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Abstract

The property of conformal predictors to guarantee the required accuracy rate makes this
framework attractive in various practical applications. However, this property is achieved
at a price of reduction in precision. In the case of conformal classification, the system can
output multiple class labels instead of one. It is also known, that the choice of nonconfor-
mity function has a major impact on the efficiency of conformal classifiers. Recently, it was
shown that different model-agnostic nonconformity functions result in conformal classifiers
with different characteristics. For a Neural Network-based conformal classifier, the inverse
probability (or hinge loss) allows minimizing the average number of predicted labels, and
margin results in a larger fraction of singleton predictions. In this work, we aim to further
extend this study. We perform an experimental evaluation using 8 different classification
algorithms and discuss when the previously observed relationship holds or not. Addition-
ally, we propose a successful method to combine the properties of these two nonconformity
functions.

Keywords: Conformal classification, Nonconformity functions, Efficiency

1. Introduction

Conformal prediction (Shafer and Vovk, 2008; Vovk et al., 2005) is a framework that pro-
duces predictions with accuracy guarantees. For a given value of significance level ε ∈ (0, 1),
a conformal predictor is guaranteed to make exactly ε errors in the long run. This is achieved
at a price of a reduction in prediction precision. Instead of predicting a single class label,
in the case of classification, or a single number, in the case of regression, a conformal pre-
dictor outputs a range prediction, that is a set of class labels or an interval that contains
the true value with probability 1 − ε. Construction of a conformal predictor with ε = 0 is
a trivial task. It is enough to output all class labels or an unbounded interval in case of
classification and regression respectively. However, such a predictor is of low value, that is,
it is not efficient. The question thus is how to guarantee the given level of error rate (ε) by
producing the smallest prediction regions. This property is achieved via the definition of a
proper nonconformity function that succeeds to measure the strangeness or nonconformity
of every data instance (Shafer and Vovk, 2008).

In the case of classification, the efficiency of a conformal predictor is often measured
in terms of 2 metrics: avgC, which stands for the average number of predicted class labels
per instance, and oneC, which stands for the fraction of produced singleton predictions.
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Naturally, one would want to minimize avgC and maximize oneC at the same time. A
recent study by Johansson et al. (2017) showed that the usage of margin as a nonconformity
function results in higher oneC and the usage of inverse probability (also known as hinge)
results in lower values of avgC1. The authors used 21 datasets to demonstrate the statistical
significance of this relationship. However, this was done for the case where the baseline
classifiers were either a single artificial neural network (ANN) or an ensemble of bagged
ANNs. In this paper, we aim to extend this study with the following contributions:

1. We study if the same pattern is present when other classification algorithms are used.
Our experimental results with 8 different classifiers and 9 publicly available datasets
show that although the previously observed pattern does hold in the majority of the
cases, the choice of the best nonconformity function can depend on the analyzed
dataset and the chosen underlying classification model. For example, k-nearest neigh-
bours classifier performs best with margin. Margin is also the best choice in case of
balance dataset regardless of the chosen classification model.

2. We propose a method to combine both nonconformity functions. Our experimental
evaluation shows that this combination always results in better or the same perfor-
mance as inverse probability, thus allowing to increase the value of oneC and decrease
the value of avgC. In some cases, the proposed combination outperforms both inverse
probability and margin in terms of both efficiency metrics.

3. We discuss several aspects of how the accuracy of the baseline classifier can impact
the performance of the resulting conformal predictor. In particular, if the baseline
prediction accuracy is very good, then nonconformity function has no impact on the
efficiency. Also, the accuracy of the baseline classifier strongly correlates with the
fraction of singleton predictions that contain the true label. In this way, the accuracy
can be an indicator of the usefulness of the oneC metric.

The rest of the paper is organized as follows. In Section 2 we discuss related work.
Section 3 is dedicated to the description of the proposed strategy to combine advantages of
margin and inverse probability nonconformity functions. Section 4 and Section 5 present
the experimental setup and results. Finally, we summarize our work in Section 6.

2. Related work

Conformal prediction is a relatively new paradigm developed at the beginning of 2000,
see Linusson (2021) for an overview. It was originally developed for transductive setting
(Vovk, 2013). The latter is efficient in terms of data usage but is also computationally
expensive. Recent studies, including the current one, focus on Inductive Conformal Pre-
diction (ICP) (Papadopoulos, 2008). ICP trains the learning model only once, however a
part of the training dataset should be put aside for model calibration using a predefined
nonconformity function.

