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Abstract

In this paper, we investigate the use of Inductive Conformal Martingales (ICM) with the
histogram betting function for detecting the occurrence of concept drift (CD) in data
stream classification. A change in the data distribution will almost surely affect the per-
formance of our classification model resulting in false predictions. Therefore, a reliable
and fast detection of the point at which a CD occurs, allows effective retraining of the
model to recover accuracy. Our approach is based on ICM with the histogram betting
function, which is much more computationally efficient than alternative ICM approaches.
To accelerate the process of detecting CD we also modify the ICM and examine different
parameters of the histogram betting function. We evaluate the proposed approach on three
benchmark datasets, namely STAGGER, SEA and ELEC, presenting different measures of
its performance and comparing it with existing methods in the literature.

Keywords: Conformal, Martingales, Exchangeability,Drift

1. Introduction

In this study we deal with the problem of CD. When CD occurs while mining data streams
the generating data distribution changes, this phenomenon leads to poor predictions and
decision outcomes. A reliable tool that will raise an alarm as close as possible to the point
at which the distribution changes will be beneficial. When a CD is detected the prediction
algorithm will be adapted allowing as to recover accuracy.

Note that CD has also been defined by various authors as concept shift or dataset shift,
in this study we use the term ‘CD’(Lu et al., 2019).

Formally a CD at time stamp t+1 can be described as follows: given a set of examples we
divide it into two subsets: S0,t = {(x0, y0), (x1, y1), . . . , (xt, yt)} St+1,... = {(xt+1, yt+1), . . . , },
where xi is a feature vector and yi a label. If the distribution of S0,t is different from the
distribution of St+1,..., then we have a CD at time stamp t+ 1. For simplicity in this study
we say that CD occurs at t+ 1 iff Pt(X,Y ) 6= Pt+1(X,Y ) where (X,Y ) is a pair of random
feature vectors and labels respectively, with Pt and Pt+1 the distribution of the consecutive
instances contained in the sets S0,t and St+1,....

CD can be produced from three sources. Recall that Pt(X,Y ) = Pt(X|Y ) · Pt(Y ) and
Pt+1(X,Y ) = Pt+1(X|Y ) ·Pt+1(Y ). To have a change in the joint distribution of (X,Y) one
of the following might have happened: (a) Pt(X|Y ) = Pt+1(X|Y ) and Pt(Y ) 6= Pt+1(Y ) in
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this case we have a change in the labels distribution while the decision boundaries remain
unchanged, this has also been considered as label shift (Vovk, 2020) and virtual drift (Bagui
and Jin, 2020) (b) Pt(X|Y ) 6= Pt+1(X|Y ) and Pt(Y ) = Pt+1(Y ) here the decision boundaries
change and lead to decrease in accuracy, it has also been considered as actual drift (Bagui
and Jin, 2020) or concept shift (Vovk, 2020) and (c) Pt(X|Y ) 6= Pt+1(X|Y ) and Pt(Y ) 6=
Pt+1(Y ); which is a combination of the two previously mentioned sources.

CD types can be classified in four categories: (a) sudden drift where the data generating
mechanism changes instantly (b) gradual drift where the data distribution is replaced with
a new one over time (i.e over time we experience fewer examples belonging to the initial
distribution and more from the new distribution), (c) incremental where the a new data
generating mechanism incrementally replaces the existing mechanism (i.e each example is
generated by a mixture of distributions but over time the impact of the initial distribution
disappears) d) reoccurring drift when a previously seen data distribution reappears (Lu
et al., 2019),(Bagui and Jin, 2020).

The CD detection algorithms can be classified in three categories based on their statis-
tics they apply (Lu et al., 2019). The first category is the ‘Error rate-based algorithms’,
which they monitor increases or decreases of the online error rate, if these changes are sta-
tistically significant a drift alarm is raised. The second and biggest category is the ‘Data
Distribution-based’, here the algorithms quantify the dissimilarity between the historical
data and the new data. A distance function is used to measure the dissimilarity between
the two distributions, a statistical hypothesis test with respect to a significance level will
test if CD occurs. The last category ‘Multiple Hypothesis Test’, applies similar techniques
with the ones mentioned above. Techniques of this category use multiple hypothesis tests
to detect CD. They can be divided in two groups: parallel hypothesis tests and hierarchical
multiple hypothesis tests for more information refer to (Lu et al., 2019).

In this paper our aim is to detect CD by testing the exchangeability assumption (EA),
violation of this assumption is an indication that CD occurred. By the term exchange-
ability of the data we mean that the examples are invariant to any permutation. Many
machine learning techniques are based on EA assumption, if this assumption is violated
then predictions are likely to be misleading. Note that testing that the data is exchange-
able is equivalent to testing the data for being independent and identically distributed (i.i.d)
(Fedorova et al., 2012).

Vovk et al. (2003) proposed a way of testing exchangeability in an online manner based
on Conformal Prediction (CP) and Conformal Martingales (CM). The technique proposed
by (Vovk et al., 2003) consists of calculating a sequence of p-values by applying conformal
prediction. The p-values are calculated in an online manner where the p-value of each
new example is calculated from the new example and the previously seen examples. After
the p-values are calculated a betting function is applied on each p-value and the product
of the betting function outputs is the value of the Martingale. When the value M of
the Martingale, becomes large enough we can reject the exchangeability assumption at
significance level 1/M.

