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Abstract
We obtain a lower bound for an algorithm predicting finite-dimensional distributions (i.e., points
from a simplex) under Kullback-Leibler loss. The bound holds w.r.t. the class of softmax linear
predictors. We then show that the bound is asymptotically matched by the Bayesian universal
algorithm.
Keywords: On-line learning, competitive prediction, loss bounds.

1. Introduction

We consider the on-line learning scenario with signals (on-line regression). The following events
are repeated for t = 1, 2, . . .. The learner sequentially reads a signal xt, makes a prediction γt on
the basis of the signal and past observations, and then receives the true outcome yt. The signals,
predictions, and outcomes are drawn from spaces known from the start. The quality of the learner’s
predictions is assessed using a known loss function λ(γ, y).

We want the learner to suffer low cumulative loss Loss(T ) =
∑T

t=1 λ(γt, yt) over T steps. We
approach this task within the competitive on-line prediction framework. According to this frame-
work, no mechanism (probabilistic or other) generating the signals and outcomes is postulated.
Instead we take a pool of competitor strategies and aim to build an algorithm that suffers loss not
much worse than any strategy from the pool on every possible sequence of signals and outcomes.

Foster et al. (2018) consider the setup where predictions and outcomes are elements of a simplex
∆ ∈ Rd and the loss is measured by the Kullback-Leibler divergence. The framework may be re-
garded as soft multi-class classification; Foster et al. (2018) discuss applications to bandit multiclass
learning and online multiclass boosting.

Let the signals come from Rnd and take for competitors all arrays of d linear functions Rn → R
with softmax applied on top of them to ensure we output a distribution. Foster et al. (2018) construct
an algorithm for this framework with a competitive loss bound involving an extra term that grows
as 5nd lnT in time (we use n, d and T as in this paper). Later Dzhamtyrova and Kalnishkan
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(2019) improved the bound to nd
2 lnT . This left one with the question of whether the bound can be

improved further.
In this paper we obtain a lower bound for the regret of n(d−1)

2 lnT−C. This is below the regret of
know algorithms of Foster et al. (2018) and Dzhamtyrova and Kalnishkan (2019). We then proceed
to show that the regret is matched asymptotically by the Bayesian algorithm of Dzhamtyrova and
Kalnishkan (2019). With a finer analysis, an upper bound of n(d−1)

2 lnT +C can be obtained. Note
that n(d − 1) can be thought of as the number of degrees of freedom of the competitor pool; the
nominal dimension nd is reduced by making the prediction fit the simplex.

1.1. Related Work

The history of algorithms competitive with large parametric classes of strategies can be traced back
to universal portfolios by Cover and Ordentlich (1996), which apply in the context of investment
decisions and compete against portfolio selection techniques. In that framework one is interested in
maximising the wealth, but the problem can be restated in terms of losses.

One can consider outcomes and predictions from the one-dimensional interval [0, 1] and signals
xt ∈ Rn. A natural choice of competitor strategies are then linear functions on xt. Vovk (2001)
and Azoury and Warmuth (2001) propose an algorithm for this framework (Vovk-Azoury-Warmuth
predictor, also known as the aggregating algorithm regression) targeted at square loss λ(γ, y) =
(γ − y)2. Gammerman et al. (2004) obtain a kernelised version of the predictor. Zhdanov and
Kalnishkan (2013) study similar competitive bounds for standard ridge regression.

Kakade and Ng (2005) deal with one-dimensional outcomes in the context of logarithmic loss,
where a prediction p(·) is a function on R and the loss λ(p, y) = − log p(y) is considered. The
competitors are the generalised linear models of the form p(y | x, θ) = f(y, θ′x), where θ is a
parameter vector and f is some fixed function. Zhdanov and Vovk (2010) consider a similar set-up
for square loss taking a competitor predictor σ(θ′x), i.e., applying a fixed function to the linear
predictor.

