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Abstract

Tensors, which provide a powerful and flex-
ible model for representing multi-attribute
data and multi-way interactions, play an in-
dispensable role in modern data science across
various fields in science and engineering. A
fundamental task is tensor completion, which
aims to faithfully recover the tensor from a
small subset of its entries in a statistically and
computationally efficient manner. Harnessing
the low-rank structure of tensors in the Tucker
decomposition, this paper develops a scaled
gradient descent (ScaledGD) algorithm to di-
rectly recover the tensor factors with tailored
spectral initializations, and shows that it prov-
ably converges at a linear rate independent
of the condition number of the ground truth
tensor for tensor completion as soon as the
sample size is above the order of n3/2 ignor-
ing other parameter dependencies, where n
is the dimension of the tensor. To the best
of our knowledge, ScaledGD is the first al-
gorithm that achieves near-optimal statisti-
cal and computational complexities simulta-
neously for low-rank tensor completion with
the Tucker decomposition. Our algorithm
highlights the power of appropriate precon-
ditioning in accelerating nonconvex statisti-
cal estimation, where the iteration-varying
preconditioners promote desirable invariance
properties of the trajectory with respect to
the underlying symmetry in low-rank tensor
factorization.
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1 INTRODUCTION

Tensors (Kolda and Bader, 2009; Sidiropoulos et al.,
2017), which provide a powerful and flexible model for
representing multi-attribute data and multi-way inter-
actions across various fields, play an indispensable role
in modern data science with ubiquitous applications in
image inpainting (Liu et al., 2012), hyperspectral imag-
ing (Dian et al., 2017), collaborative filtering (Xiong
et al., 2010), topic modeling (Anandkumar et al., 2014),
network analysis (Papalexakis et al., 2016), and many
more.

1.1 Low-rank tensor completion

In many problems across science and engineering,
the central task can be regarded as tensor comple-
tion, where the goal is to estimate an order-3 tensor1
X ? ∈ Rn1×n2×n3 from only a small subset of its re-
vealed entries in some index set Ω:

X ?(i1, i2, i3), (i1, i2, i3) ∈ Ω,

where (i1, i2, i3) ∈ Ω if and only if that entry is observed.
The goal is then to recover the tensor X ? from the
observed entries in Ω. A celebrated application is
collaborative filtering, where one aims to predict the
users’ evolving preferences from partial observations
of a tensor composed of ratings for any triplet of user,
item, time (Karatzoglou et al., 2010). Importantly, the
number |Ω| of observations is often much smaller than
the ambient dimension n1n2n3 of the tensor due to
resource or physical constraints, necessitating the need
of exploiting low-dimensional structures to allow for
meaningful recovery.

One of the most widely adopted low-dimensional
structures—which is the focus of this paper—is the
low-rank structure under the Tucker decomposition
(Tucker, 1966). Specifically, we assume that the ground

1For ease of presentation, we focus on 3-way tensors; our
algorithm and theory can be generalized to higher-order
tensors in a straightforward manner.
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truth tensor X ? admits the following Tucker decompo-
sition2

X ? = (U?,V?,W?) · S?,

where S? ∈ Rr1×r2×r3 is the core tensor, and U? ∈
Rn1×r1 , V? ∈ Rn2×r2 , W? ∈ Rn3×r3 are orthonormal
matrices corresponding to the factors of each mode.
The tensorX ? is said to be low-multilinear-rank, or sim-
ply low-rank, when its multilinear rank r = (r1, r2, r3)
satisfies rk � nk, for all k = 1, 2, 3. Compared with
other tensor decompositions such as the CP decomposi-
tion (Kolda and Bader, 2009) and tensor-SVD (Zhang
et al., 2014), the Tucker decomposition offers several
advantages: it allows flexible modeling of low-rank ten-
sor factors with a small number of parameters, fully
exploits the multi-dimensional algebraic structure of
a tensor, and admits efficient and stable computation
without suffering from degeneracy (Paatero, 2000).

1.2 A gradient descent approach?

Recent years remarkable successes have emerged in
developing a plethora of provably efficient algorithms
for low-rank matrix estimation (i.e. the special case
of order-2 tensors) via both convex and nonconvex
optimization. However, unique challenges arise when
dealing with tensors, since they have more sophisticated
algebraic structures (Hackbusch, 2012). For instance,
while nuclear norm minimization achieves near-optimal
statistical guarantees for low-rank matrix estimation
(Candès and Tao, 2010) within a polynomial run time,
computing the nuclear norm of a tensor turns out to be
NP-hard (Friedland and Lim, 2018). Therefore, there
have been a number of efforts to develop polynomial-
time algorithms for tensor recovery, including but not
limited to the sum-of-squares hierarchy (Barak and
Moitra, 2016; Potechin and Steurer, 2017), nuclear
norm minimization with unfolding (Gandy et al., 2011;
Mu et al., 2014), regularized gradient descent (Han
et al., 2020), to name a few; see Tong et al. (2021c) for
further discussions.

