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Abstract

Industry 4.0 and recent deep learning progress make it possible to solve problems that
traditional methods could not. This is the case for anomaly detection that received a par-
ticular attention from the machine learning community, and resulted in a use of generative
adversarial networks (GANs). In this work, we propose to use intermediate patches for the
inference step, after a WGAN training procedure suitable for highly imbalanced datasets, to
make the anomaly detection possible on full size Printed Circuit Board Assembly (PCBA)
images. We therefore show that our technique can be used to support or replace actual
industrial image processing algorithms, as well as to avoid a waste of time for industries.

Keywords: Industry 4.0, AOI, PCBA, Anomaly Detection, Imbalanced Dataset, WGAN,
Image Processing, Real-World Dataset, Unsupervised Learning

1. Introduction

In the last few decades, the industrial sector evolved with technologies, entering different
successive revolutions. From the steam-powered equipment, to the introduction of elec-
tricity and IT equipment, the sector takes nowadays advantage of cyber-physical systems.
Companies are now facing the 4th industrial revolution, also called Industry 4.0. This
new paradigm involves a variety of key enablers, composed of the internet of things (IOT),
analytics, data science, machine learning and decision systems. The main objective of
these technologies is to optimize the factories productivity. In this context, deep learning,
applied to automatic image inspection, offers a high potential to enforce quality control re-
quirements. This can be done because factories own countless images that may be exploited,
specifically to detect and localize anomalies in products.

This work proposes to solve a real-world, industrial, anomaly detection problem. Real-
world images are considered, taken from the production lines of an Automatic Transmission
Electronic Control Unit (ATECU) manufacturer. The product line is composed of successive
processes, devoted to manufacture electronic Printed Circuit Board Assembly (PCBA), in
order to equip car speed boxes. The first process is the one of interest in our work. It
takes images of 100% of the products being manufactured through an Automatic Optical
Inspection (AOI), applied on the 2 faces of the PCBA. To detect PCBAs with anomalies in
the product line, traditional anomaly detection algorithms (comparison between an image
under test and a golden sample image) are currently used in factories, through this process.
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However, traditional anomaly detection algorithms have several practical drawbacks,
which result on sub-optimal manufacturing operations. One drawback is a high false positive
rate (false alarms), which involves useless manual checks of the PCBAs. In order to solve
this industrial problem, the machine learning literature on anomaly detection can be used
to reduce the pseudo-anomalies. However, the datasets used in the literature do not always
represent the real industrial world, which requires some tuning for techniques to be suitable.

This work is motivated by the poor performance of state-of-the-art techniques on our in-
dustrial problem. Yet, GAN-based methods are promising to address this issue, specifically
f-AnoGAN (Schlegl et al., 2019). This method is an improvement of the first GAN-based
solution for anomaly detection based on real-world images (optical coherence tomography
imaging data of the retina). We build on f-AnoGAN and propose several adaptations that
help solving our industrial problem.

The main contribution of this work is a modification of the state-of-the-art f-AnoGAN,
to deal with our real-world industrial problem. In contrast to this method, we consider
full images as an input, with patch decomposition at the inference step to better localize
anomalies. This will greatly reduce the amount of products with pseudo-anomalies sent to
the human operator for inspection.

This work is structured as follows. Section 2 first defines the problem and the industrial
issues. Section 3 details our real-world industrial dataset. Section 4 reviews the relevant
techniques in the literature that can be used to tackle our problem. In order to use them in
a real-world industrial setting, Section 5 proposes adaptations to f-AnoGAN, quantitatively
and qualitatively evaluated in Section 6. Finally, Section 7 concludes the paper.

2. Problem Definition and Industrial Issues

Automatic Transmission Electronic Control Units (ATECUs) are composed of a Printed
Circuit Board Assembly (PCBA) inserted in a sealed case, intended to be mounted and
connected to a car speed box, before being sent to a car manufacturer. Many complex
operations are required to achieve this goal, with high volume and quality constraints driven
by the safety importance an automotive product requires.

In this work, the very first stage of this PCBA manufacturing is considered, namely the
visual test at the Automatic Optical Inspection (AOI) process, right after the components
mounting and soldering onto the blank PCB. It is commonly agreed that the earlier a quality
issue is detected, the best it can be counter-measured and contained.