Dzhamtyrova and Kalnishkan (2020) obtain a bound with an extra term of the order n(d−1)
2 lnT

for the Kullback-Leibler loss in the setup similar to this paper, but the competitors were logistic
regression functions, where n(d − 1) is the explicit dimension of the pool of competitors. Dzham-
tyrova and Kalnishkan (2020) also discuss some applications of the Kullback-Leibler loss in the
introduction section and perform numerical experiments.

Optimality results are relatively rare in the literature. Of the work cited above, Vovk (2001) and
Kakade and Ng (2005) provide lower bounds to their results. A number of results equivalent to lower
bounds were obtained for the probabilistic/compression setup (Xie and Barron, 1997, 2000). The
construction we use for the lower bound is essentially similar. Remark 5 discusses the difference.

It is worth noting that similar problems have been considered in the context of on-line convex
optimisation of Zinkevich (2003) (see the survey by Hazan (2016)). We believe that results from
that area cannot be straightforwardly applied to this case, as our settings are not α-strongly convex.

2. Preliminaries

2.1. Games and Losses

A game G is a triple of an outcome space Ω, prediction space Γ, and a loss function λ : Γ × Ω →
[0,+∞].
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A prediction strategy S for a game G working with signals from a signal space X is a mapping
S : (X × Ω)∗ ×X → Γ. Intuitively, S supplies predictions for the learner acting according to this
protocol:

for t = 1, 2, . . . do
the learner reads signal xt ∈ X
the learner produces γt ∈ Γ
learner sees yt ∈ Ω

end
Protocol 1: On-line learning protocol

On a sequence (x1, y1), (x2, y2), . . . , (xT , yT ) the learner using a strategy S suffers cumulative
loss

LossS(T ) =
T∑
t=1

λ(γt, yt) =
T∑
t=1

λ(S(x1, y1, . . . , xt−1, yt−1, xt), yt) .

The index S will be dropped if it is clear from the context.
In this paper we consider the game where the outcome and prediction spaces are the unit (d−1)-

simplex ∆ = {(p1, p2, . . . , pd) | pi ≥ 0 for i = 1, 2, . . . , d and
∑d

i=1 pi = 1} ⊆ Rd. The out-
comes and predictions are distributions on a finite set of d elements and we use the Kullback-Leibler
divergence to measure the loss. For γ = (γ(1), γ(2), . . . , γ(d)) ∈ ∆ and y = (y(1), y(2), . . . , y(d)) ∈
∆ we let λ(γ, y) =

∑d
i=1 y

(i) ln y(i)

γ(i)
. The ambiguous expressions 0 ln 0 and 0 ln 0

0 evaluate to 0.
The signals will be n-dimensional real vectors, i.e., we take X = Rn.

2.2. Competitors

Our goal is to construct an algorithm performing in terms of cumulative loss nearly as well as any
strategy from the following class. Take θ ∈ Rnd (by default all vectors are column vectors in this
paper) and partition it as θ′ = (θ′1, θ

′
2, . . . , θ

′
d) so that θ1, θ2, . . . , θd ∈ Rn. The strategy Sθ is

oblivious, i.e., its prediction only depends on the current signal x. The strategy outputs ξ(θ, x) =
(ξ1(θ, x), ξ2(θ, x), . . . , ξd(θ, x))′, where ξi(θ, x) are the softmax functions

ξi(θ, x) =
eθ
′
ix∑d

j=1 e
θ′jx

(1)

for i = 1, 2, . . . , d. Clearly, ξ(θ, x) ∈ ∆ for all θ ∈ Rnd and x ∈ Rn. We will abbreviate LossSθ(T )
to Lossθ(T ).

3. Loss Bounds

The following theorem provides a lower bound for any strategy S making predictions on the basis
of signals.