In view of the low-rank Tucker decomposition, a natu-
ral approach is to seek to recover the factor quadruple
F? := (U?,V?,W?,S?) directly by optimizing the un-
constrained least-squares loss:

min
F

L(F ) :=
1

2
‖PΩ ((U ,V ,W ) · S −X ?)‖2F , (1)

where PΩ : Rn1×n2×n3 7→ Rn1×n2×n3 is a projec-
tion operator that keeps the observed entries, F :=

2Other popular notation for Tucker decomposition in
the literature includes [[S?;U?,V?,W?]] and S? ×1 U? ×2

V? ×3 W?. In this work, we adopt the same notation
(U?,V?,W?) · S? as in Xia and Yuan (2019) for convenience
of our theoretical developments.

(U ,V ,W ,S) consists of U ∈ Rn1×r1 , V ∈ Rn2×r2 ,
W ∈ Rn3×r3 , and S ∈ Rr1×r2×r3 . Since the factors
have a much lower complexity than the tensor itself due
to the low-rank structure, it is expected that manipu-
lating the factors results in more scalable algorithms in
terms of both computation and storage. This optimiza-
tion problem is however, highly nonconvex, since the
factors are not uniquely determined.3 Nonetheless, one
might be tempted to solve the problem (1) via gradient
descent (GD) and its variants due to their simplicity
and amenability to parallel computing. Despite a flurry
of activities for understanding factored gradient descent
in the matrix setting (Chi et al., 2019), this line of al-
gorithmic thinkings has been severely under-explored
for the tensor setting, especially when it comes to prov-
able guarantees for both sample and computational
complexities. To the best of our knowledge, there is
no provably linearly-convergent algorithm that accom-
modates low-rank tensor completion under the Tucker
decomposition. The question is thus:

Can we develop a factored gradient-based algorithm
that converges fast even for highly ill-conditioned
tensors with near-optimal sample complexities for
tensor completion under the Tucker decomposi-
tion?

In this paper, we provide an affirmative answer to the
above question.

1.3 A new algorithm: scaled gradient descent

We propose a novel algorithm—dubbed scaled gradient
descent (ScaledGD)—to solve the tensor completion
problem. More specifically, at the core it performs the
following iterative updates4 to minimize the loss func-
tion (1), with an additional low-complexity projection
step:

Ut+1 = Ut − η∇UL(Ft)
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − η∇V L(Ft)
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − η∇WL(Ft)
(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1,

(V >t Vt)
−1, (W>

t Wt)
−1
)
·∇SL(Ft),

(2)

where ∇UL(F ), ∇V L(F ), ∇WL(F ), and ∇SL(F ) are
the partial derivatives of L(F ) with respect to the

3(U ,V ,W ) · S = (UQ1,V Q2,WQ3) ·((Q−1
1 ,Q−1

2 ,Q−1
3 ) · S),

for any invertible matrices Qk ∈ Rrk×rk , k = 1, 2, 3.
4The matrix inverses in ScaledGD always exist under

the assumptions of our theory.
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corresponding variables, and

Ŭt := (Wt ⊗ Vt)M1(St)>,
V̆t := (Wt ⊗Ut)M2(St)>,
W̆t := (Vt ⊗Ut)M3(St)>.

(3)

Here,Mk(S) is the matricization of the tensor S along
the k-th mode (see Tong et al. (2021c) for details),
for k = 1, 2, 3, and ⊗ denotes the Kronecker product.
ScaledGD exploits the structures of Tucker decomposi-
tion and possesses many desirable properties:

• Low per-iteration cost: as a preconditioned GD
or quasi-Newton algorithm, ScaledGD updates
the factors along the descent direction of a scaled
gradient, where the preconditioners can be viewed
as the inverse of the diagonal blocks of the Hessian
for the population loss (i.e. tensor factorization).
As the sizes of the preconditioners are proportional
to the multilinear rank, the matrix inverses are
cheap to compute with a minimal overhead and
the overall per-iteration cost is still low and linear
in the time it takes to read the input data.

• Equivariance to parameterization: one crucial
property of ScaledGD is that if we repa-
rameterize the factors by some invertible
transforms (i.e. replacing (Ut,Vt,Wt,St) by
(UtQ1,VtQ2,WtQ3, (Q

−1
1 ,Q−1

2 ,Q−1
3 ) · St) for

some invertible matrices {Qk}3k=1), the entire
trajectory will go through the same reparame-
terization, leading to an invariant sequence of
low-rank tensor updates X t = (Ut,Vt,Wt) · St
regardless of the parameterization being adopted.