An important problem of using the original CM method for CD detection is its com-
putational inefficiency since it requires retraining every time a new instance is observed.
For this reason, in this work we use its inductive version, called ICM, which avoids this
issue. However even with the inductive CM the whole process of detecting CD might be
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computationally inefficient. This is due to the fact that if we want the martingale to detect
changes quickly in streaming data a betting function equal to the p-values density function
is required. For this reason we use the histogram density estimator as a betting function
which is more computationally efficient than the kernel density estimator (Eliades and Pa-
padopoulos, 2020). Even though a well tuned kernel density estimator might perform better
on CD detection, the computational time it requires is prohibitive for processing the huge
amounts of data typical in CD detection tasks. Additionally another issue of the original
CM and ICM is that it might need a lot of time to recover from a low value (Volkhonskiy
et al., 2017), for this reason we propose a modification in which we restrict its lowest value
to ensure that it will recover quickly from a low value and an alarm will be raised. Fur-
thermore when calculating the histogram betting function we set the number of bins to be
a function of the instances seen so far. This allows us to detect CD quickly and retrain our
model again on the new data therefore recovering accuracy. We test the proposed approach
on two synthetic and one real benchmark data sets. We present different measures of its
performance and compare it with existing methods in the literature.

The rest of the paper starts with an overview of related work on CD in Section 2. Sec-
tion 3 gives a brief overview of the ideas behind ICM. Section 4 describes the proposed
approach and defines the betting function used for our ICM. Section 5 presents the experi-
mental setting and performance measures used in our evaluation and reports the obtained
experimental results. Finally, Section 6 gives our conclusions and plans for future work.

2. Related Work

In the literature there are many papers dealing with CD. Due to the large volume of research,
we will present only few works related with the method we will follow and the datasets we
used. We also present some work using CM and ICM which are directly connected with our
approach.

Lu et al. (2019) surveyed reviews over 130 high quality publications in CD related
research areas, they list and discuss 10 popular synthetic datasets and 14 publicly available
benchmark datasets used for evaluating the performance of learning algorithms dealing with
CD.

Bagui and Jin (2020) surveyed works dealing with CD, they presented a comprehensive
study of public synthetic and real datasets that can be used to benchmark such a problem.
They review the different types of drifts and approaches that used to handle such changes
in the data.

Elwell and Polikar (2011) introduced an ensemble based approach for incremental learn-
ing of CD where the underlying data distributions change over time. The proposed al-
gorithm learns from consecutive batches of data without making any assumptions on the
nature or rate of drift, a new classifier is trained for each batch of data it receives and
combines these classifiers using a dynamically weighted majority voting.

Li et al. (2015) implemented a classification algorithm based on Ensemble Decision
Trees for Concept-drifting data streams (EDTC). Extensive studies on synthetic and on
real streaming databases demonstrate that the EDTC performs very well compared to
several known online algorithms based on single models and ensemble models.
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Bu et al. (2017) proposed an incremental least squares density difference (LSDD) change
detection method, their method is based on examining the difference between two distribu-
tions using two non overlapping windows. They tested their method on 6 synthetic datasets
and on one real world dataset.

Fok et al. (2017) used a particle filter-based learning method (PF-LR), for training
logistic regression models from evolving data streams. Here the step particles are sampled
from the ones that maximize the classification accuracy on the current data batch. Their
experiments show that this method gives good performance, even with relatively small batch
sizes. They tested the proposed methods on both synthetic and real data sets and find that
PF-LR outperforms some other state-of-the-art streaming mining algorithms on most of the
data sets tested. Below we present two algorithms dealing with CD that according to Fok
et al. (2017) can be considered as state of the art.

Kolter and Maloof (2007) presented an ensemble method for CD that creates, weights
or remove online learners based on their performance, also based on the overall performance
of the ensemble it can add new experts or remove them, they call their method Dynamic
Weighted Majority (DWM), in this method if the base classifier is Naive Bayes then we call
it (DWM-NB).

Bifet et al. (2010) proposed a new method called Hoeffding Tree Leveraging Bagging
(LB-HT). This method combines the simplicity of bagging with adding more randomization
to the input, and output of the classifiers.

CM introduced by Vovk et al. (2003) can be used as a tool for testing if a set of data
satisfies the EA and for change point detection in time series. Some related techniques are
presented below.

Ho et al. (2019) proposed a real time novel martingale-based approach driven by Gaus-
sian process regression (GPR) to predict and detect anomalous flight behavior as observa-
tions are observed one by one. The authors here use multiple CM tests allowing them to
reduce the number of false alarms and also the delay time required for anomaly detection.

Ho (2005) implemented a CM based on a simple betting mixture function extending
the idea of detecting exchangeability online to detect concept changes in time-varying data
streams. Two martingale tests were implemented based on: (i) martingale values and (ii)
the martingale difference.

Fedorova et al. (2012) tested the exchangeability of data on two data-sets, USPS and
Statlog Satellite data. The data is tested in an online manner i.e. the examples arrive one
by one and then the value of the CM is calculated which is a valid measure indicating if the
EA should be rejected. In this article the authors used a density estimator of the observed
p-values as a betting function. The kernel density estimation has been employed and it has
been shown that it outperforms the simple mixture betting function.