The complexity of the operations prior to the AOI makes it challenging to achieve the
quality requirements, and anomalies can be produced in many ways. The role of the AOI
process is to reject PCBAs with visible anomalies. In order to do so, a camera takes
high definition images of the product being conveyed, and an traditional image processing
algorithm is in charge of detecting anomalies in the product.

The AOI process is a key element of the manufacturing line, and has to operate with the
highest confidence degree. The image processing algorithm is designed to ensure no missed
detection (type II error), which involves severe test limits and generates many false alarms
(type I error). When a pseudo-anomaly is raised by the algorithm, a human operator is
asked to confirm or infirm the detection by visually scanning the area of concern.
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This visual anomaly judgment guarantees the product quality, but is time-consuming
(±8s per PCBA inspection) and prone to human error. As a consequence, this manual
operation slows down the line throughput, increases internal costs and quality risks (the
more the pseudo-anomalies are false positives, the more probable it is to make an error
on true positives), which highly participates in indirect global wastes. However, it is not
conceivable to reduce the false positive rate (FPR) by decreasing the test limits severity,
at the risk of increasing the false negative rate (FNR). This would be equivalent to accept
the risk of manufacturing products with anomalies. This process is therefore continuously
monitored and parameters are set to reduce the FPR, while keeping the lowest FNR possible.

3. High Resolution and Small Details: the PCBA Dataset

As explained in Section 2, images from the AOI camera are processed to assess the product
quality. Our imbalanced dataset contains 428 grayscale JPEG images: 410 normal (with-
out anomalies) and 18 abnormal (with anomalies) images. Each 4, 500 × 4, 340 image has
undergone an adjusted xy re-orientation (via fiducial reference centering) during acquisi-
tion. PCBA images reveal some specific characteristics that have to be considered for our
method. In particular, our images are of high-resolution and have anomalies residing in
details. For instance, one can see in Figure 1(a)1 that many information is contained in the
overall image.

(a) normal (b) large anomaly (c) small anomaly

Figure 1: Figure 1(a) presents a normal PCBA. On the other ones, the white frames sur-
round a large anomaly (Figure 1(b)) and a small one (Figure 1(c)). Some parts
of the images have been anonymized (material under intellectual property).

Some areas of the PCBA images do not contain much information, while some others
present many details. Non-informative areas show progressive changes in pixel intensity,
whereas components-dense areas yield to abrupt changes in pixel intensity. This is a dif-
ficulty that the anomaly detection method has to deal with. Anomalies occur in limited
parts of the image. They can result in important changes (e.g., absence of component) or
very tiny changes (e.g., bridge on integrated circuit pins). Anomaly detection is particu-

1. Some parts of the images have been blurred to guarantee the intellectual property of our industrial
partner. The arguments described also apply for the hidden parts, where information can be extrapolated.
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larly tricky for small detailed changes, in particular for dense areas with many components.
Therefore, it is important to have images of sufficient resolution that reveal these details.

Since this work aims to differentiate normal and abnormal images, it is interesting to
illustrate how they can differ. Figure 1 shows two very different anomalies, Figure 1(b)
being a large anomaly, while Figure 1(c) being a smaller one. One can see how difficult it
is to figure out the small defect in this overcrowded image. Small defects cause normal and
abnormal images to be hard to distinguish for state-of-the-art techniques. Besides, even for
normal images, there is a locally high pixel intensity variability that is also challenging.

4. State-of-the-Art Anomaly Detection Techniques

Usual techniques for detecting anomalies are unsupervised, given that abnormal labeled
data are almost non-existent in many contexts, including our industrial one (Ruff et al.,
2021). In addition to this highly imbalanced dataset constraint, it is possible that the
few available detected and labeled abnormal data do not represent the entire spectrum of
possible anomalies.