Theorem 1 For every positive integer n, positive integer d ≥ 2, and a > 0, there are signals xt of
norm 1, ‖xt‖ = 1, t = 1, 2, . . ., a random process of outcomes Yt, t = 1, 2, . . ., and C > 0 such
that for every strategy S we have

E

(
LossS(T )− inf

θ∈Rnd
(Lossθ(T ) + a‖θ‖2)

)
≥ n(d− 1)

2
lnT − C
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for all T = 1, 2, . . .

The theorem is proven in Section 4. The process Yt is a mixture of i.i.d. processes with a
Dirichlet prior on parameters.

The learner can match this bound with a strategy that is essentially the Bayesian mixture with
the Gaussian prior. The strategy Ba takes a parameter a > 0. On step t, Ba outputs the mixture

ξt =

∫
Rnd

ξ(θ, xt)p
∗
t−1(θ)dθ , (2)

with the density p∗t−1(θ) given by

p∗t−1(θ) = e−Lossθ(t−1)p0(θ)

/∫
Rnd

e−Lossθ(t−1)p0(θ)dθ ,

where the prior density p0 is Gaussian:

p0(θ) =
(a
π

)nd/2
e−a‖θ‖

2
(3)

(the norm ‖ · ‖ on Rm is the Euclidean norm).
The following theorem improves the result of Dzhamtyrova and Kalnishkan (2019), where a

strategy equivalent to Ba was introduced.

Theorem 2 For every positive integer n and positive integer d ≥ 2 the loss of the Bayesian strategy
Ba with a > 0 satisfies

LossBa(T ) ≤ inf
θ∈Rnd

(Lossθ(T ) + a‖θ‖2) +
d− 1

2
ln det

(
1

4a

T∑
t=1

xtx
′
t + 2I

)
+
n

2
ln(2d− 1)

≤ inf
θ∈Rnd

(Lossθ(T ) + a‖θ‖2) +
n(d− 1)

2
ln

(∑T
t=1 ‖xt‖2

4an
+ 2

)
+
n

2
ln(2d− 1)

for all positive integers T , all signals xt ∈ Rn and outcomes yt ∈ ∆, T = 1, 2, . . .

If for all t = 1, 2, . . . , T we have ‖xt‖ ≤ X , then

n(d− 1)

2
ln

(∑T
t=1 ‖xt‖2

4an
+ 2

)
≤ n(d− 1)

2
ln

(
TX2

4an
+ 2

)
∼ n(d− 1)

2
lnT

as T →∞ for fixed n, d and a. Thus the lower bound is attained asymptotically.

Remark 3 Practical applications of Ba require a way to evaluate the integral in (2). Note that we
do not need to evaluate the normalising constant; upon evaluation of the integrals∫

Rnd
ξi(θ, xt)e

−Lossθ(t−1)p0(θ)dθ ,

i = 1, 2, . . . , d, one can normalise the components to sum up to 1. For small n the integral can be
evaluated by integrating ξi(θ, xt)e−Lossθ(t−1) w.r.t. the Gaussian density. However, with the growth
of n this approach quickly becomes infeasible. In Dzhamtyrova and Kalnishkan (2019) MCMC
was used with some success. Theoretical justification of MCMC is hard though. Theorems 1 and 3
by Roberts and Smith (1994) can be used to show that the chain converges but the speed requires
further investigation.
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4. Proof of the Lower Bound

The outcomes Yt in our construction will take values at the set of vertexes of the simplex, V =
{e1, e2, . . . , ed}.

Let n = 1. We take constant signals x1 = x2 = . . . = 1. In this case the prediction output by S
on step t should be a function of the outcomes y1, y2, . . . , yt−1 observed previously.

Lemma 4 If there is a joint distribution of Y1, Y2, . . . , Yt, then the optimal on average strategy B
outputs the conditional distribution of Yt | Y1, Y2, . . . , Yt−1, i.e., γt =

(
γ

(1)
t , γ

(2)
t , . . . , γ

(d)
t

)
such

that γ(i)
t = Pr(Yt = ei | Y1 = y1, Y2 = y2, . . . , Yt−1 = yt−1) on step t.