There are two groups of nonconformity functions: model-agnostic and model-dependent.
Model-dependent nonconformity functions are defined based on the underlying predic-
tion model. Such functions can depend on the distance to the separating hyperplane in

1. In the rest of the text, we will refer to this relationship as a baseline or original pattern (relationship).
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SVM (Balasubramanian et al., 2009), or the distance between instances in KNN classi-
fier (Proedrou et al., 2002). These nonconformity functions are model-specific, thereby, one
can not draw generalized conclusions about their behaviour. In a recent study by Johansson
et al. (2017) it was shown that model-agnostic nonconformity functions do have some general
characteristics. Inverse probability nonconformity function, also known as hinge, is defined
by the equation ∆ [h(xi), yi] = 1− P̂h(yi|xi), where xi is the analyzed data instance, yi is a
tentative class label, and P̂h(yi|xi) is the probability assigned to this label given the instance
xi by the underlying classifier h. It was shown that conformal classifiers based on this met-
ric tend to generate prediction regions of lower average length (avgC). At the same time,
margin nonconformity function results in a larger fraction of singleton predictions (oneC).
The latter is defined by the following formula ∆ [h(xi), yi] = maxy 6=yi P̂h(y|xi)− P̂h(yi|xi),
and it measures how different is the probability of the label yi from the probability of an-
other most probable class label. The experimental evaluations in Johansson et al. (2017),
however, were performed for a limited number of underlying classification models: ANN
and ensemble of bagged ANNs. To the best of our knowledge, there are no research works
dedicated to the validity analysis of the discovered pattern in the case of other classifica-
tion algorithms. This piece of research is missing to draw global conclusions about the
characteristics of these nonconformity functions.

Combining characteristics of both margin and inverse probability nonconformity func-
tions is a tempting idea. In recent years many authors dedicated their efforts to understand
how one can generate more efficient conformal predictions through a combination of sev-
eral conformal predictors. Yang and Kuchibhotla (2021) and Toccaceli and Gammerman
(2019) studied how to aggregate conformal predictions based on different training algo-
rithms. Various strategies were proposed for such combination: via p-values (Toccaceli and
Gammerman, 2017), a combination of monotonic conformity scores (Gauraha and Spjuth,
2018), majority voting (Cherubin, 2019), out-of-bag calibration (Linusson et al., 2020), or
via established results in classical statistical hypothesis testing (Toccaceli, 2019). The chal-
lenge of every combination of conformal predictors is to retain validity, that is to achieve
the empirical error rate not exceeding the predefined value ε. This property is usually
demonstrated experimentally and some authors provide guidelines on which values of sig-
nificance levels should be used for individual conformal algorithms to achieve the desired
validity of the resulting combination. As opposed to these general approaches, in Section 3
we propose a procedure that is based on the properties of margin and inverse probability.
Through experiments, we show that this approach allows combining their characteristics,
higher oneC and lower avgC, and retains the validity at the same time.

3. Combination of inverse probability and margin nonconformity
functions

As was shown by Johansson et al. (2017), the usage of inverse probability nonconformity
function results in less number of predicted class labels on average (lower avgC), and margin
results in a larger fraction of singleton predictions (higher oneC). In this section, we propose
an approach to combine these properties of the two nonconformity functions. The validity
of this method is studied empirically in Section 5.1 and its efficiency is demonstrated in
Section 5.3.
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It is desirable to have more singleton predictions. However, if a singleton prediction
does not contain the true label, then the metric oneC not only loses its value but also
becomes misleading. In Section 5.2 we demonstrate that for some datasets only a half of
singleton predictions contain the true label. Hence, in our proposed method we decide to
take the results produced by inverse probability nonconformity function as a baseline, and
then extend them with some singleton predictions resulting from the usage of margin.

The proposed procedure is the following. First, we construct conformal predictors
using both nonconformity functions separately2. For the conformal predictor based on
inverse probability, we use the value of ε specified by the user as the significance level.
For the conformal predictor based on margin, we set the significance level equal to ε/2.
This is done to compensate for possible erroneous singleton predictions produced by margin
nonconformity function and to achieve the required level or empirical error rate. Second,
for every instance in the testing or production dataset, we analyze the predictions generated
by both conformal classifiers. If the conformal classifier based on margin outputs a singleton
and the other conformal classifier does not, then the prediction is taken from the first model.
Otherwise, the output of the conformal classifier based on inverse probability is used. Such
a combination will perform in the worst case the same as the conformal predictor based on
inverse probability. Otherwise, the values of oneC and/or avgC will be improved, as some
non-singleton predictions will be replaced with singletons. Thereby, in case the validity
is preserved, this combination can be considered as an improved version of the inverse
probability nonconformity function.