• Implicit balancing: ScaledGD optimizes the natu-
ral loss function (1) in an unconstrained manner
without requiring additional regularizations or or-
thogonalizations used in prior literature (Han et al.,
2020; Frandsen and Ge, 2020; Kasai and Mishra,
2016), and the factors stay balanced in an auto-
matic manner—a feature sometimes referred to as
implicit regularization (Ma et al., 2021).

Theoretical guarantees. We investigate the theo-
retical properties of ScaledGD for tensor completion,
which are notably more challenging than the matrix
variant (Tong et al., 2021a). It is demonstrated that
ScaledGD—when initialized properly using appropri-
ate spectral methods —achieves linear convergence
at a rate independent of the condition number of the
ground truth tensor with near-optimal sample complex-
ities. In other words, ScaledGD needs no more than
O(log(1/ε)) iterations to reach ε-accuracy; together
with its low computational and memory costs by oper-
ating in the factor space, this makes ScaledGD a highly

scalable method. More specifically, under the Bernoulli
sampling model, ScaledGD succeeds with high prob-
ability as long as the sample complexity is above the
order of n3/2r5/2κ3 log3 n, where n = maxk=1,2,3 nk,
r = maxk=1,2,3 rk, and κ is a sort of condition number
of X ?. Connected to some well-reckoned conjecture
on computational barriers, it is widely believed that
no polynomial-time algorithm will be successful if the
sample complexity is less than the order of n3/2 for
tensor completion (Barak and Moitra, 2016), which
suggests the near-optimality of the sample complex-
ity of ScaledGD. Compared with existing approaches
(cf. Table 1), ScaledGD provides the first computation-
ally efficient algorithm with a near-linear run time at
the near-optimal sample complexity.
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Figure 1: The iteration complexities of ScaledGD (this
paper) and GD to achieve ‖X −X ?‖F ≤ 10−3‖X ?‖F

with respect to different condition numbers for low-
rank tensor completion with n1 = n2 = n3 = 100,
r1 = r2 = r3 = 5, and the probability of observation
p = 0.1.

It is worth highlighting that, the scaling in ScaledGD
plays a crucial role to achieve a fast linear convergence
rate which is insensitive to the condition number, by
contrasting with the GD algorithm (Han et al., 2020).
Figure 1 illustrates the number of iterations needed to
achieve a relative error ‖X −X ?‖F ≤ 10−3‖X ?‖F for
ScaledGD in comparison to the GD algorithm under
different condition numbers for tensor completion under
the Bernoulli sampling model to illustrate the benefit
of scaling. Clearly, the iteration complexity of GD
deteriorates at a super linear rate with respect to the
condition number κ, while ScaledGD enjoys an iteration
complexity that is independent of κ as predicted by our
theory. Indeed, with a seemingly small modification,
ScaledGD takes merely 17 iterations to achieve the
desired accuracy over the entire range of κ, while GD
takes thousands of iterations even with a moderate
condition number!
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Algorithms Sample complexity Iteration complexity Parameter space
Unfolding + nuclear norm min.

n2r log2 n polynomial tensor(Huang et al., 2015)
Tensor nuclear norm min.

n3/2r1/2 log3/2 n NP-hard tensor(Yuan and Zhang, 2016)
Grassmannian GD

n3/2r7/2κ4 log7/2 n N/A factor(Xia and Yuan, 2019)
ScaledGD

n3/2r5/2κ3 log3 n log 1
ε factor(this paper)

Table 1: Comparisons of ScaledGD with existing algorithms for tensor completion when the tensor is incoherent
and low-rank under the Tucker decomposition. Here, we say that the output X of an algorithm reaches ε-accuracy,
if it satisfies ‖X −X ?‖F ≤ εσmin(X ?). Here, κ and σmin(X ?) are the condition number and the minimum singular
value of X ? (defined in Section 2.1). For simplicity, we let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk, and assume
r ∨ κ� nδ for some small constant δ to keep only terms with dominating orders of n.