Proof
The expectation of the loss on step t of a prediction γt = γt(y1, y2, . . . , yt−1) can be written as

E

d∑
i=1

Y
(i)
t lnY

(i)
t −

∑
y1,...,yt∈V

Pr(Y1 = y1, . . . , Yt−1 = yt−1)

d∑
i=1

Pr(Yt = ei | Y1 = y1, . . . , Yt−1 = yt−1) ln γ
(i)
t ,

where the first term does not include γt and the inner sum in the second term maximises on
γ

(i)
t = Pr(Yt = ei | Y1 = y1, . . . , Yt−1 = yt−1), i = 1, 2, . . . , d, because of the information

inequality (Cover and Thomas, 1991, Theorem 2.6.3).

Let us now describe the process Yt. First, we choose p1, . . . , pd ≥ 0 and such that
∑d

i=1 pi = 1
at random from the Dirichlet distribution with the parameter of A > 0 (to be specified later). The
density of p1, . . . , pd is

p0(p1, . . . , pd) =
pA−1

1 . . . pA−1
d

B(A, . . . , A)
. (4)

Then Yt are independently drawn from the categorical distribution with the parameter (p1, . . . , pd),
i.e., Pr(Yt = ei) = pi.

Let us work out the prediction of the optimal strategy B when the outcomes y1, y2, . . . , yt−1

have been observed by step t and the number of eis among them is n(i)
t , i = 1, 2, . . . , d. These are

random variable in our framework. By the Bayes theorem the density p(p1, . . . , pd | y1, . . . , yt−1)

of the posterior distribution of p1, . . . , pd is proportional to pn
(1)
t +A−1

1 . . . p
n
(d)
t +A−1
d and thus it is

the density of the Dirichlet distribution with the parameters (n
(1)
t +A, . . . , n

(d)
t +A). The prediction

of the optimal learner evaluates to

γ
(i)
t = Pr(Yt = ei | y1, . . . , yt−1) =∫

∆
Pr(Yt = ei | y1, . . . , yt−1, p1, . . . , pd)p(p1, . . . , pd | y1, . . . , yt−1)dp1 . . . dpd =

∫
∆
pi

p
n
(1)
t +A−1

1 . . . p
n
(d)
t +A−1
d

B(n
(1)
t +A, . . . , n

(d)
t +A)

dp1 . . . dpd =
n

(i)
t +A

t− 1 +Ad
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(we made use of conditional independence of Y1, . . . , Yt given p1, . . . , pd).
The expectation of the loss of B equals

ELossB(T ) = E[E(LossB(T ) | p1, . . . , pd)] ,

where the inner conditional expectation equals

E(LossB(T ) | p1, . . . , pd) = −
T∑
t=1

d∑
i=1

piE ln
n

(i)
t +A

t− 1 +Ad

(we will be assuming fixed p1, . . . , pd and dropping conditioning on them for brevity). The expec-
tation in this formula can be expanded as

−E ln
n

(i)
t +A

t− 1 +Ad
= − ln

pi(t− 1) +A

t− 1 +Ad
−E ln

(
1 +

n
(i)
t − pi(t− 1)

pi(t− 1) +A

)
.

Since the arguments under the logarithm in the first term sum to 1 over i, they can be interpreted as
probabilities and therefore

−
d∑
i=1

pi ln
pi(t− 1) +A

t− 1 +Ad
≥ −

d∑
i=1

pi ln pi

due to the information inequality (Cover and Thomas, 1991, Theorem 2.6.3).
Let us bound the second term from below. We will denote the fraction

n
(i)
t − pi(t− 1)

pi(t− 1) +A

by Zi,t and use the inequality ln(1 +Zi,t) ≤ Zi,t−Z2
i,t/2 +Z3

i,t/3. The expectation EZi,t vanishes
and the expectation EZ3

i,t can be bounded from above as follows. We have EZi,t = 0; for t =

2, 3, . . . let E denote the event |n(i)
t − pi(t− 1)| ≥ (t− 1)0.5+ε. By Hoeffding’s inequality Pr(E) ≤