In the rest of the paper, we use M and IP to refer to margin and inverse probability
respectively. IP M is used to refer to the combination explained above. For simplicity,
sometimes IP M is referred to as a nonconformity function, although technically it is not.

4. Experimental setup

To perform experimental analysis, we used the implementation of conformal prediction
framework available from nonconformist3 Python library. We followed the general experi-
mental setup from the original paper by Johansson et al. (2017). That is we used 10x10-fold
cross-validation with 90% of the data used for training and validation of the model, and
10% used for testing. The training dataset was further split into a proper training set and a
calibration set in proportion 4:1. All the results reported below are averaged over the 10x10
folds. In the original study, the authors used 21 publicly available multi-class datasets from
UCI repository Dua and Graff (2017). In this paper, we present not aggregated, but de-
tailed results for every analyzed dataset. Such a setup allows us to identify dataset-specific
relationships. That is why we chose 9 representative datasets with different characteristics
from the original list of 21 ones. The general information about these datasets, such as the
number of instances, attributes, and defined classes is given in the first section of Table 1.

The original study by Johansson et al. (2017) analyzed the performance of conformal
classifiers based on the ANN classification model. In this paper, we aim to further extend
this analysis and use 8 different classification algorithms as baseline models: Support Vec-

2. See Vovk et al. (2005); Shafer and Vovk (2008); Johansson et al. (2017) for explanation of how conformal
predictors are constructed.

3. https://github.com/donlnz/nonconformist
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tor Machine (SVM), Decision Tree (DT), k-Nearest Neighbours (KNN), AdaBoost (Ada),
Gaussian Naive Bayes (GNB), Multilayer Perceptron (MPR), Random Forest (RF) and
Quadratic Discriminant Analysis (QDA). We used implementations of these algorithms
available from scikit-learn Python library. In Table 2, we summarize the input parameters
of these algorithms unless the default values are used.

Table 2: Input parameters of classification algorithms

Algorithm Input parameters

SVM probability=True
DT min samples split=max(5, 5% of proper training dataset)
KNN n neighbors=5
MPR alpha=1, max iter=1000
RF n estimators=10, min samples split=0

Different classifiers perform differently on different datasets. We demonstrate this in
the second section of Table 1. To calculate the corresponding values, we used the same
10x10-fold cross-validation but without splitting the training set into a proper training set
and a validation set. b err range from the first row of this section demonstrates the range
of errors produced by all 8 classification algorithms in the baseline mode4. We can notice
that some datasets are easier to classify, for example, iris dataset for which the maximum
error is 6%. At the same time, other datasets are more difficult, for example, wineW for
which none of the classifiers can produce error less than 45%. The performance of classifiers
is not uniformly distributed within the given ranges. This can be seen from the median
of baseline error distribution, see row b err median. For example, for the cars dataset
different classifiers result in errors ranging from 7% to 96%. However, the median value of
13 shows that half of them perform relatively well.

All experimental evaluations were performed for 5 different values of significance level
ε ∈ {0.01, 0.05, 0.1, 0.15, 0.20}. For every combination of dataset, baseline classification al-
gorithm and ε, we calculated the values of oneC and avgC with 2 different nonconformity
functions (IP and M ) and their combination IP M. After that, the results were compared
to see if any of the nonconformity functions or their combination results in a more effi-
cient conformal predictor. Due to the space limitations of this paper, we present detailed
results only for 4 datasets highlighted in bold in Table 1. However, experimental results
for all datasets and the code used for the experimentation are available in the related git
repository5.

5. Experimental results

5.1. Validity

We start with the analysis of validity, that is first we check if the produced conformal pre-
dictors indeed achieve the required error rate. This property was demonstrated in previous

4. In this text we use the baseline mode to refer to the standard (non-conformal) prediction.
5. https://github.com/marharyta-aleksandrova/copa-2021-conformal-learning

6

https://github.com/marharyta-aleksandrova/copa-2021-conformal-learning


Impact of Nonconformity Functions on Efficiency of Conformal Classifiers

works both for inverse probability and margin. It is also theoretically guaranteed for any
nonconformity function, but not for a combination of those, like IP M. In Table 3 we demon-
strate the empirical error rates averaged among all datasets. As we can see, all conformal
predictors are well-calibrated. The validity of conformal predictor based on IP M can be
explained by the fact, that we add margin-based predictions to the IP -based model only in
case when we are very confident about them. Recall that the significance level is set to ε/2
for this case, see Section 3. Thereby, the probability to generate enough invalid predictions
to surpass the allowed error rate ε is very low.