Volkhonskiy et al. (2017) implemented an Inductive version of CM to detect when a
change occurs in a time series. In this study the underlying model is trained on the first
observations of the time sequence. All the nonconformity scores are calculated via the
underlying model. The authors tested their methods on synthetic data-sets and showed
that their results are comparable with those of many other methods.
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3. Inductive Conformal Martingales

In this study we test for CD using ICM and a modified version of ICM. At the point
at which the CD occurs the EA will be violated thus a method that effectively tests the
exchangeability of data will be sufficient for detecting CD. In this section we describe the
basic concepts of ICM and how our nonconformity scores and p-values are calculated.

3.1. Exchangeability

Let (Z1, Z2, . . . ) be an infinite sequence of random variables. Then the joint probability
distribution P(Z1, Z2, . . . , ZN ) (where N is natural number) is exchangeable if it is invariant
under any permutation of these random variables. The joint distribution of the infinite
sequence (Z1, Z2, . . . ) is exchangeable if the marginal distribution of (Z1, Z2, . . . , ZN ) is
exchangeable for every N . Testing if the data is exchangeable is equivalent to testing
the data for being i.i.d, this is an outcome of de Finetti’s theorem (Schervish, 1995) any
exchangeable distribution on the data is a mixture of distributions under which the data is
i.i.d.

3.2. Exchangeability Martingale

A test exchangeability Martingale is a sequence of random variables (S1, S2, S3, . . . ) being
equal to or greater than zero that keep the conditional expectation E(Sn+1|S1, . . . , Sn) = Sn.

To understand how a martingale works consider a fair game where a gambler with infinite
wealth follows a strategy that is based on the distribution of the events in the game. The
gain acquired by the gambler can be described by the value of a Martingale. Specifically
Ville’s inequality (Ville, 1939) indicates that the probability to have high profit(C) would
be small, P{∃n : Sn ≥ C} ≤ 1/C.

According to Ville’s inequality (Ville, 1939) for the case of the EA a large final value of
the Martingale suggests rejection of the assumption with a significance level equal to the
inverse of the Martingale value. Specifically, a Martingale value such as 10 or 100 rejects
the hypothesis of exchangeability at 10% or 1% significance level, respectively.

3.3. Calculating Non-conformity scores and p-values

As mentioned in the Section 1 instead of the original CM version we use the computational
efficient inductive version ICM. Let {z1, z2, . . . , zk, . . . , zn} be a sequence of examples, where
zi = (xi, yi) with xi an object given in the form of an input vector, and yi ∈ R the label of
the corresponding input vector. The first k examples (z1, z2, . . . , zk) will be used to train
our classification algorithm.

The examples {zk+1, . . . , zn} arrive one by one so we want to examine how strange or
unusual a new example zj is compared to the training examples. To make this possible a
numerical value will be assigned to each example called nonconformity score (NCS) denoted
as αi and equal to (zi, {z1, . . . , zk}) with i ∈ {k + 1, . . . , n}. The calculation of the NCS is
based on the underlying algorithm. A big value of the nonconformity measure indicates a
strange example and a small value indicates a less strange example.

For every new example zj we calculate the sequence Hj = {αk+1, αk+2, . . . , αj−1, αj} to
find its p-value. Note that the NCS in Hj are calculated when the underlying algorithm
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is trained on {z1, z2, . . . , zk}. Given the sequence Hj we can calculate the corresponding
p-value (pj) of the new example zj with the function:

pj =
|{αi ∈ Hj |αi > αj}|+ Uj · |{αi ∈ Hj |αi = αj}|

j − k
, (1)

where αj is the NCS of the new example and αi is the NCS of the ith element in the example
series set and Uj is a random number from the uniform distribution (0,1).

For the three benchmark data-sets tested on this study we have used a simple tree
classifier. For each example the tree classifier will output the posterior probability p̃j for
each label yj . Therefore we define the NCM: αj = −p̃j .

3.4. Exchangeability Martingales

An ICM is an exchangeability test Martingale (see Subsection 3.2) which is calculated as a
function of p-values such as the ones described in Subsection 3.3.

Given a sequence of p-values (p1, p2, . . . ) the martingale Sn is calculated as:

Sn =
n∏
i=1

fi(pi) (2)

where fi(pi) = fi(pi|p1, p2, . . . , pi−1) is the betting function.

Equation 2 should satisfy the constraint:
∫ 1
0 fi(p)dp = 1 and also it follows that

E(Sn+1|S0, S1, . . . , Sn) = Sn.

The integral
∫ 1
0 fi(p)dp equals to 1 because fi(p) is the p-values (p1, p2, . . . , pi−1) density

estimator. We also need to prove that E(Sn+1|S0, S1, . . . , Sn) = Sn under any exchangeable
distribution.

Proof E(Sn+1|S0, S1, . . . , Sn) =
∫ 1
0

∏n
i=1 fi(pi) · fn+1(p)dp =

∏n
i=1 fi(pi) ·

∫ 1
0 fn+1(p)dp =∏n

i=1 fi(pi) = Sn

Using equation (2) it is easy to show that Sn = Sn−1 · fn(pn) which allows us to update
the martingale online. Let’s say that the value of Sn is equal to M then Ville’s inequality
(Ville, 1939) suggests that we can reject the EA with a significance level equal to 1/M .