2e−2(t−1)2ε (Hoeffding, 1963, Theorem 2). Since n(i)
t , pi(t− 1) ∈ [0, t− 1], we get

E|Zi,t|3 = E|Zi,t|31E + E|Zi,t|3(1− 1E) ≤ 2
(t− 1)3

A3
e−2(t−1)2ε +

1

p3
i (t− 1)1.5−3ε

.

For small ε > 0, both the terms on the right-hand side sum over t to finite numbers so that∑∞
t=1

∑d
i=1 piE|Zi,t|3 = O

(∑d
i=1 p

−2
i + 1

)
.

The term Z2
i,t/2 takes more detailed investigation. For t = 2, 3, . . . we have

E

(
n

(i)
t − pi(t− 1)

pi(t− 1) +A

)2

=
(t− 1)pi(1− pi)
(pi(t− 1) +A)2

=

1− pi

pi(t− 1)
(

1 + A
pi(t−1)

)2 ≥
1− pi
pi(t− 1)

(
1− 2A

pi(t− 1)

)
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(we calculated the variance of the sum of conditionally independent terms Y1 + . . .+Yt−1 and used
the inequality 1/(1 + x)2 ≥ 1− 2x). The second term in the last expression again sums to a finite
number:

∞∑
t=2

d∑
i=1

pi
2A(1− pi)
p2
i (t− 1)2

= O

(
d∑
i=1

p−1
i

)
.

Putting all these terms together, we get

E(LossB(T ) | p1, . . . , pd) ≥ −T
d∑
i=1

pi ln pi +
d− 1

2

T∑
t=2

1

t− 1
− C̃

(
d∑
i=1

1

p2
i

+ 1

)

for some constant C̃. The second term can be bounded from below:

T∑
t=2

1

t− 1
≥ lnT − Ĉ

for some constant Ĉ.
It remains to integrate this over the simplex with the prior density p0 from (4). By the properties

of the Dirichlet distribution, pα1
1 . . . pαdd integrates to a positive number as long as all αi > −1.

Thus for A > 2 all terms integrate. We thus bound ELossB(T ) from below.
Now take p1, . . . , pt and consider a strategy that “knows” the probabilities. If all pi > 0, we can

take θ = (ln p1, . . . , ln pd). This strategy outputs the prediction γt = (p1, . . . , pd) and suffers loss

E(Lossθ(T ) | p1, . . . , pd) = −T
d∑
i=1

pi ln pi .

(If some pi are zero, we can take the minimax θ = (0, 0, . . . , 0); it will lead to finite loss on every
step and will not affect the integral as the probability of pi = 0 is zero.) The norm of θ can be
(crudely) bounded as

‖θ‖2 =

d∑
i=1

(ln pi)
2 ≤

d∑
i=1

1

pi

and arguing as above it integrates to a finite number for A > 2. This gives us an upper bound on
E infθ∈Rnd(Lossθ(T ) + a‖θ‖2) and completes the case of n = 1.

For n > 1 we generate n arrays of probabilities (p1, . . . , pd) independently. On step t such that
t mod n = m − 1 we use the mth array for generating Yt and take xt = en. By considering ts
with each particular m we will be getting regrets of the order ln(T/n) = lnT − lnn, and additive
lnn does not matter in our argument.