Table 3: Empirical error rates

eps: 0.01 0.05 0.10 0.15 0.20

IP 0.01 0.05 0.09 0.14 0.19
IP M 0.01 0.05 0.10 0.15 0.19
M 0.01 0.05 0.10 0.15 0.19

5.2. Informativeness of oneC

In Section 3, we discussed the issue that can happen with oneC metric. Indeed, if a large
portion of predicted singletons does not contain the true label, then this metric can be mis-
leading. We calculated the ratio of the number of singleton predictions that contain the true
label to the overall number of singleton predictors for different setups and algorithms. We
denote this value as E oneC from effective oneC. The corresponding results are presented
in section 3 of Table 1.

The first row of this section shows the averaged value of E oneC over all 5 values of ε
and 3 nonconformity functions. We can notice that this value is very different for different
datasets ranging from 0.98 for iris to only 0.50 for wineW. This means that for wineW on
average half of the produced singleton predictions do not contain the true label. In real
applications, this prediction can be more confusing than a prediction with multiple labels.

We can notice that there is a certain correlation between the mean value of E oneC and
the difficulty of the dataset for the baseline classifiers (b err). To analyze this relationship,
we calculated the value of correlation between the corresponding characteristics. The results
are presented in the third row corr. b acc. We can see that for 5 of 9 datasets (56%) the
correlation is above 0.9. This holds for iris, user, cars, wave, and yeast datasets. For
2 more datasets (balance and wineW), the correlation coefficient is approximately 0.8. For
glass dataset, it is equal to 0.69, and only for wineR the correlation is as low as 0.27. These
results show a strong relationship between the baseline error of the underlying classification
model and the correctness of singleton predictions.

Finally, to check if E oneC depends on the chosen nonconformity function, we averaged
the results separately for different non-conformity functions and then calculated the stan-
dard deviation of the resulting three values. The corresponding results are presented in the
second row mean-std. We notice that mean-std is very low for all datasets. This indicates
that E oneC does not depend on the choice of nonconformity function.

7
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5.3. Efficiency of different nonconformity functions

In this section, we study the relationship between different nonconformity functions and
the effectiveness of the resulting conformal predictors. For every combination of a dataset,
a baseline classifier, and a value of ε, we calculate the values of oneC and avgC. For
visual analysis, the corresponding results are plotted using the same format as in Figs. 1
and 2. Such figures contain information about the distribution of instances between classes
(plots a), the baseline error rate of all classification algorithms b err (plots b), and the
corresponding values of the efficiency metrics (plots from c to j ). The latter group of plots
contains three lines corresponding to margin (dashed line), inverse probability (dash and
dot line) and their combination IP M (thin solid line).

Further, we evaluate how significant are the differences between different nonconformity
functions. The corresponding results are summarized in the same format as presented in
Table 4. Here, for every baseline classifier and value of ε, we present a comparison matrix.
A value in the matrix shows if the row setup is better (indicated with +) or worse (indicated
with −) than the column setup. The star indicates if the detected difference is statistically
significant6. To avoid too small differences, we put a sign into the matrix only if the
corresponding difference is above the threshold of 2%7 or it is statistically significant. For
example, from Table 4 we can see that margin results in better values of oneC than IP and
IP M for SVM with ε = 0.05. These results are also statistically significant, as indicated
by a *. At the same time, for ε = 0.1 margin improves the results of IP M by at least 2%.
However, this difference is not statistically significant. Section 4 of Table 1 shows the fraction
of setups, for which we can observe a difference between the performance of conformal
classifiers with different nonconformity functions either by exceeding the threshold of 2%
(thres.) or observing statistical significance (stat.). These values are calculated as follows.
For every dataset, we have 40 setups (5 values of ε x 8 baseline classifiers). Each such setup
corresponds to one matrix for oneC and one matrix for avgC in significance tables. We
calculate how many of these matrices either have at least one + or −, or have at least one
statistically significant result. After that, the calculated number is divided over 40.