Variants of classical models have first been considered for this task. One-class classifi-
cation techniques, such as One-Class Support Vector Machine (OC-SVM) (Schölkopf et al.,
2001) and Support Vector Data Description (SVDD) (Tax and Duin, 2004) have been devel-
oped for this purpose. Reconstruction approaches like Kernel Principal Component Analysis
(Kernel PCA) have also been considered to solve the task (Hoffmann, 2007), outperforming
OC-SVM. Nevertheless, even if these methods are efficient for low-dimensional data, a poor
discriminative performance has been observed with high-dimensional images (Cheng et al.,
2020). Due to this limitation, deep learning variants have been preferred, resulting in Deep
OC-SVM (Erfani et al., 2016) and Deep SVDD (Ruff et al., 2018).

Autoencoders (AE) (Hinton and Salakhutdinov, 2006) (and all of its variants) have
also gained much attention. They bring better performance when reconstructing normal
data, yet they also result in abnormal data that are perfectly reconstructed, including
defects. This is particularly observed on complex data with inherent small normal variations,
which lead to confusion with small defects. This is a key drawback, as it reduces their
discriminative capacity, based on a comparison of original and reconstructed images.

Adversarial learning-based models, in the context of anomaly detection, have been de-
veloped to tackle this issue. The idea of Generative Adversarial Networks (GANs) is to
adversarially train a generator and a discriminator, so that the generator captures, as faith-
fully as possible, the distribution of the normal data. If the discriminator is not able to
distinguish a real image from a generated image, the generator is considered efficient enough
to be the decoder part (Goodfellow et al., 2014).

A restricted latent space developed by Perera et al. (2019) yields to an input image
representation always similar to the one for the class trained. The key elements of their
OCGAN method lie in (i) minimizing the MSE between the original and reconstructed
images, (ii) constraining a latent discriminator to be uniformly distributed (to avoid out-of-
class representation possibilities), and (iii) ensuring the generated image realness thanks to
a visual discriminator. The generator and the discriminators are all adversarially trained.

GAN training in f-AnoGAN is performed in two steps (Schlegl et al., 2019). The first
one is the decoder and discriminator training, the second one is the encoder training. At
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inference, the anomaly score is composed of the mean squared error (MSE) and the discrim-
inator loss between the original and reconstructed images. This method received a great
attention, since it was the first attempt to use GANs for anomaly detection. Unlike other
techniques, f-AnoGAN (Schlegl et al., 2019) uses real-world images, i.e. it is able to deal
with complex datasets, like our PCBA images. This method is detailed in Section 5.1.

Since f-AnoGAN trains a GAN with random patches of the input image, the associated
latent space is not designed to reconstruct a real, full image. This issue, identified by the
authors of that technique, has a real practical importance in industry. Indeed, showing the
reconstructed image to users can improve the trust that they put in the method and, thus,
accelerate its adoption. All the more, in our case, the location and visual context of changes
in details is important to assess whether it corresponds to an anomaly or not. The input
image must therefore be considered as a whole, which is elaborated in the next section.

5. GAN Anomaly Detection through Intermediate Patches: GanoDIP

The proposed method, called GanoDIP for GAN Anomaly Detection through Intermedi-
ate Patches, is a modified f-AnoGAN (Schlegl et al., 2019) whose inference step has been
adapted. Indeed, the changes are designed for the needs of the analysis of high-resolution
images where defects can correspond to small details, whose locations in the input image is
important. Both training and inference steps are detailed in this section.

5.1. Training Step of f-AnoGAN

This f-AnoGAN training step has been selected for its ability to reconstruct normal images
while not reconstructing abnormal ones (i.e., defects are not preserved in the reconstructed
image). This key element for anomaly detection allows us to generate realistic images that
are visually controllable by experts, in order to gain trust in the network performance.
Figure 2 gives an overview of the overall training strategy.

Figure 2: Figure inspired from Schlegl et al. (2019) presenting the training strategy of f-
AnoGAN, which is used as the first step of the proposed method GanoDIP.

Two convolutional networks, being a generator G (decoder-based) and a discriminator D
(encoder-based) are trained simultaneously with normal images. The generator is fed by a
normally distributed latent vector of dimension 90. The discriminator alternatively receives
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real and generated images, and calculates the distance between both. In order to stabilize
the training process, the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) is chosen with
gradient penalty (Gulrajani et al., 2017), which allows us to evaluate the distance between
the real distribution Pr and the generated distribution Pg. The loss is described by:

LGPWGAN = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2], (1)

where x̃ is a sample decoded from a latent vector encoding, x is an original sample, x̂ is a
sample generated from the generator G, D(·) is the discriminator and the right-hand term
of the Equation (1) refers to the gradient penalty (Gulrajani et al., 2017).