Remark 5 The construction of the proof is similar to those of Xie and Barron (1997) and Xie and
Barron (2000), where the regret is bounded from below in a similar setup. We also use a Dirichlet
prior and the main term d−1

2 lnT is the same. The difference is in the regret term ‖θ‖2, which is
important in our approach. Low loss Lossθ(T ) can be achieved by a predictor with large ‖θ‖, and
the norm can grow with T . Thus we believe our lower bound does not follow straightforwardly from
earlier work.
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5. Loss Bounds and the Bayesian Algorithm

Vovk (2001, Lemma 4) shows that Kullback-Leibler loss is mixable. If follows by induction on time
that

LossB(T ) ≤ − ln

∫
Rnd

e−Lossθ(T )p0(θ)dθ = − ln

[(a
π

)nd
2

∫
Rnd

e−Q(θ)dθ

]
,

where Q(θ) =
∑T

t=1

∑d
i=1 y

(i)
t ln

y
(i)
t

ξi(θ,xt)
+ a‖θ‖2 and p0 is given by (3).

Our plan is to reduce the integral over Rnd to an integral over Rn(d−1) by substitution. Let

ϕ1 = θ1 − θd
...

ϕd−1 = θd−1 − θd
ϕd = θd

and ϕ′ = (ϕ′1, ϕ
′
2, . . . , ϕ

′
d). Clearly, this is a linear bijection and its Jacobian evaluates to 1. We get∫

Rnd
e−Q(θ)dθ =

∫
Rnd

e−Q̃(ϕ)dϕ ,

where Q̃(ϕ) = Q(θ(ϕ)) and θ(ϕ) is the inverse transformation giving θ from φ.
We will apply a trick due to Zhdanov and Vovk (2010) to bound Q̃ from above. Let Q̃ achieve

its global minimum at ϕ0. Applying Taylor decomposition with Lagrange’s remainder at θ0 we get

Q̃(ϕ) = Q̃(ϕ0) +
1

2
(ϕ− ϕ0)′H

Q̃
(ψ(ϕ))(ϕ− ϕ0) ,

where H
Q̃

is the Hessian of Q̃ and ψ(ϕ) is a convex combination of ϕ0 and ϕ. Since

Q̃(ϕ0) = inf
ϕ
Q̃(ϕ) = inf

θ
Q(θ) = inf

θ∈Rnd
(Lossθ(T ) + a‖θ‖2) ,

we get

LossB(T ) ≤ inf
θ∈Rnd

(Lossθ(T ) + a‖θ‖2)− ln

[(a
π

)nd
2

∫
Rnd

e−
1
2
ϕ′H

Q̃
(ψ(ϕ+ϕ0))ϕdϕ

]
.

We will now bound the second differential ϕ′H
Q̃

(ψ(ϕ+ ϕ0))ϕ from above.
One can write

ξi(θ, x) =
eθ
′
ix∑d

j=1 e
θ′ix

=
e(θ′i−θ′d)x∑d
j=1 e

(θ′j−θ′d)x
=

eϕ
′
ix∑d−1

j=1 e
ϕ′jx + 1

for i = 1, 2, . . . , d− 1 and

ξd(θ, x) =
eθ
′
dx∑d

j=1 e
θ′ix

=
1∑d−1

j=1 e
ϕ′jx + 1

.
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Therefore the functions ζi(ϕ, x) = ξi(θ(ϕ), x) do not depend on ϕd. In

Q̃(ϕ) =
T∑
t=1

d∑
i=1

y
(i)
t ln

y
(i)
t

ζi(ϕ, xt)
+ a‖θ(ϕ)‖2

only the last term depends on ϕd.
One can check by direct evaluation that

∂ζi(ϕ, x)

∂ϕk
= ζi(ϕ, x)(δi,k − ζk(ϕ, x))x′ ,

for i = 1, 2, . . . , d and k = 1, 2, . . . , d− 1, where δi,k is the Kronecker delta. The derivatives w.r.t.
ϕd equal to 0. Therefore