4. Proposed Approach

In this section we describe the proposed approach i.e. the ICM, the modified ICM as well
as the betting functions we used. We examine if a sequence of betting functions equal to
the probability density estimation of the p-values seen so far combined with ICM and its
modification is sufficient enough for the rejection of the EA. When the EA is rejected at
a point with timestamp i a CD is detected, we retrain our prediction’s model to regain
accuracy. The density function estimator f̂n we used is the simple histogram. Note that
the ICM is able reject the EA with respect to a significance level while our modified version
is evaluated empirically using empirical evidence.
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Data: Training set {z1, z2, . . . , zk}, Test set{zk+1, . . . , zn}, significance level δ
Initialize S1 = 1
for i=1,. . . ,n-k do

input zi
αi = A(zk+i, {z1, . . . , zk})
pi =

#{j:αj>αi}+Uj#{j:αj=αi}
i

Calculate density estimator fi = f(pi−1−L, . . . , pi−1)
Si = Si−1 · fi(pi)
if Sk >

1
δ then

Raise an Alarm
end

end
Algorithm 1: Detect CD using ICM

4.1. Histogram Estimator

Our goal here is to calculate a density estimator f̂n of the density distribution of the p-value
series: p1, p2, . . . , pn−1. It should be beneficial that the calculation of this estimator is fast
and it is desirable to have a small number of parameters to tune. The p-values pi ∈ [0, 1],
so we partition [0, 1] into a predefined number of bins k and calculate the frequency of
the observations that lie in each bin, dividing these frequencies by the total number of
observations and multiplying it by the number of bins gives us the histogram estimator.

Let us take a fixed number of bins κ this will partition [0, 1] into B1 = [0, 1/κ), B2 =
[1/κ, 2/κ),. . . , Bκ−1 = [(κ − 2)/k, (κ − 1)/κ) and Bκ = [(κ − 1)/κ, 1]. When a p-value
pn ∈ Bj then the density estimator will be equal to:

f̂n(pn) =
nj .κ

n− 1
, (3)

where n−1 is the number of p-values seen so far and nj is the number of p-values belonging

to Bj . Note that when n is small it is possible that that ∃x : f̂n(x) = 0, in that case until a

sufficient number of observations arrives we set f̂n = 1 so that the martingale value doesn’t
become zero. Also here when fn is calculated we use the p-values of the last L = 10000 seen
observations, this is due to the fact that we wanted to accelerate the process of calculating
fn since 10000 p-values are sufficient enough to estimate the p-value density function.

4.2. Detecting CD using ICM

To reject the EA and thus detecting CD for a pre-specified significance level δ the value of
the Martingale must exceed 1/δ. In Algorithm 1 we summarize this process.

Now if the value of the Martingale Sk at point k exceeds 10 or 100 then a CD is detected
with a significance level equal to 10% and 1% respectively.

4.3. Detecting CD with the modified ICM

Here in Algorithm 2 we show a modified version of the ICM. We propose this modification
because Sn will recover fast from low values ensuring that the CD will be detected faster.
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Data: Training set {z1, z2, . . . , zk}, Test set{zk+1, . . . , zn}, siginficance level δ, ε
Initialize S1 = 1
for i=1,. . . ,n-k do

input zi
αi = A(zk+i, {z1, . . . , zk})
pi =

#{j:αj>αi}+Uj#{i:αj=αi}
i

Calculate density estimator fi = f(pi−1−L, . . . , pi−1)
Si = max(Si−1 · fi(pi), ε)
if Sk >

1
δ then

Raise an Alarm
end

end
Algorithm 2: Detect Concept Drift using modified ICM

Although we might have a potential loss in theoretical validity, our experiments show that
the use of this method is still practical. The difference between Algorithm 1 is that we
restrict the value of Sn such it will not take a value below ε.

4.4. Betting Function Computational Efficiency Comparison

In this paper we use the histogram betting function to calculate the value of the martingale
Si. To show why we have chosen this betting function instead of the kernel betting func-
tion we focus on the calculation of the density estimator fi = f(pi−1−L, . . . , pi−1) and its
evaluation on a number of p-values (fi(pi)) equal to n. Where L is a the size of the sliding
window (i.e. we use the last L p-values to calculate the density estimator). As mentioned in
Section 1 the histogram betting function is more computationally efficient than the kernel
betting function, note that both approaches have a computational complexity of O(N),
however the kernel density estimator is several times slower due to fact that it needs more
operations. Note that the purpose of L is to control the number of operations and thus
reducing computational time.

To examine the time that each betting function needs to be calculated we have generated
ten vectors containing n = 10000, . . . , 100000 random numbers uniformly distributed. For
the histogram betting function we have used L = 10000 and a number of bins κ = 22 while
for the kernel betting function we set L to 100 as in Volkhonskiy et al. (2017). This process
is repeated ten times.

