapshot.

(b) PHATE embedding hued by k-Means clustering (k = 30).

(c) PHATE embedding hued by predicted lineage branch.

Figure 13: Analysis of embryoid body scRNA-seq data based on PHATE embedding (Moon et al., 2019). Lineage
branches are determined based on contiguous k-means clusters.
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