∂

∂ϕk

T∑
t=1

d∑
i=1

y
(i)
t ln

y
(i)
t

ζi(ϕ, xt)
= −

T∑
t=1

(y
(k)
t − ζk)x′t ,

∂2

∂ϕk∂ϕm

T∑
t=1

d∑
i=1

y
(i)
t ln

y
(i)
t

ζi(ϕ, xt)
=

T∑
t=1

ζk(ϕ, xt)(δm,k − ζm(ϕ, xt))xtx
′
t

for k,m = 1, 2, . . . , d− 1. If k = d or m = d, the derivative vanishes.
Letting Zt = (ζ1(ϕ, xt), ζ2(ϕ, xt), . . . , ζd(ϕ, xt))

′, we can write the matrix of second deriva-
tives as

∑T
t=1(diag(Zt)−ZtZ ′t)⊗ xtx′t, where diag(Zt) is the diagonal matrix having elements of

Zt on the diagonal.
We now need to bound the corresponding quadratic form from above uniformly over ϕ.

Lemma 6 Let P = (p1, p2, . . . , pm)′, where pi ≥ 0 for i = 1, 2, . . . ,m and
∑m

i=1 pi = 1. Then

0 ≤
m∑
i=1

pix
2
i −

(
m∑
i=1

pixi

)2

≤ 1

2

m∑
i=1

x2
i

for all x1, x2, . . . , xm ∈ R.

The lemma is proven in Appendix A.

Remark 7 The upper bound in the lemma is sharp for m ≥ 2. Take p1 = p2 = 1/2, p3 = p4 =
. . . = pm = 0 and x1 = −x2 = x, x3 = x4 = . . . = xm = 0. The upper bound turns into an
equality.

The matrix diag(Zt) − ZtZ ′t is symmetric. The lemma implies that it is positive semi-definite
and diag(Zt) − ZtZ ′t 4 1

2Id−1, where Id−1 is the ((d − 1) × (d − 1))-unit matrix. Distributivity
of the Kronecker product and the properties of the product of positive semi-definite matrices (see,
e.g., the book by Horn and Johnson, 1991, 4.2.7 and 4.2.13) imply

T∑
t=1

(diag(Z)− ZtZ ′t)⊗ xtx′t 4
T∑
t=1

1

2
Id−1 ⊗ xtx′t =

1

2
Id−1 ⊗

T∑
t=1

xtx
′
t .

9
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The term ‖θ‖2 can be bounded from above as follows:

‖θ‖2 =
d∑
i=1

‖θi‖2 =
d−1∑
i=1

‖ϕi + ϕd‖2 + ‖ϕd‖2 ≤ 2
d−1∑
i=1

‖ϕi‖2 + (2d− 1)‖ϕd‖2 .

Remark 8 One can check that this bound is sharp by considering ϕi ∈ R such that ϕ1 = ϕ2 =
. . . = ϕd = 1 and the corresponding θ1 = θ2 = . . . θd−1 = 2, θd = 1.

Putting this all together we get

1

2
ϕ′H

Q̃
(ψ(ϕ+ϕ0))ϕ ≤ 1

2
ϕ′1:d−1

(
1

2
Id−1 ⊗

T∑
t=1

xtx
′
t

)
ϕ1:d−1 +2a

d−1∑
i=1

‖ϕi‖2 +(2d−1)a‖ϕd‖2 ,

where ϕ′1:d−1 = (ϕ′1, ϕ
′
2, . . . , ϕ

′
d−1). Fubini’s theorem imply∫

Rnd
e−

1
2
ϕ′H

Q̃
(ψ(ϕ+ϕ0))ϕdϕ ≥∫

Rnd
e

1
2
ϕ′1:d−1(

1
2
Id−1⊗

∑T
t=1 xtx

′
t)ϕ1:d−1+2a

∑d−1
i=1 ‖ϕi‖

2+(2d−1)a‖ϕd‖2dϕ =∫
Rn(d−1)

e−ϕ
′
1:d−1(

1
4
Id−1⊗

∑T
t=1 xtx

′
t+2aIn(d−1))ϕ1:d−1dϕ1:d−1

∫
Rn
e−(2d−1)a‖ϕd‖2dϕd =∫

Rn
e−ϕ

′
1(

∑T
t=1 xtx

′
t/4+2aIn)ϕ1dϕ1 . . .