1.4 Comparison with Tong et al. (2021a)

While the proposed ScaledGD algorithm is inspired
by its matrix variant in Tong et al. (2021a) by utiliz-
ing the same principle of preconditioning, the exact
form of preconditioning for tensor factorization needs
to be designed carefully and is not trivially obtain-
able. There are many technical novelty in our analysis
compared to Tong et al. (2021a). In the matrix case,
the low-rank matrix is factorized as LR>, and only
two factors are needed to be estimated. In contrast,
in the tensor case, the low-rank tensor is factorized
as (U ,V ,W ) · S, and four factors are needed to be
estimated, leading to a much more complicated non-
convex landscape than the matrix case. In fact, when
specialized to matrix completion, our ScaledGD algo-
rithm does not degenerate to the same matrix variant
in Tong et al. (2021a), due to overparamterization and
estimating four factors at once, but still maintains the
near-optimal performance guarantees. In addition, the
tensor algebra possesses unique algebraic properties
that requires much more delicate treatments in the
analysis. For the local convergence, we establish new
concentration properties regarding tensors, which are
more challenging compared to the matrix counterparts;
for spectral initialization, we establish the effectiveness
of a second-order spectral method in the Tucker setting
for the first time.

Due to space limits, we refer detailed related work
and tensor algebra as well as notation to Tong et al.
(2021c).

2 MAIN RESULTS

2.1 Models and assumptions

We assume the ground truth tensor X ? =
[X ?(i1, i2, i3)] ∈ Rn1×n2×n3 admits the following

Tucker decomposition

X ?(i1, i2, i3) =

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

U?(i1, j1)V?(i2, j2)

W?(i3, j3)S?(j1, j2, j3), 1 ≤ ik ≤ nk, (4)

or more compactly,

X ? = (U?,V?,W?) · S?, (5)

where S? = [S?(j1, j2, j3)] ∈ Rr1×r2×r3 is the core
tensor of multilinear rank r = (r1, r2, r3), and U? =
[U?(i1, j1)] ∈ Rn1×r1 , V? = [V?(i2, j2)] ∈ Rn2×r2 ,
W? = [W?(i3, j3)] ∈ Rn3×r3 are the factor matrices of
each mode. LettingMk(X ?) be the mode-k matriciza-
tion of X ?, we have

M1(X ?) = U?M1(S?)(W? ⊗ V?)
>, (6a)

M2(X ?) = V?M2(S?)(W? ⊗U?)
>, (6b)

M3(X ?) = W?M3(S?)(V? ⊗U?)
>. (6c)

It is straightforward to see that the Tucker
decomposition is not uniquely specified:
for any invertible matrices Qk ∈ Rrk×rk ,
k = 1, 2, 3, one has (U?,V?,W?) · S? =
(U?Q1,V?Q2,W?Q3) ·((Q−1

1 ,Q−1
2 ,Q−1

3 ) · S?). We
shall fix the ground truth factor such that U?, V? and
W? are orthonormal matrices consisting of left singular
vectors of each mode. Furthermore, the core tensor S?
is related to the singular values in each mode as

Mk(S?)Mk(S?)> = Σ2
?,k, k = 1, 2, 3, (7)

where Σ?,k := diag[σ1(Mk(X ?)), . . . , σrk(Mk(X ?))]
is a diagonal matrix whose diagonal elements are
the nonzero singular values of Mk(X ?) and rk =
rank(Mk(X ?)) for k = 1, 2, 3.
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Key parameters. Of particular interest is a sort of
condition number of X ?, which plays an important role
in governing the computational efficiency of first-order
algorithms.
Definition 1 (Condition number). The condition num-
ber of X ? is defined as

κ :=
σmax(X ?)

σmin(X ?)
=

maxk=1,2,3 σ1(Mk(X ?))

mink=1,2,3 σrk(Mk(X ?))
. (8)

Another parameter is the incoherence parameter, which
is crucial in determining the well-posedness of low-rank
tensor completion.
Definition 2 (Incoherence). The incoherence parame-
ter of X ? is defined as

µ := max

{
n1

r1
‖U?‖22,∞,

n2

r2
‖V?‖22,∞,

n3

r3
‖W?‖22,∞

}
.

(9)

Roughly speaking, a small incoherence parameter en-
sures that the energy of the tensor is evenly distributed
across its entries, so that a small random subset of its
elements still reveals substantial information about the
latent structure of the entire tensor.

2.2 A warm-up case: ScaledGD for tensor
factorization

To shed light on the design insights, we now introduce
the ScaledGD algorithm for the tensor factorization
problem, which aims to minimize the following loss
function:

L(F ) :=
1

2
‖(U ,V ,W ) · S −X ?‖2F. (11)

Recalling the update rule (2), ScaledGD proceeds as

Ut+1 = Ut − ηM1 (X t −X ?) Ŭ
>
t

(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (X t −X ?) V̆
>
t

(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − ηM3 (X t −X ?) W̆
>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1U>t ,

(V >t Vt)
−1V >t , (W

>
t Wt)

−1W>
t

)
· (X t −X ?) ,

(12)

where X t = (Ut,Vt,Wt) · St, with Ŭt, V̆t, and W̆t

defined in (3).

