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Abstract
This poster proposes a way of protecting algorithms for probabilistic binary classification
against changes in the data distribution.
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1. Idea

A ubiquitous problem in applications of machine learning is that, soon after a predictor is
trained, the distribution of the data changes, and so the predictor may need to be retrained.
We propose a way of preventing a catastrophic drop in the quality of the trained predictor
when the data distribution changes. To use Anscombe’s (1960) insurance metaphor, our
procedure provides an insurance policy against such changes. The case of regression was
discussed in an earlier paper (Vovk, 2021), and in this extended abstract and its full version
(Vovk et al., 2021a) we concentrate on the simpler case of binary classification. Notice that
our task here is somewhat different from that of Vovk et al. (2021b): instead of detecting
a changepoint in data distribution, we are merely trying to protect a given predictor from
such changes.

Suppose we have a predictive system F (obtained by training a prediction algorithm)
that outputs predictions pq,pe,--- € [0,1] for the binary labels y;,y9,--- € {0,1}, where
Dr, is the predicted probability that y, = 1. We can test these predictions using, e.g., the
Simple Jumper test martingale S (Vovk et al., 2021b). This martingale is the likelihood
ratio of a new predictive system F’ to the original (or base) one F, and the idea is to use
F' for prediction instead of F. As measured by the log loss function, the cumulative loss of
the protected predictive system F’ will be smaller than the cumulative loss of F' by the log
of the final value of S (in the next section we will use decimal logs).

The procedure is shown as Algorithm 1, where By, ({y}) := plyy—1}+(1—p)1y—o) stands
for the Bernoulli distribution. One of its two parameters is a finite family f : [0, 1] — [0, 1],
€ € E, of calibrating functions. The intuition behind f, is that we are trying to improve the
base predictions p,, or calibrate them; the idea is to use a new prediction f.(py) instead of
Prn. In our experiment described in the next section we use a subset of the family

fe(p) :=p+ep(1 —p),

where € € [—1,1]. For ¢ > 0 we are correcting for the forecasts p being underestimates of
the true probability of 1, while for ¢ < 0 we are correcting for p being overestimates. The
algorithm requires our family to be finite, and we choose E := {—1,-0.5,0,0.5,1}. The
other parameter is the jumping rate J, which we set to 0.01, J := 0.01. The dependence
on E and J is slight (Vovk et al., 2021a).
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Algorithm 1: Simple Jumper protection ((p1,p2,...) — (p],05,...))

C.:=1forallec E
forn=1,2,... do
C:=>  cgCe
for e € E do
| C.:=C./C
for e € E do
| Co:=(1—-J)Cc+ J/|E|
Py = ZeeE fe(pn)Ce
for e € E do
| Ce:=CeBy.p,){yn})
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Figure 1: The Simple Jumper test martingale and the ROC curve for protection.

2. Experimental results

In this section we report results of our experiments with the popular Bank Marketing
dataset, available from OpenML. The observations in the dataset are listed in chronological
order. We take the first 10000 observations as the training set and train a random forest
(scikit-learn function) with default parameters on it. The random forest often outputs
probabilities of success that are equal to 0 or 1, and when such a prediction turns out
to be wrong (which happens repeatedly), the log-loss is infinite; therefore, we truncate
the predicted probabilities to the interval [e,1 — €], where we set € := 0.1. The resulting
prediction rule is our base predictive system. After we find it, we never use the training set
again, and the numbering of observations in our plot starts from the first element of the
test set (i.e., the dataset in the chronological order without the training set).

The left panel of Figure 1 shows the trajectory log,qSp, n =1,...,35211, of the Simple
Jumper test martingale over the test set on the log scale. It is interesting that the steepest
growth of the logarithm of the test martingale starts towards the end of the dataset (covering
2008-2013), long after the financial crisis of 20072008 ended. The right panel gives the
ROC curve for the random forest and the random forest protected by Algorithm 1. We can
see that the improvement is substantial.
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