In Table 1 we show a comparison of the time needed to calculate and evaluate a his-
togram and a kernel density estimator ten times. The times reported here were obtained
on a machine with a Ryzen 7 5800x cpu and 32gb ram. Table 1 results show that the kernel
density estimator is several times slower than the histogram estimator. However to perform
experiments on big datasets with multiple simulations to ensure reliability of the experi-
mental results is an extremely time consuming task using the kernel density estimator. For
this reason while detecting concept drift we use the histogram betting function. Another
drawback of the kernel density estimator is to adjust and test the bandwidth parameter
which again makes things even harder to implement a kernel density estimator on stream
data. For example for the case of the SEA dataset (see Subsection 5.1) which consists of
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12000000 instances and a drift occurs every 100000 to evaluate the p-values would take
about 1.5 hours for every scenario.

Table 1: Computational time(sec.) of Histogram and Kernel betting function evaluation

n histogram kernel

10000 6.01 56.09
20000 19.52 112.13
30000 32.96 168.63
40000 46.63 224.78
50000 60.03 279.83
60000 73.26 336.03
70000 86.68 392.63
80000 100.23 448.78
90000 113.81 504.61
100000 127.50 560.94

5. Experiments and Results

This section describes the performance of our proposed approach on two synthetic datasets
and on one real world dataset. We compare the proposed approach with existing methods
in the literature Li et al. (2015), Bu et al. (2017), Fok et al. (2017).

5.1. Datasets

The synthetic benchmark data-sets we used are the STAGGER and the SEA, while the real
world dataset we used is the ELEC.

The STAGGER Schlimmer and Granger (1986) is a standard benchmark data-set widely
used for evaluating CD detection. For our simulations we have generated 1200000 instances,
where each example is described by 3 categorical attributes and has binary target output.
The drift type here is sudden and we have 4 concepts, a drift occurs every 10000 examples(i.e.
every chunk consists of 10000 examples). Here while training the tree classifier the training
set size is set to 300. We used a training set window of 300 because each categorical attribute
can take up to 3 different values, also taking into account that it a binary problem we will
at most 3.3.3=27 unique instances(noise free). Thus using a test set that contains 300
instances increases the possibility for our classifier to be trained on every possible attribute
and label combination. Here the training set size compared to number of instances until a
drift occurs is very small, specifically it is 3% of the total number of instances.

The SEA Street and Kim (2001) data-set is a popular synthetic dataset that contains
sudden CD and is used for evaluating CD detection algorithms. For our simulations we have
generated 12000000 instances, where each example is described by 3 numeric attributes and
binary labels. Here we have 4 concepts, a drift occurs every 100000 examples(i.e. every
chunk consists of 10000 examples). We have performed 30 simulations and for each one we
have used 400000 instances. In this dataset while training the tree classifier the training
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set size is set to 1000. In this dataset the three variables take random values from 0 to 10.
Particularly if the sum of the first two variables is less or equal to a pre-specified number
then the instance will belong to class 1, the third variable is irrelevant. Thus by taking a
training set that has 1000 instances will be sufficient for the tree classifier to construct the
decision boundary. Also compared to the number of observations till a CD occurs its size
is negligible. Note that here we test the transition from concept a → b → c → d while for
the case of STAGGER we test the transition from concept a → b → c → d → a, . . . , also
for the needs of this study we also inject in each of the above datasets 10% noise.

The ELEC data-set Harries et al. (1999) is a time series containing 45312 instances
recorded at 30-min intervals, it’s a binary problem (the class label identifies if we have a
rise or a drop in the price compared with a moving average of the last 24 hours). Each
example contains eight variables. This data has been collected from the Australian New
South Wales Electricity Market. In our experiments we have excluded the variables time,
date, day, and period. We ignore these three variables and we have only used nswprice,
nswdemand, transfer, vicprice, and vicdemand. While assessing results we have performed
30 simulations and the training set size we use is set to 300. Here we try to make predictions
for the future when we use as training set the observations of about only 1 week time.

Note that when a CD is detected we wait until a pre-specified number of observations
arrives, we retrain the model and then we apply Algorithms 1 and 2.

5.2. Performance Measures

To evaluate the performance of the proposed approach on the synthetic datasets we consider
four measures:

(a) Accuracy: Average accuracy of the predictive classifier (excluding the training set).

(b) Mean delay: Is the average number of observations needed to detect a CD after it
occurs.

(c) Portion of true alarm: it represents the average portion of CD’s that have been
correctly detected per chunk.

(d) Portion of false alarm: It represents the average portion that Algorithms 1, 2 erro-
neously detected a change when no CD is present per chunk.

On the real life dataset we will use the accuracy as defined below and the number of
CD detected.

5.3. Empirical Results

For each data-set we compare the results obtained with the ICM and the modified ICM when
using the histogram betting function with its different parameters (see Algorithms 1 and 2).
In the case of Algorithm 1 we tested its performance for δ = {10, 100} and for Algorithm 2 we
used δ = {10, 100}, ε = {0, 1, 0, 01}. For both algorithms we applied different values of the
number of histograms κ in the betting function, these are κ = {3, 4, 5, f loor(i1/3 + 0.5)}.
For simplicity we define g(c) = floor(c1/3 + 0.5) and c = max(i, 10000), where i is the
number of data stream observations seen so far after the last training. Here as the value of
δ increases we expect the portion of false alarms to decrease but at the expense of the time
required to detect a CD, on the other hand as the value of δ decreases the time required
to detect a CD decreases, the number of true alarms increases but we have a raise in false
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alarms. The purpose of the parameter ε in Algorithm 2 is to help the value of the modified
ICM to recover quickly when it falls to a small value. As the value of epsilon increases we
expect the number of true and false alarms to increase but the time required to detect a
CD will be reduced, when we have a decrease in the value of ε the number of true and false
alarms will be decreased but the required time to detect a CD will be increased. Note that
while using κ = g(i), κ increases as observations arrive and takes a maximum value of 22.
We have used this formula because as the number of observations increases more histogram
bins are required to approximate the p-value distribution. On the other hand, when the
number of observations is small a smaller number of histogram bins is more appropriate
making it more robust to statistical fluctuations.