Using such information for all datasets, we can analyze the efficiency of conformal clas-
sifiers for different nonconformity functions and identify which of them perform better. The
corresponding findings are summarized in section 5 of Table 1. This part of the table shows
the deviations from the pattern originally observed by Johansson et al. (2017). In our ex-
periments we observed the following 3 deviations: 1) M is the best: margin can produce
both higher values of oneC and lower values of avgC, that is margin is the best choice of
nonconformity function; 2) IP is the best: inverse probability is the best choice of noncon-
formity function; 3) IP M is the best: the combination of M and IP produces the best
results in terms of both efficiency metrics. Additionally, our experiments show that IP M
never performs worse than IP (IP M > IP). Note also, that we never observed the inverse
pattern, that is inverse probability resulting in higher values of oneC and margin resulting
in lower values of avgC at the same time. In the rest of this section, we demonstrate our

6. Statistical significance was estimated using Student’s t-test with α = 0.05.
7. For 100% we take the value of 1 for oneC and the total number of classes for avgC. These are the

maximum values of these two metrics.
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main findings on the examples of 4 datasets highlighted in bold in Table 1. The general
conclusions are discussed in Section 5.4.

IRIS. The results for iris dataset are presented in Fig. 1. As we can see from the
plots comparing oneC and avgC, there is almost no difference and all 3 nonconformity
functions produce the same results. This is also reflected in section 4 of Table 1. Only
for 5% of setups we can observe a difference in terms of oneC, see performance of RF in
Fig. 1(i). The difference in avgC is observed even less often, only in 2.5% of setups, see
results for GNP in Fig. 1(h). Statistically significant differences are never observed. This
means that the table with the significance of results like Table 4 for this dataset is almost
empty. That is why we do not present it in the paper. As expected, not many patterns can
be observed in this case. The only pattern that we observe, is IP M > IP. Note, that this
dataset is perfectly balanced, see Fig. 1(a) and all classifiers have very good performance
with maximum error not exceeding 6%, see Table 1 and Fig. 1(b). We can also notice
that there is a relationship between the baseline error of the classifier and the efficiency of
the resulting conformal predictor: better classifiers tend to produce conformal predictors of
better quality. The 3 worst baseline predictors DT, Ada, and RF also produce conformal
predictors with lower values of oneC, see Figs. 1(c), 1(e) and 1(i) and larger values of avgC,
see Figs. 1(d) and 1(j ).

GLASS. Next, we analyze the results for glass dataset presented in Fig. 2 and Table 4.
This dataset is unbalanced, see Fig. 2(a) and different classifiers have different performance
with baseline error ranging from 24% for RF to 92% for QDA, see Fig. 2(b). As it was
observed for iris dataset, those classifiers that perform better in the baseline scenario
also tend to produce more efficient conformal predictors. For example, see the results for
RF in Figs. 2(i) and 2(j ), and the results for KNN in Figs. 2(e) and 2(f ). At the same
time, classifiers that perform badly in the baseline scenario produce conformal predictors
of low quality, see results for QDA in Figs. 2(i) and 2(j ). There are also exceptions, but
they are less numerous. For example, for this dataset the baseline performance of the DT
classifier is good (b err ≈ 30%), however, the resulting conformal classifier is less efficient
than the one based on SVM with b err > 60%. For this dataset, we can also observe a
clear difference in performance depending on which nonconformity function is used. This
is summarized in Table 4. Analyzing the results presented in this table, we can observe
the following patterns. 1) For KNN and DT-based conformal predictors margin is the best
choice of nonconformity function. Indeed, this is reflected in Figs. 2(c) and 2(e) (margin
results in higher values of oneC) and Figs. 2(d) and 2(f ) (margin also results in lower values
of avgC). This pattern is also shown in Table 4 in comparison matrices corresponding to
KNN and DT algorithms. We can see that in all comparison matrices, there is a + in rows
corresponding to margin indicating that it outperforms both IP and IP M, except avgC for
KNN with ε = 0.2. 2) For MPR IP M is the best choice of nonconformity function. This is
reflected in the corresponding comparison matrices of Table 4, from which we can see that
IP M results in higher values of oneC and lower values of avgC at the same time. This is
also visible in Figs. 2(g) and 2(h). 3) Finally, we never observe IP M being outperformed
by IP. In the inverse direction, however, IP M does improve the results of IP. For example,
for SVM with ε = 0.05 or ε = 0.1 IP M allows to achieve better values of oneC and this
improvement is also statistically significant.

9



Impact of Nonconformity Functions on Efficiency of Conformal Classifiers

1 2 3
0

20

40
50 50 50

(a) Distribution between classes

SV
M D

T
K
N
N

A
da

G
N
B
M

PR R
F

Q
D
A

.00

.02

.04

.06

(b) Baseline error, b err

.0

.2

.4

.6

.8

1.