The above loss function makes it possible to generate images that can fool the discrimi-
nator. Once the generator and the discriminator are trained, they remain frozen (i.e., their
parameters are fixed) for the following steps.

An encoder E is then trained to map the images into the latent space. To do so, a tradi-
tional autoencoder architecture is used to encode/decode the training images, controlled by
the MSE between the original and the reconstructed image (the residual loss). The previ-
ously trained decoder being frozen, only the encoder parameters are updated. The original
and reconstructed images are also fed into the frozen discriminator, and the discriminator
loss is calculated. The encoder loss is therefore driven by a combination of the residual loss
(similarity in the image space) and the discriminator loss (similarity in the feature space):

Lencoder(x) =
1

n
||x−G(E(x))||2 +

κ

nd
||f(x)− f(G(E(x)))||2, (2)

where n is the number of samples in the dataset, G(E(x)) is the reconstructed image, f(·)
is the transformation to the feature space, nd is the number of dimensions of the feature
space and κ balances the two terms (Schlegl et al., 2019).

The main limitation specified by the authors of f-AnoGAN (Schlegl et al., 2019) is the
use of random 64× 64 patches, which divides the original full-size image into smaller parts
at the beginning. Even if the progressive pixel changes observed in their images reduce
the context constraint, a Visual Turing Test (distinction between real and generated images
shown to domain experts) can only be performed on non-standard small patches that experts
are not used to work on. A similar test would not be achievable with our dataset, as the
context has a great importance. Indeed, some areas can show the presence of elements,
whereas some others can show a similar situation with no element, and still be completely
normal. Unlike the images considered in the work of Jiang et al. (2019), where f-AnoGAN is
used for the identification of missing cigarettes boxes, no matter their position, the location
of the missing parts are important in the PCBA images. For instance, depending on the
location, some components can be mounted or not on their lands. The Visual Turing Test
validity is even more important when only a few number of abnormal images are available
to quantitatively evaluate the method, which is often the case in anomaly detection. This
Visual Turing test, among other qualitative ones, is of particular importance, bringing trust
to the network ability to generate realistic images.

Our contribution tackles the above issues and is intended to deal with contextually rich
datasets composed, as our images, of a combination of smooth pixel intensity variations
(e.g., on solder pads) and abrupt pixel intensity variations (e.g., on component locations).
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5.2. Inference Step of the Proposed Method GanoDIP

The proposed GanoDIP method considers full-size input images for training. This leads
to difficulties while comparing the reconstructed and the original images, due to the in-
creased number of regions containing normal variations. As a consequence, the discrimina-
tion between normal and abnormal images becomes tedious. Unlike f-AnoGAN, a specific
treatment is therefore required to tackle this difficulty.

The idea is to use patches at the inference step, so as to focus on small areas at this stage
only, and to get rid of the global noise of the full-size image. The entire image is therefore
fed into the autoencoder (composed of the encoder and the decoder previously trained) that
generates a reconstructed image. Then, both the original and the reconstructed images are
sliced into patches (dividing the images in equal parts), namely p = { p0, p1, ...,pN} for
the original patches, and p̂ = { p̂0, p̂1, ..., p̂N} for the reconstructed ones (N being the total
number of patches). These small areas, called intermediate patches due to their presence
after the training step but before the final inference result, are used to compute the MSEi

performed pixel-wise, for each pi and p̂i, i being the patch index.
Once all of these patch reconstruction losses are obtained, the worst α% of these losses

are averaged, where α is a hyperparameter. The aggregated patch reconstruction loss is the
anomaly score associated to the queried image, i.e.,

Anomaly Score =
1

m

m∑
k=1

{MSEk | MSEk ∈ m highest MSEi}, (3)

where m corresponds to the α% of the patches with the highest anomaly score, and i is the
patch index. This inference step is graphically summarized in Figure 3.