5.3.1. STAGGER Data-set

In this subsection we present the results for the stagger dataset. The results shown in
Table 2 are obtained using Algorithm 1. Here when the number of histogram bins increases
the time required to detect a CD is reduced. Also the portion of false alarms stays low
enough while keeping the detection of CD 100% accurate. The best accuracy and CD
detection time is obtained when we set the number of bins to g(i), while we also manage to
keep the portion of false alarms low.

Table 2: STAGGER DATASET ALGORITHM 1

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.97 547.43 1 0.12
0 10 4 0.97 516.15 1 0.11
0 10 5 0.97 507.34 1 0.11
0 100 3 0.96 596.21 1 0.01
0 100 4 0.97 558.86 1 0.02
0 100 5 0.97 529.91 1 0.01
10 10 3 0.92 515.33 1 0.05
10 10 4 0.92 505.31 1 0.04
10 10 5 0.92 489.43 1 0.07
10 100 3 0.92 579.77 1 0.00
10 100 4 0.92 541.87 1 0.01
10 100 5 0.92 514.77 1 0.01
0 10 g(i) 0.98 301.37 1 0.13
0 100 g(i) 0.98 320.45 1 0.02
10 10 g(i) 0.93 350.99 1 0.02
10 100 g(i) 0.93 364.84 1 0.01

The results shown in Table 3 are obtained using Algorithm 2 with ε = 0.1. When
comparing the results here with the ones shown in Table 2 we can see that the accuracy is
improved, the time required to detect a CD is reduced, the portion of false alarms slightly
increases especially for values of δ = 10, the detection of CD stays at the level of 100%.
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The best accuracy and CD detection time is obtained when we set number of bins equal
to g(i) while using δ = 100 instead of 10 to keep the portion of false alarms low at acceptable
levels.

Table 3: STAGGER DATASET ALGORITHM 1 (ε = 0.1)

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.98 361.88 1 0.12
0 10 4 0.98 300.45 1 0.12
0 10 5 0.98 261.24 1 0.20
0 100 3 0.97 453.24 1 0.01
0 100 4 0.98 373.99 1 0.01
0 100 5 0.98 320.74 1 0.01
10 10 3 0.93 357.68 1 0.05
10 10 4 0.94 290.16 1 0.06
10 10 5 0.94 255.96 1 0.10
10 100 3 0.93 433.34 1 0.01
10 100 4 0.93 365.69 1 0.01
10 100 5 0.93 310.48 1 0.02
0 10 g(i) 0.99 123.69 1 0.41
0 100 g(i) 0.99 146.04 1 0.04
10 10 g(i) 0.94 119.69 1 0.16
10 100 g(i) 0.94 155.35 1 0.01

In Table 4 we present our results while using Algorithm 2 with ε = 0.01. When compar-
ing the results here with the ones shown in Table 3 we can see that there are cases in which
accuracy is reduced, but still better than that reported in Table 2. The time required to
detect a CD increases but improved compared with the ones shown in Table 2 especially
when setting the number of bins equal to g(i), the portion of false alarms is slightly de-
creased but is slightly worse with the ones shown in Table 2. We can observe that the best
accuracy and CD detection time is obtained when the number of bins is set to g(i). If we
want to keep the portion of false alarms low we can use δ = 100 keeping the practicability
of this method.

When we use Algorithm 2 with ε = 0.1, δ = 100 and the number of bins set to g(i) our
results for this dataset are comparable with those of other studies. Li et al. (2015) while
performing simulations on this dataset reported a portion of false alarms equal to 0.07, a
portion of true alarms equal to 0.86, a CD detection time equal to 1877 and an accuracy
equal to 0.82 and 0.60 with 0% and 10% noise respectively. Bu et al. (2017) reported a
portion of false alarms equal to 0.004, a portion of true alarms equal to 1 while the CD
detection time is 96.66 and an accuracy equal to 0.996. In their simulations no noise is
injected.

Figure 1 shows the Sn growth when using Algorithms 1 with δ = 100, Algorithm 2 with
δ = 100, ε = {0.1, 0.01} and the histogram betting function with the number of bins set to
g(i).
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Table 4: STAGGER DATASET ALGORITHM 2 (ε = 0.01)

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.97 451.24 1 0.13
0 10 4 0.98 367.13 1 0.10
0 10 5 0.98 316.89 1 0.09
0 100 3 0.97 518.80 1 0.01
0 100 4 0.97 427.34 1 0.01
0 100 5 0.98 373.81 1 0.00
10 10 3 0.93 435.49 1 0.05
10 10 4 0.93 356.71 1 0.05
10 10 5 0.93 313.98 1 0.06
10 100 3 0.92 501.08 1 0.01
10 100 4 0.93 412.98 1 0.01
10 100 5 0.93 365.08 1 0.01
0 10 g(i) 0.99 148.62 1 0.11
0 100 g(i) 0.99 174.79 1 0.01
10 10 g(i) 0.94 154.56 1 0.04
10 100 g(i) 0.94 181.50 1 0.00