SVM
DT

(c) oneC: SVM and DT

0

1

2

3 SVM
DT

(d) avgC: SVM and DT

.0

.2

.4

.6

.8

1.

KNN
Ada

(e) oneC: KNN and Ada

0

1

2

3 KNN
Ada

(f ) avgC: KNN and Ada

.0

.2

.4

.6

.8

1.

GNB
MPR

(g) oneC: GNB and MPR

0

1

2

3 GNB
MPR

(h) avgC: GNB and MPR

.01 .05 .1 .15 .2

.0

.2

.4

.6

.8

1.

ε

RF
QDA

(i) oneC: RF and QDA

.01 .05 .1 .15 .2
0

1

2

3

ε

RF
QDA

(j ) avgC: RF and QDA

Figure 1: Results for iris: M - dashed line, IP - dash and dot line, IP M - thin solid line
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Figure 2: Results for glass: M - dashed line, IP - dash and dot line, IP M - thin solid line
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Table 4: Significance of results for the glass dataset

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

o
n
eC

ip −* −* −* −* − −* − −*
ip m +* −* +* − + − + −
m +* +* +* + +* + +* +

SVM ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* +
ip m +* +* +
m −* −* − −* −

o
n
eC

ip − − − − −
ip m − + − + −
m + + + + + +

DT ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip − − −
ip m − − −
m + + + + + +

o
n
eC

ip − −* − −* − −* − −*
ip m + − + − + −* + −
m +* + +* + +* +* +* +

KNN ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip − − − − − − −
ip m + − + − + −
m + + + + + + +

o
n
eC

ip −* −* −* −*
ip m − −* +* −*
m +* + +* +* +* +*

Ada ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* +* +* +*
ip m +* +* +* +*
m −* −* −* −* −* −* −* −*

o
n
eC

ip − − −* −* − −*
ip m + −* −* + −*
m + +* +* +* +* +* +*

GNB ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip + +* +* +*
ip m + +* +* +*
m − − −* −* −* −* −* −*

o
n
eC

ip − − − − −
ip m + + + + + + + +
m − + − − −

MPR ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* − +* − +* − +
ip m +* + +* + +* + +*
m −* −* −* −* −* −* − −*

o
n
eC

ip − −* − −* − −* − −*
ip m + + − + − + −
m +* +* + +* + +* +

RF ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip − + +* +
ip m + +* +* +
m − −* −* −* − −

o
n
eC

ip −* −* − −
ip m −* − −
m +* +* +* + + + +

QDA ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −
ip m +
m + −
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WAVE. The results for wave dataset are presented in Fig. 3 and Table 5. This dataset
is balanced, see Fig. 3(b), and overall performance of classifies is quite good, see Fig. 3(b).
There is only one classifier, DT, wich results in b err > 20%. As it was also noted for
iris, when classifiers have good baseline performance, the difference between different
nonconformity functions diminishes. This is reflected in the reduction of values in section
4 of Table 1 (25%, 27.5%, 30%, and 47.5%) as compared to the corresponding values for
glass dataset (75%, 67.5%, 50%, and 37.5%). We can observe visual differences in Fig. 3
only for DT, Ada, GNB, and RF. No difference is observed for KNN, however, despite it
having a comparable value of b err. For this dataset, we can also see that margin results
in best performance for ε ∈ {0.1, 0.15, 0.2} when Ada classifier is used. This improvement
is also statistically significant, see Table 5. In the case of ε = 0.01 however, the best
performance is achieved by IP nonconformity function, and this result is also statistically
significant. Further, IP M is the best choice for RF classifier with statistical significance of
the improvement in most of the settings.

BALANCE. The case of balance dataset is very interesting: for most of the classi-
fication models margin is always the best choice of nonconformity function. As reflected
in Table 6 and supported by Fig. 4, these differences are mostly statistically significant.
The only cases for which the original pattern holds are SVM with all values of ε and QDA
with ε = 0.05. For this dataset, we also observe differences between different nonconformity
functions despite the relatively good performance of many classifiers.

5.4. Summary of results

In this subsection we summarize the findings from our experimental results shown in Table 1.
As we saw, margin can be the best choice of nonconformity function for some

datasets (balance dataset) or some algorithms. An interesting fact is that for almost all
datasets KNN-based conformal predictor works best with margin in terms of both oneC and
avgC. This pattern was not observed only for iris and wave datasets as all nonconfomity
functions result in the same values of oneC and avgC in case KNN is used. This obser-
vation suggests that some classification algorithms and datasets might prefer particular
nonconformity functions.