∫
Rn
e−ϕ

′
d−1(

∑T
t=1 xtx

′
t/4+2aIn)ϕd−1dϕd−1·∫

Rn
e−(2d−1)a‖ϕd‖2dϕd =

(∫
Rn
e−ϕ

′(
∑T
t=1 xtx

′
t/4+2aIn)ϕdϕ

)d−1 ∫
Rn
e−(2d−1)a‖ϕd‖2dϕ

(the matrix 1
4I ⊗

∑T
t=1 xtx

′
t is block diagonal with identical blocks).

We are now going to evaluate the integrals of exponents of quadratic forms (Beckenbach and
Bellman, 1961, Chapter 2, Theorem 3). If an (n × n)-matrix A is symmetric and positive definite,
then ∫

Rn
e−x

′Axdx =
πn/2√
detA

.

We get ∫
Rn
e−(2d−1)a‖ϕd‖2dϕd =

(
π

a(2d− 1)

)n/2
,∫

Rn
e−ϕ

′(
∑T
t=1 xtx

′
t/4+2aI)ϕdϕ =

πn/2√
det
(∑T

t=1 xtx
′
t/4 + 2aI

) .

10
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Therefore

− ln

[(a
π

)nd
2

∫
Rnd

e−
1
2
ϕ′H

Q̃
(ψ(ϕ+ϕ0))ϕdϕ

]
≤

nd

2
ln
π

a
+
d− 1

2
ln det

(
T∑
t=1

xtx
′
t/4 + 2aI

)
− n(d− 1)

2
lnπ +

n

2
ln
a(2d− 1)

π
=

d− 1

2
ln det

(
1

4a

T∑
t=1

xtx
′
t + 2I

)
+
n

2
ln(2d− 1)

It remains to bound the determinant from above. For a symmetric positive semi-definite (m ×
m)-matrix M we have

detM ≤
(

trM

m

)m
.

(see, e.g., Proposition 5 by Kalnishkan (2016)).
Thus

det

(
1

4a

T∑
t=1

xtx
′
t + 2I

)
≤

(∑T
t=1 ‖xt‖2

4an
+ 2

)n
.

Theorem 2 follows.
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Appendix A. Proof of the Variance Lemma

In this section we prove Lemma 6.
The expression

∑
i pix

2
i − (

∑
i pixi)

2 has the meaning of variance of xi w.r.t. the distribution
pi, so it is non-negative.

The upper bound is equivalent to

1

2

∑
i

x2
i +

(∑
i

pixi

)2

−
∑
i

pix
2
i ≥ 0 .
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Opening up the brackets yields

1

2

∑
i

x2
i +

∑
i

p2
ix

2
i +

∑
i 6=j

pipjxixj −
∑
i

pix
2
i ≥ 0

and ∑
i

(
1

2
+ p2

i − pi
)
x2
i ≥ −

∑
i 6=j

pipjxixj

The absolute value of the right-hand side can be bounded as follows:∣∣∣∣∣∣
∑
i 6=j

pipjxixj

∣∣∣∣∣∣ ≤
∑
i 6=j

pipj |xi||xj | ≤
∑
i 6=j

pipj
x2
i + x2

j

2
=

1

2

∑
i

∑
j,j 6=i

pipjx
2
i +

1

2

∑
j

∑
i,j 6=i

pipjx
2
j =

1

2

∑
i

pi(1− pi)x2
i +

1

2

∑
j

pj(1− pj)x2
j =

∑
i

pi(1− pi)x2
i .

For every i we have 1
2 + p2

i − pi ≥ pi(1 − pi) since 1
4 ≥ pi(1 − pi) for pi ∈ [0, 1]. The lemma

follows.
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