(a) δ = 100 (b) δ = 100, ε = 0.1 (c) δ = 100, ε = 0.01

Figure 1: log(Sn) growth as instances observed for the STAGGER dataset using Algorithm
1, 2
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5.3.2. SEA Data-set

In this subsection we present the results for the SEA dataset. The results shown in Table 5
are obtained using Algorithm 1. Here roughly speaking when the constant number of
histogram bins increases we have an increase in the value of accuracy and the time that
required to detect a CD is reduced. Also the portion of false alarms stays low enough while
the detection of CD in most cases is greater than 0.97, we have a drop in the true alarm
portion when the dataset is injected with 10% noise and the number of bins is less or equal
to 3. The best accuracy and CD detection time is obtained when we set the number of
bins equal to 5 when we test on noisy data, while when we test on non noisy data the best
accuracy and CD detection time is obtained when set the number of bins equal to g(i).

Table 5: SEA DATASET ALGORITHM 1

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.97 6044.30 1 0.05
0 10 4 0.97 5362.63 1 0.08
0 10 5 0.97 5451.50 1 0.03
0 100 3 0.97 6002.53 1 0.00
0 100 4 0.97 5096.03 1 0.00
0 100 5 0.97 5387.00 1 0.00
10 10 3 0.86 16213.38 0.70 0.03
10 10 4 0.87 7631.00 1 0.00
10 10 5 0.87 4698.17 1 0.00
10 100 3 0.86 18274.89 0.80 0.08
10 100 4 0.86 7876.97 1 0.00
10 100 5 0.87 4844.63 1 0.03
0 10 g(i) 0.97 3847.53 0.97 0.15
0 100 g(i) 0.97 3887.07 0.97 0.03
10 10 g(i) 0.87 7498.70 0.87 0.00
10 100 g(i) 0.87 7746.03 0.87 0.05

In Table 6 we show the results obtained using Algorithm 2 with ε = 0.1. When compar-
ing the results here with the ones shown in Table 5 we can see that the accuracy does not
change much except for the case of non noisy data when we set the number of bins equal to
g(i), the time required to detect a CD greatly reduces, the portion of false alarms increases
especially for values of δ = 10, the detection of CD stays in most cases at the level of 100%.

The best accuracy and CD detection time is obtained when we set number of bins equal
to g(i) while using δ = 100 instead of 10 to help us to keep the portion of false alarms low.

In Table 7 we present our results while using Algorithm 2 with ε = 0.01. When com-
paring the results here with the ones shown in Table 6 we can see that in most cases the
accuracy remains the same, the time required to detect a CD increases but is still less than
the reported in Table 5, the portion of false alarms is slightly decreased, but is still more
than that shown in Table 5. We can observe that the best accuracy and CD detection time
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Table 6: SEA DATASET ALGORITHM 2 (ε = 0.1)

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.97 2636.97 1 0.13
0 10 4 0.97 2384.67 1 0.20
0 10 5 0.97 1983.77 1 0.38
0 100 3 0.97 2912.73 1 0.00
0 100 4 0.97 2598.50 1 0.05
0 100 5 0.97 2186.43 1 0.03
10 10 3 0.87 5140.73 1 0.18
10 10 4 0.87 2310.00 1 0.23
10 10 5 0.87 1553.73 1 0.28
10 100 3 0.87 7156 1 0.00
10 100 4 0.87 2625.23 1 0.03
10 100 5 0.87 1985.93 1 0.00
0 10 g(i) 0.97 614.27 1 1.48
0 100 g(i) 0.97 804.17 1 0.10
10 10 g(i) 0.87 1177.70 1 1.33
10 100 g(i) 0.87 1272.43 1 0.15

is obtained when setting number of bins to g(i) this holds for both noisy and non noisy
data.

The results indicate that setting the number of bins to g(i) and δ = 100 in Algorithm
2 greatly reduces the time required to detect CD while the portion] of false alarms is still
comparable with that obtained when using Algorithm 1. Additionally we were able to
detect all CD. These results are comparable with other methods found in bibliography.
While using the PF-LR algorithm Fok et al. (2017) reported an average accuracy on the
noiseless dataset equal to 0.98. Li et al. (2015) report an accuracy of 0.92 on noiseless
data and an accuracy of 0.86 on 10% noise data, additionally they report that the CD
was detected in almost all simulations and a minimum average time of detection equal to
6700, also they report a minimum portion of false alarm equal to 0.06. According to Fok
et al. (2017) the two state of the arts algorithms DWM-NB, LB-HT mentioned in 2 give an
accuracy of 0.965 and 0.963 respectively on the noiseless dataset.

Figure 2 presents the Sn growth when using Algorithm 1 with δ = 100, Algorithm 2
with δ = 100, ε = {0.1, 0.01} and the histogram betting function with the number of bins
set to g(i).