Inverse probability is almost never the best nonconformity function. We ob-
served that margin can result in the best conformal classifiers in terms of both efficiency
metrics. However, it almost never happens with inverse probability function. In our exper-
iments, this was observed only for Ada classifier for user dataset with ε = 0.15 and wave

dataset with ε = 0.01.
IP M improves IP . In none of our experiments, we observed IP M being outper-

formed by IP. IP M improves oneC and avgC as compared to IP or produces the same
values of these metrics. This is expected, as IP M is basically an IP measure with some
non-singleton predictions replaced with singletons. This replacement naturally increases
oneC and decreases avgC. The fact that IP M also results in valid predictions respecting
the imposed value of maximum error rate ε, as was demonstrated in Table 3, proves the
utility of this approach. Additionally, in some cases IP M produces better results than
both margin and inverse probability in terms of both efficiency metrics. This was observed
for glass dataset with MPR, and for cars and wave datasets with RF.
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Figure 3: Results for wave: M - dashed line, IP - dash and dot line, IP M - thin solid line
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Table 5: Significance of results for the wave dataset

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

o
n
eC

ip
ip m
m

SVM ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* +*
ip m +* +*
m −* −* −* −*

o
n
eC

ip −* −*
ip m −* −*
m +* +* +* +*

DT ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* +*
ip m +* +*
m −* −* −* −*

o
n
eC

ip
ip m
m

KNN ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip
ip m
m

o
n
eC

ip +* −* −* −* −* −* −* −* −*
ip m +* +* +* −* +* −* +* −*
m −* −* +* +* +* +* +* +* +*

Ada ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* −* −* −* −* −* −* −*
ip m +* +* +* −* +* −* +* −*
m −* −* +* +* +* +* +* +*

o
n
eC

ip
ip m
m

GNB ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +* +* +*
ip m +* +* +*
m −* −* −* −* −* −*

o
n
eC

ip
ip m
m

MPR ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +*
ip m +* +*
m −* −* −*

o
n
eC

ip −* −* −* −* −* −* −*
ip m +* +* +* +* +* +* +* −* +* −*
m −* −* −* +* +* +* +*

RF ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* +* −* +* −* −*
ip m +* +* +* +* +* +* +* +*
m −* −* −* −* −* −*

o
n
eC

ip
ip m
m

QDA ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +*
ip m +*
m −* −*
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Figure 4: Results for balance: M - dashed line, IP - dash and dot line, IP M - thin line

16



Impact of Nonconformity Functions on Efficiency of Conformal Classifiers

Table 6: Significance of results for the balance dataset

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

o
n
eC

ip −* −*
ip m −* −*
m +* +* +* +*

SVM ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip +*
ip m +*
m −* −*

o
n
eC

ip − − −* −* −* −*
ip m − + −* −* −* −
m + + +* +* +* +* +* +* +* +

DT ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip − −* −*
ip m + −* −*
m +* +* +* +*

o
n
eC

ip −* −* −* −* −* −*
ip m −* +* −* −* −* −*
m +* +* +* +* +* +* +* +* +* +*

KNN ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* −* −* −* −* −*
ip m −* +* −* −* −* −*
m +* +* +* +* +* +* +* +* +* +*

o
n
eC

ip −* −* −* −* −* −* −* −* −*
ip m −* +* −* +* −* +* −* +*
m +* +* +* +* +* +* +* +* +*

Ada ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* −* −* −* −* −* −* −* −*
ip m −* +* +* +* +*
m +* +* +* +* +* +*

o
n
eC

ip −* −* −* −
ip m −* +* −* −
m +* +* +* +* + +

GNB ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* −* −*
ip m −* +* −*
m +* +* +* +*

o
n
eC

ip −* −
ip m −*
m +* +* +

MPR ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −*
ip m −*
m +* +*

o
n
eC

ip −* −* −* − − −
ip m −* +* −* +
m +* +* +* +* + +

RF ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* −* −*
ip m −* +* −
m +* +* +* +

o
n
eC

ip −*
ip m −*
m +* +*

QDA ip ip m m ip ip m m ip ip m m ip ip m m ip ip m m

a
v
g
C

ip −* +*
ip m −* +*
m +* +* −* −*
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The baseline pattern holds for the majority of the cases. In our experimental
results, we discussed only the cases which deviate from the baseline pattern. As we saw,
such cases do exist, and a particular nonconformity function produces the best values of
both metrics for some baseline classifiers or some datasets. However, in most of the cases
when the difference between nonconformity functions is observed, margin results in better
values of oneC and inverse probability results in better values of avgC. Also, we never
observed an inverse pattern, that is inverse probability resulting in higher values of oneC
and margin resulting in lower values of avgC at the same time. This supports the main
finding of the original paper by Johansson et al. (2017).