Figure 3: Inference strategy of our method GanoDIP. The entire image is fed into an autoen-
coder that reconstructs the image. The original and the reconstructed images are
sliced into intermediate patches and used to compute the MSE performed patch
by patch. The worst MSEs are then aggregated to give the reconstruction loss.

In addition to making it possible to use high-resolution/small details images that we
encounter in our real-world industrial scenario, GanoDIP also enables to easily localize
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anomalies. Indeed, the intermediate patches, used at the inference step, automatically give
the location of the highest identified anomalies, while overlaying them on the original image.
This gives a clear view on the areas difficult to reconstruct, indicating a probable anomaly.

6. Evaluation

This section evaluates the proposed methodology. The pre-processing of the dataset is
detailed in Section 6.1, then the results of quantitative experiments are presented in Sec-
tion 6.2 and confirmed by qualitative experiments reported in Section 6.3. All experiments
have been undertaken with an RTX 2080 TI GPU, Python 3, Cuda 10 and Tensorflow 2.

6.1. Dataset Pre-Processing and Experimental Protocol

For our experiments, 360 normal images are used for the training of the WGAN and the
encoder, while 50 normal and 18 abnormal images are reserved for testing. They all have
undergone an adjusted xy re-orientation (via fiducial reference centering) during acquisition.
Resizing and normalization pre-processing are applied before usage. The final image sizes
in the experiments are 512×512 and 384×384. Smaller sizes were discarded by preliminary
analysis, explained by the level of details and the small size of some anomalies in the images.

Because of the nature of our problem, only 18 anomaly samples are available, which is
too small to propose any quantitative metric with enough statistical representation. For
this reason, as this is classically done in the anomaly detection literature (see, e.g., Schlegl
et al. (2019)), we only show the anomaly score distributions between the two classes (normal
vs. abnormal). However, to go beyond that analysis, a threshold on the anomaly score is
also computed to separate normal and abnormal test images as much as possible. Again,
due the small number of the anomaly samples, this threshold could not be cross-validated,
but corresponds to the lowest FPR when a zero FNR on the test set is required.

For our experiments, several hyperparameters must be set. Some of them were set after
preliminary experiments: the GAN training epochs number is 750, the encoder training
iterations number is 20,000. Below these numbers, underfitting is observed yielding to
areas not well reconstructed, with visible artefacts and information leakage on the image.
The percentage of intermediate patches to be kept is 0.15% and the intermediate patch size
is 4× 4. In the following experiments, two input image sizes (512× 512 and 384× 384) are
considered to evaluate their relevance.

6.2. Quantitative Assessment

Based on the idea of focusing on the worst outliers to discriminate normal and abnormal
images, the α=0.15% highest patch anomaly scores are averaged, to form the image anomaly
score, as described in Equation (3). This image anomaly score is the metric that is taken
in consideration to determine if a PCBA is normal or abnormal. The larger this anomaly
score is, the more likely the PCBA is to be abnormal. It means that the discriminative
capacity lies into the distinction between the anomaly score distributions of both classes.

Figure 4 presents the anomaly score distributions on a test set, where the normal and
the abnormal image distributions are colored in blue and orange respectively. These dis-
tributions correspond to the frequency of anomaly scores for the two classes. This figure
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shows the importance of the input image size choice, resulting in an FPR of 14% for the
512 × 512 configuration (Figure 4(a)) and a FPR of 60% for the 384 × 384 configuration
(Figure 4(b)). This confirms the sensitivity to the input image size and is again explained
by the fact that a higher resolution preserves smaller details. In practice, the reported
FPR of 14% would decrease the inspection time down to 2.24 seconds per PCBA. This is a
significant improvement from the 8-second inspection per PCBA observed in the industry,
with the current techniques. This means that 72% of the inspection time would be saved
for the human operator.

(a) 512× 512 (b) 384× 384

Figure 4: Anomaly scores for normal (blue) and abnormal (orange) images of the test set,
with image sizes of 512×512 (Figure 4(a)) and 384×384 (Figure 4(b)). For each
figure, the x-axis is the anomaly score and the y-axis is the score frequency.