ScaledGD as a quasi-Newton algorithm. One
way to think of ScaledGD is through the lens of quasi-
Newton methods. We can equivalently rewrite the
ScaledGD update (12) as

vec(Ft+1) = vec(Ft)− ηH−1
t ∇vec(F )L(Ft), (13)

where the diagonal blocks of the Hessian of the loss
function (11) are given precisely as

Ht := diag
[
∇2

vec(U),vec(U)L(Ft), ∇2
vec(V ),vec(V )L(Ft),

∇2
vec(W ),vec(W )L(Ft), ∇2

vec(S),vec(S)L(Ft)
]

= diag
[
(Ŭ>t Ŭt)⊗ In1

, (V̆ >t V̆t)⊗ In2
,

(W̆>
t W̆t)⊗ In3

, (W>
t Wt)⊗ (V >t Vt)⊗ (U>t Ut)

]
.

Therefore, by vectorization of (12), ScaledGD can be
regarded as a quasi-Newton method where the pre-
conditioner is designed as the inverse of the diagonal
approximation of the Hessian.

2.3 ScaledGD for tensor completion

Assume that we have observed a subset of entries in
X ?, given as Y = PΩ(X ?), where PΩ : Rn1×n2×n3 7→
Rn1×n2×n3 is a projection operator such that

[PΩ(X ?)](i1, i2, i3) =

{
X ?(i1, i2, i3), if (i1, i2, i3) ∈ Ω,

0, otherwise.
(14)

Here, Ω is generated according to the Bernoulli obser-
vation model in the sense that

(i1, i2, i3) ∈ Ω i.i.d. with prob. p ∈ (0, 1]. (15)

The goal of tensor completion is to recover the tensor
X ? from its partial observation PΩ(X ?). This can be
achieved by minimizing the loss function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2p

∥∥PΩ

(
(U ,V ,W ) · S

)
−Y

∥∥2

F
.

(16)

Preparation: a scaled projection operator. To
guarantee faithful recovery from partial observations,
the underlying low-rank tensor X ? needs to be incoher-
ent (cf. Definition 2) to avoid ill-posedness. One typical
strategy, frequently employed in the matrix setting, to
ensure the incoherence condition is to trim the rows
of the factors (Chen and Wainwright, 2015) after the
gradient update. For ScaledGD, this needs to be done
in a careful manner to preserve the equivariance with
respect to invertible transforms. Motivated by Tong
et al. (2021a), we introduce the scaled projection as
follows,

(U ,V ,W ,S) = PB(U+,V+,W+,S+), (17a)

where B > 0 is the projection radius, and

U(i1, :) =

(
1 ∧ B√

n1‖U+(i1,:)Ŭ>
+ ‖2

)
U+(i1, :);

V (i2, :) =

(
1 ∧ B√

n2‖V+(i2,:)V̆ >
+ ‖2

)
V+(i2, :); (17b)



Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Completion

Algorithm 1 ScaledGD for low-rank tensor completion
Input parameters: step size η, rank r = (r1, r2, r3), probability of observation p, projection radius B.
Spectral initialization: Let U+ be the top-r1 eigenvectors of Poff-diag(p−2M1(Y)M1(Y)>), and similarly
for V+,W+, and S+ = p−1(U>+ ,V

>
+ ,W>

+ ) · Y . Set (U0,V0,W0,S0) = PB
(
U+,V+,W+,S+

)
.

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Ut+ = Ut −
η

p
M1

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
Ŭt

(
Ŭ>t Ŭt

)−1
,

Vt+ = Vt −
η

p
M2

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
V̆t
(
V̆ >t V̆t

)−1
,

Wt+ = Wt −
η

p
M3

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
W̆t

(
W̆>

t W̆t

)−1
,

St+ = St −
η

p

(
(U>t Ut)

−1U>t , (V
>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
·
(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
,

(10)

where Ŭt, V̆t, and W̆t are defined in (3). Set (Ut+1,Vt+1,Wt+1,St+1) = PB(Ut+,Vt+,Wt+,St+).

W (i3, :) =

(
1 ∧ B√

n3‖W+(i3,:)W̆>
+ ‖2

)
W+(i3, :);

S = S+,

for 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, and 1 ≤ i3 ≤ n3.
Here, Ŭ+, V̆+, W̆+ are analogously defined in (3) us-
ing (U+,V+,W+,S+). As can be seen, each row of U+

(resp. V+ and W+) is scaled by a scalar based on the
row `2 norms of U+Ŭ

>
+ (resp. V+V̆

>
+ and W+W̆

>
+ ),

which is the mode-1 (resp. mode-2 and mode-3) ma-
tricization of the tensor (U+,V+,W+) · S+. It is a
straightforward observation that PB can be computed
efficiently.