5.3.3. ELEC Data-set

In this subsection we present the results for the ELEC dataset. In table Table 8 we show
the results obtained using Algorithm 1. Here as the number of bins increases the accuracy
improves, also the number of detected CD increases. When we set the number of bins to
g(i) we have an improvement in accuracy and also an increase in the number of detected
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Table 7: SEA DATASET ALGORITHM 2 (ε = 0.01)

Noise δ No of Bins Accuracy Mean delay
Portion of
true alarm

Portion of
false alarm

0 10 3 0.97 3057.73 1 0.05
0 10 4 0.97 2624.23 1 0.13
0 10 5 0.97 2356.73 1 0.08
0 100 3 0.97 3293.27 1 0.03
0 100 4 0.97 2943.63 1 0.03
0 100 5 0.97 2498.17 1 0.03
10 10 3 0.87 7289.40 1 0.03
10 10 4 0.87 2684.43 1 0.03
10 10 5 0.87 1960.47 1 0.23
10 100 3 0.87 8880.6 1 0.00
10 100 4 0.87 3474.47 1 0.00
10 100 5 0.87 2283.87 1 0.00
0 10 g(i) 0.97 837.07 1 0.28
0 100 g(i) 0.97 1195.73 1 0.05
10 10 g(i) 0.87 1211.67 1 0.05
10 100 g(i) 0.87 1430.03 1 0.05

(a) δ = 100 (b) δ = 100, ε = 0.1 (c) δ = 100, ε = 0.01

Figure 2: log(Sn) growth for the SEA dataset using Algorithms 1, 2
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CD. The best accuracy is obtained when we set δ = 10 and the number of bins is set to
g(i).

Table 8: ELEC DATASET ALGORITHM 1

δ No of Bins Accuracy Number of cd detected

10 3 0.72 34.87
10 4 0.72 35.93
10 5 0.73 34.73
100 3 0.71 20.60
100 4 0.72 26.87
100 5 0.73 27.74
10 g(i) 0.74 43.07
100 g(i) 0.73 32

In Table 9 we present our results while using Algorithm 2 with ε = 0.1. When comparing
the results here with the ones shown in Table 8 we can see that there is an improvement
in the accuracy, also the number of detected CD increases. We can observe that the best
accuracy is obtained when we set number of bins to g(i) with a δ = 10

Table 9: ELEC DATASET ALGORITHM 2 (ε = 0.1)

δ No of Bins Accuracy Number of cd detected

10 3 0.75 63.27
10 4 0.75 71.87
10 5 0.75 76.40
100 3 0.73 36.53
100 4 0.75 45.70
100 5 0.75 49.63
10 g(i) 0.76 84.13
100 g(i) 0.74 56.87

Table 10 presents the results while using Algorithm 2 with ε = 0.01. When we compare
the results here with the ones shown in Table 9 we can see a slight drop in accuracy and
in the number of detected CD. Comparing these results with the ones shown in Table 8,
the value of accuracy and the number of detected CD is greater. Here the best accuracy is
obtained when we set the number of bins equal to g(i) with a δ = 10.

While performing simulations on this dataset the best averaged accuracy we have ob-
tained equals to 0.76. This accuracy is achieved when we use Algorithm 2 with a δ = 10 and
by setting the number of bins equal to g(n). In bibliography Fok et al. (2017) reported an
average accuracy of 0.88 while using PF-LR, also this study reports that the two state of the
art CD algorithms (DWM-NB and LB-HT) mentioned in Section 2 obtained an accuracy
of 0.81, 0.86. Although the accuracy here is relatively low compared with some state of the
arts algorithm and Fok et al. (2017) we believe that our algorithm can be improved. This
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Table 10: ELEC DATASET ALGORITHM 2 (ε = 0.01)

δ No of Bins Accuracy Number of cd detected

10 3 0.73 46.33
10 4 0.75 52.87
10 5 0.75 56.60
100 3 0.72 28.80
100 4 0.73 36.27
100 5 0.74 38.70
10 g(i) 0.75 67.93
100 g(i) 0.74 48.03

is because we have used a tree classifier with default setting and we didn’t optimize it’s
performance. Also the fact that our algorithm uses only 300 training instances each time
a CD is detected makes is practically useful, this is because to obtain an accuracy of 0.76
only 56% of the dataset is used for training, furthermore for an accuracy of 0.75 only 30%
of the dataset is used for training.

(a) δ = 100 (b) δ = 100, ε = 0.1 (c) δ = 100, ε = 0.01

Figure 3: log(Sn) growth as instances observed for the ELEC dataset using Algorithm 1, 2

Figure 3 presents the Sn growth when using Algorithm 1 with δ = 100, Algorithm 2
with δ = 100, ε = {0.1, 0.01} and the histogram betting function with the number of bins
set to g(i).

6. Conclusions

In this study we examined the use of ICM and a slightly modified version of ICM combined
with a histogram betting function to examine their practicability on detecting CD. We have
tested our approaches on two synthetic and one real life datasets. Our results show that the
modification of the ICM improves accuracy and reduces the time needed to detect a CD. An
increase in parameter δ can reduce the portion of false alarms and an increase in parameter
ε can help the modified Martingale to recover from a low value. We also tested different
settings on the bin numbers of the histogram function, we have seen that the best results
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are obtained when the number of bins increases as more observations arrive. As a future
work we intend to improve the proposed approach by combining it with more advanced
classifiers such as ensemble classifiers, other multiple hypothesis tests or other parallel tests
to reduce the portion of false alarms.
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