oneC is not always useful. As was discussed in Section 5.2, metric oneC can be
misleading. For some of the datasets, only half of the singleton predictions contain the
true label. In such cases, the minimization of avgC is preferred over the maximization of
oneC. We also showed that the fraction of correct singleton predictions strongly correlates
with the performance of the chosen classifier in the baseline scenario. It means that by
analyzing this performance, we can estimate how accurate the singleton predictors will be
and we can decide which efficiency metric should be considered more important. Also, it
was shown that the choice of nonconformity function has little impact on the fraction of
correct singleton predictions E oneC.

The baseline performance of the chosen classifier impacts the efficiency of
the conformal predictor. In our experiments, we observed that if the performance of
the baseline classifier is good, then the choice of nonconformity function tends to have no
impact on the efficiency of the resulting conformal classifier. This is the case for iris

and wave datasets. In the case of balance dataset, this relationship is less prominent
and margin always outperforms IP and IP M. This can be related to the fact that this
dataset is unbalanced as opposed to the two other datasets. In this case, the classifier can
have problems generating predictions for the minority classes. This will not be reflected
in the baseline error due to the little number of instances in these classes. The baseline
performance of the underlying classification model also has a direct impact on the efficiency
of the resulting conformal classifier. Except for some cases, soon after the value of ε reaches
the value of b err, metric oneC reaches its maximum and starts decreasing. At the same
time, the value of avgC reaches 1 and further decreases, see, for example, results for iris

dataset presented in Fig. 1. This observation makes sense. When ε > b err, the conformal
classifier is allowed to make more mistakes than it does in the baseline scenario. This can
be only achieved by generating empty predictions. For such values of ε, more and more
predictions will be singletons or empty what results in the decrease of oneC and avgC
below 1.

6. Conclusions and Future Work

The objective of this paper is to further extend the recent results presented by Johansson
et al. (2017) stating that there is a relationship between different model-agnostic noncon-
formity functions and the values of oneC and avgC. Through an empirical evaluation with
ANN-based conformal predictors, the authors showed that the usage of margin noncon-
formity function results in higher values of oneC and inverse probability nonconformity
function allows to achieve lower values of avgC. Next, it is up to the user to decide which
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metric should be preferred and to choose an appropriate nonconformity function. We aim
to check if the same pattern would be observed for other classification algorithms. Through
experimental evaluation we showed that the previously observed pattern is supported in
most of the cases, however, some classifiers and/or datasets clearly ‘prefer’ margin. This
was observed for KNN classifier and balance dataset. At the same time, inverse probability
is the best choice of nonconformity function only in a very small number of cases. This can
be considered an exception rather than a rule.

We also proposed a method to combine margin and inverse probability into a model that
we denote by IP M. We showed that IP M can be considered as an improved version of
conformal predictor based on IP making this approach preferable for minimization of avgC
in most of the cases. Additionally, it was shown that IP M can be the best model in terms
of both oneC and avgC in some cases: MPR-based conformal predictors for glass dataset,
and RF-based conformal predictors for cars and wave. The validity of this approach was
confirmed experimentally.

Finally, we studied how the effectiveness of the baseline classification algorithm on the
given dataset can impact the efficiency of the related conformal predictor. In particular, we
showed that a fraction of singleton predictions that contain the true label correlates strongly
with the baseline accuracy. This observation suggests that oneC metric can be misleading
in the case of a poorly performing baseline classifier. Our experiments also demonstrate
that usually classification algorithms with higher values of baseline accuracy result in more
efficient conformal predictors.

Some directions for future work are the following. It can be interesting to confirm that
KNN-based conformal predictors work better with margin nonconformity function in the
case of other datasets. Further, we would like to study which characteristics of baseline
classifiers and datasets make them work better with a particular nonconformity function.
For example, for balance dataset SVM-based conformal predictor is the only one that does
not ‘prefer’ margin and follows the originally observed pattern. Next, we would like to
investigate if the proposed method for combining margin and inverse probability can be
improved using the latest results in assembling conformal predictors such as in Toccaceli
(2019).
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