Algorithm description. With the scaled projection
PB(·) defined in hand, we are in position to describe the
details of the proposed ScaledGD algorithm, summa-
rized in Algorithm 1. It consists of two stages: spectral
initialization followed by iterative refinements using the
scaled projected gradient updates in (10). It is worth
emphasizing that all the factors are updated simulta-
neously, which can be achieved in a parallel manner to
accelerate run time.

For spectral initialization, we take advantage of the
subspace estimators proposed in Cai et al. (2021) for
highly unbalanced data matrices. Specifically, we esti-
mate the subspace spanned by U? by that spanned by
top-r1 eigenvectors U+ of the diagonally-deleted Gram
matrix of p−1M1(Y):

Poff-diag(p−2M1(Y)M1(Y)>),

where Poff-diag(M) sets the diagonal entries of the ma-
trix M as zeros; the other two factors V+ and W+ are
estimated similarly. The core tensor is then estimated
via

S+ = p−1(U>+ ,V
>

+ ,W>
+ ) · Y .

To ensure the initialization is incoherent, we pass it
through the scaled projection operator to obtain the
final initial estimate:

(U0,V0,W0,S0) = PB
(
U+,V+,W+,S+

)
.

2.4 Theoretical guarantees

The following theorem establishes the performance
guarantee of ScaledGD for tensor completion, as soon
as the sample size is sufficiently large.
Theorem 1 (ScaledGD for tensor completion). Sup-
pose that X ? is µ-incoherent, and that p satisfies

pn1n2n3 & ε−2
0 µ3/2r5/2κ3√n1n2n3 log3 n

+ε−4
0 µ3r4κ6n log5 n

for some small constant ε0 > 0. Set the projection
radius as B = CB

√
µrσmax(X ?) for some constant

CB ≥ (1 + ε0)3. If the step size obeys 0 < η ≤ 2/5,
then with probability at least 1− c1n−c2 for universal
constants c1, c2 > 0, for all t ≥ 0, the iterates of
Algorithm 1 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).

Theorem 1 ensures that ScaledGD finds an ε-accurate
estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤ εσmin(X ?),
in at most O(log(1/ε)) iterations, which is independent
of the condition number of X ?, as long as the sample
complexity is large enough. Assuming that µ = O(1)
and r ∨ κ � nδ for some small constant δ to keep
only terms with dominating orders of n, the sample
complexity simplifies to

pn1n2n3 & n3/2r5/2κ3 log3 n,

which is near-optimal in view of the conjecture that
no polynomial-time algorithm will be successful if the
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sample complexity is less than the order of n3/2 for ten-
sor completion (Barak and Moitra, 2016). Compared
with existing algorithms collected in Table 1, ScaledGD
is the first algorithm that simultaneously achieves a
near-optimal sample complexity and a near-linear run
time complexity for tensor completion in a provable
manner. In particular, while Yuan and Zhang (2016);
Xia and Yuan (2019) achieve a sample complexity com-
parable to ours, the tensor nuclear norm minimization
algorithm in Yuan and Zhang (2016) is NP-hard to
compute, and the Grassmannian GD algorithm in Xia
and Yuan (2019) does not offer an explicit iteration
complexity, except that each iteration can be computed
in polynomial time.

3 ANALYSIS

In this section, we provide some intuitions and sketch
the proof of our main theorem. Before continuing,
we highlight an important property of ScaledGD: if
starting from an equivalent estimate

Ũt = UtQ1, Ṽt = VtQ2, W̃t = WtQ3,

S̃t = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St

for some invertible matrices5 Qk ∈ GL(rk) (i.e. replac-
ing Ut by UtQ1, and so on), by plugging the above
estimate in (2) it is easy to check that the next iter-
ate of ScaledGD is covariant with respect to invertible
transforms, meaning

Ũt+1 = Ut+1Q1, Ṽt+1 = Vt+1Q2, W̃t+1 = Wt+1Q3,

S̃t+1 = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St+1.

In other words, ScaledGD produces an invariant se-
quence of low-rank tensor estimates

X t = (Ut,Vt,Wt) · St = (Ũt, Ṽt, W̃t) · S̃t

regardless of the representation of the tensor factors
with respect to the underlying symmetry group. This
is one of the key reasons behind the insensitivity of
ScaledGD to ill-conditioning and factor imbalance.

A key scaled distance metric. To track the
progress of ScaledGD throughout the entire trajec-
tory, one needs a distance metric that properly takes
account of the factor ambiguity due to invertible trans-
forms, as well as the effect of scaling. To that end, we
define the scaled distance between factor quadruples
F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) as

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F

5GL(r) denotes the set of invertible matrices in Rr×r.

+ ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F
+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
. (18)

The distance is closely related to the `2 distances
between the corresponding tensors. In fact, it can
be shown that as long as F and F? are not too far
apart, e.g. dist(F ,F?) ≤ 0.2σmin(X ?), it holds that
dist(F ,F?) � ‖(U ,V ,W ) · S−X ?‖F in the sense that
(see Tong et al. (2021c) for the proof):

1
3 ‖(U ,V ,W ) · S −X ?‖F ≤ dist(F ,F?) ≤

(
√

2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .

3.1 Proof outline of Theorem 1

Armed with the insights from the tensor factorization
case, we now provide a proof outline of our main the-
orem on tensor completion, which can be viewed as
perturbations of tensor factorization with incomplete
measurements, combined with properly designed ini-
tialization schemes. We start with the guarantee for
the spectral initialization for tensor completion.
Lemma 1 (Initialization for tensor completion). Sup-
pose that X ? is µ-incoherent, and that p satisfies

pn1n2n3 & ε−2
0 µ3/2r5/2κ2√n1n2n3 log3 n

+ε−4
0 µ2r4κ4n log5 n

for some small constant ε0 > 0. Then with overwhelm-
ing probability (i.e. at least 1 − c1n−c2), the spectral
initialization before projection F+ = (U+,V+,W+,S+)
in Algorithm 1 satisfies dist(F+,F?) ≤ ε0σmin(X ?).

Under a suitable sample size condition, Lemma 1 guar-
antees that dist(F+,F?) ≤ ε0σmin(X ?) for some small
constant ε0. To proceed, we need to know what would
happen for the spectral estimate F0 = PB

(
F+

)
af-

ter projection. In fact, the scaled projection is non-
expansive w.r.t. the scaled distance. More importantly,
the output is guaranteed to be incoherent. Both prop-
erties are stated in the following lemma.
Lemma 2 (Properties of scaled projection). Suppose
that X ? is µ-incoherent, and dist(F+,F?) ≤ εσmin(X ?)
for some ε < 1. Set B = CB

√
µrσmax(X ?) for some

constant CB ≥ (1 + ε)3, then F = (U ,V ,W ,S) :=
PB(F+) satisfies the non-expansiveness property

dist(F ,F?) ≤ dist(F+,F?),

and the incoherence condition
√
n1‖UŬ>‖2,∞ ∨

√
n2‖V V̆ >‖2,∞

∨
√
n3‖WW̆>‖2,∞ ≤ B. (19)

Now we are ready to state the following lemma that en-
sures the linear contraction of the iterative refinements
given by the ScaledGD updates.
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Lemma 3 (Local refinements for tensor completion).
Suppose that X ? is µ-incoherent, and that p satisfies

pn1n2n3 & µ3/2r2κ3√n1n2n3 log3 n+ µ3r4κ6n log5 n.

Under an event E which happens with over-
whelming probability, if the t-th iterate satisfies
dist(Ft,F?) ≤ εσmin(X ?) for some small constant ε,
then ‖(Ut,Vt,Wt) · St − X ?‖F ≤ 3 dist(Ft,F?). In
addition, if the t-th iterate satisfies the incoherence
condition

√
n1‖UtŬ

>
t ‖2,∞ ∨

√
n2‖VtV̆ >t ‖2,∞

∨
√
n3‖WtW̆

>
t ‖2,∞ ≤ B,

with B = CB
√
µrσmax(X ?) for some constant CB ≥

(1+ε)3, then the (t+1)-th iterate of Algorithm 1 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition
√
n1‖Ut+1Ŭ

>
t+1‖2,∞ ∨

√
n2‖Vt+1V̆

>
t+1‖2,∞

∨
√
n3‖Wt+1W̆

>
t+1‖2,∞ ≤ B.

By combining Lemma 1 and Lemma 2, we can ensure
that the spectral initialization F0 = PB(F+) satisfies
the conditions required in Lemma 3, which further
enables us to repetitively apply Lemma 3 to finish the
proof of Theorem 1. The proofs to these lemmas can
be found in Tong et al. (2021c).

4 NUMERICAL EXPERIMENTS

We present several demonstrative numerical experi-
ments of ScaledGD, with codes available at

https://github.com/Titan-Tong/ScaledGD.

The simulations are performed in Matlab with a 3.6
GHz Intel Xeon Gold 6244 CPU. Due to space limits,
more experiments are provided in Tong et al. (2021c).

We illustrate the numerical performance of ScaledGD
for tensor completion to corroborate our findings, espe-
cially its computational advantage over the regularized
GD algorithm (Han et al., 2020) that is closest to our
design. Their algorithm was originally proposed for
tensor regression, nevertheless, it naturally applies to
tensor completion and exhibits similar results. Since
the scaled projection does not visibly impact the per-
formance, we implement ScaledGD without performing
the projection. Also, we empirically find that the reg-
ularization used in Han et al. (2020) has no visible
benefits, hence we implement GD without the regular-
ization. For simplicity, we set n1 = n2 = n3 = n, and
r1 = r2 = r3 = r. Each entry of the tensor is observed
i.i.d. with probability p ∈ (0, 1].

Phase transition of ScaledGD. We construct the
ground truth tensor X ? = (U?,V?,W?) · S? by gen-
erating U?, V? and W? as random orthonormal ma-
trices, and the core tensor S? composed of i.i.d. stan-
dard Gaussian entries, i.e. S?(j1, j2, j3) ∼ N (0, 1) for
1 ≤ jk ≤ r, k = 1, 2, 3. For each set of parameters, we
run 100 random tests and count the success rate, where
the recovery is regarded as successful if the recovered
tensor has a relative error ‖X T −X ?‖F/‖X ?‖F ≤ 10−3.
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Figure 2: The success rate of ScaledGD with respect to
the scaled sample size for tensor completion with r = 5,
when the core tensor is composed of i.i.d. standard
Gaussian entries, for various tensor size n.

Figure 2 illustrates the success rate with respect to the
(scaled) sample size for different tensor sizes n, which
implies that the recovery is successful when the sample
size is moderately large.

Comparison with GD. We next compare the per-
formance of ScaledGD with GD. For a fair comparison,
both ScaledGD and GD start from the same spectral
initialization, and we use the following update rule of
GD as

Ut+1 = Ut − ησ−2
max(X ?)∇UL(Ft),

Vt+1 = Vt − ησ−2
max(X ?)∇V L(Ft),

Wt+1 = Wt − ησ−2
max(X ?)∇WL(Ft),

St+1 = St − η∇SL(Ft).

(20)

Throughout the experiments, we used the ground truth
value σmax(X ?) in running (20), while in practice, this
parameter needs to estimated; to put it differently, the
step size of GD is not scale-invariant, whereas the step
size of ScaledGD is.

To ensure the ground truth tensor X ? =
(U?,V?,W?) · S? has a prescribed condition number

https://github.com/Titan-Tong/ScaledGD
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κ, we generate the core tensor S? ∈ Rr×r×r accord-
ing to S?(j1, j2, j3) = σj1/

√
r if j1 + j2 + j3 ≡ 0

(mod r) and 0 otherwise, where {σj1}1≤j1≤r take val-
ues spaced equally from 1 to 1/κ. It then follows that
σmax(X ?) = 1, σmin(X ?) = 1/κ, and the condition
number of X ? is exactly κ.
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Figure 3: The relative errors of ScaledGD and GD with
respect to the iteration count and run time (in seconds)
under different condition numbers κ = 1, 2, 5, 10 for
tensor completion with n = 100, r = 5, and p = 0.1.

Figure 3 compares the relative errors of ScaledGD and
GD for tensor completion with respect to the iteration
count and run time (in seconds) under different condi-
tion numbers κ = 1, 2, 5, 10. This experiment verifies
that ScaledGD converges rapidly at a rate independent
of the condition number, and matches the fastest rate
of GD with perfect conditioning κ = 1. In contrast, the
convergence rate of GD deteriorates quickly with the
increase of κ even at a moderate level. The advantage
of ScaledGD carries over to the run time as well, since
the scaled gradient only adds a negligible overhead to
the gradient computation.

5 DISCUSSIONS

This paper develops a scaled gradient descent algorithm
over the factor space for low-rank tensor completion
with provable sample and computational guarantees,
leading to a highly scalable approach especially when
the ground truth tensor is ill-conditioned and high-
dimensional. Several future directions are worth ex-
ploring, which we briefly discuss below.

• Preconditioning for other tensor decompositions.
Preconditioning will likely also accelerate vanilla
gradient descent for low-rank tensor estimation
using other decomposition models, such as CP
decomposition (Cai et al., 2019), which is worth
investigating.

• Entrywise error control for tensor completion. In
this paper, we focused on controlling the `2 error
of the reconstructed tensor in tensor completion,
whereas another strong form of statistical guar-
antees deals with the `∞ error, as done in Ma
et al. (2019) for matrix completion and in Cai
et al. (2019) for tensor completion with CP decom-
position. It is hence of interest to develop similar
strong entrywise error guarantees of ScaledGD for
tensor completion with Tucker decomposition.

• Stable and robust low-rank tensor estimation. In
practice, the observations are corrupted by noise
and even outliers (Li et al., 2020), therefore, it is
necessary to examine the stability and robustness
of ScaledGD in more depths, such as by pinning
down the statistical error rates and extending the
scaled subgradient method in Tong et al. (2021b)
to the tensor case.
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