The quantitative assessment presented in this section demonstrates that the discrimi-
native capacity between normal and abnormal images is driven by a few set of intermediate
patches, the ones where the reconstructed image has significant differences with the original
one. These intermediate patches can be used to identify the presence of anomalies, and have
to be isolated. The isolation of these patches and the global anomaly score computed is
key to our method. Moreover, this assessment shows the influence of the input image size,
which also is a key element for preserving the small details characterizing some anomalies.

6.3. Qualitative Assessment

As the above quantitative experiment is based on a limited set of abnormal images, GanoDIP
is hereafter also assessed qualitatively and with a Visual Turing Test. This is done with the
best hyperparameters from the previous section, namely an input image size of 512× 512.

The images shown in Figures 5(c) and 5(f ) highlight the differences between the original
(Figures 5(a) and 5(d)) and the reconstructed (Figures 5(b) and 5(e)) images. The pixel
differences state whether an anomaly is present or not.

Regardless of presence or absence of an anomaly, the high majority of areas shows no
difference between pixels (the blue ones), which means that the original image has been
correctly reconstructed. Several incorrectly reconstructed areas (green and red pixels) in
the top right image are actually normal areas. These areas are subject to high, but normal
variations (e.g., different markings on components, solder luminosity, components slightly
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(a) Original (b) Reconstructed (c) Differences

(d) Original (e) Reconstructed (f ) Differences

Figure 5: Original (Figures 5(a) and 5(d)), reconstructed (Figures 5(b) and 5(e)) and dif-
ference between both (Figures 5(c) and 5(f )), for a normal (first row) and an
abnormal image (second row). The anomaly in Figure 5(d) is white-framed for a
better identification. Some parts of the images have been anonymized (material
under intellectual property).

shifted when soldered, etc.). In the bottom right image of Figure 5, clusters of red pixels
can be spotted, making the anomaly detection possible. It can also be seen in the middle
column of Figure 5 that the images decoded by the WGAN are realistic and do not preserve
the anomaly (if any). This is key in our context, as they can be used as a proof that
GanoDIP is working well, in order to gain the trust of people in the industry. As mentioned
before, this is a major short-coming of f-AnoGAN, which can only generate parts of the
global image (see the future work in (Schlegl et al., 2019)).

The difficulty in discriminating high variations in normal areas and in abnormal areas
is directly related to complexity of the images in our dataset. Indeed, because of the high-
resolution of our images and of the small details in anomalies, normal and abnormal images
look alike for the state-of-the-art techniques. These elements allow us to deduce that the
intermediate patches are necessary to isolate the highest anomaly areas in the full size image.
These intermediate patches make it possible to discard the high, but normal, variations.

Regarding the previously stated difficulty and anomaly localization concern, Figure 6
shows the original image with superimposed intermediate patches for three abnormal PCBAs.
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Figure 6: Three original abnormal images with intermediate patches (red areas) used to
localize the anomalies. All anomalies on the PCBAs are well identified and lo-
calized (white framed for the ease of the reader). Some parts of the images have
been anonymized (material under intellectual property).

This superimposition makes it possible to reveal the areas that are difficult to recon-
struct. Unlike Figure 5, anomaly locations are isolated by taking the anomalies present in
the worst intermediate patches. Thanks to them (red pixels patches), a human operator
asked to check the image would only spend few seconds to figure out that a defect is present
on the PCBA, which is a considerable improvement over the difference image of Figure 5.
This gives a clearer view on where he/she should focus his/her attention, when asked to
confirm or infirm the defects.

It should be mentioned that the variability of the reconstructed images, while decoding
the original images, is very low, due to the low dispersion of the original full size images,
giving an overfitting-like behavior. When randomly sampling the latent vector within the
image domain, the reconstructed images barely vary, which results in similar images being
used as a reference for the inference step. An argument raised by this observation can be
that a concurrent and easier solution exists: select a single, golden sample in the training
dataset, and use it as a reference instead of the decoded image of GanoDIP. To prove the
added value of our method with respect to this golden sample strategy, 36 training images
have been randomly sampled to compose 10 new datasets (our original training set contains
360 images). Then, for each datasets, we calculated the FPR while taking each image as
a reference, and selected the one with the smallest FPR as a golden reference. These 10
references are used to state how they can classify normal and abnormal images in the test
dataset, for any random input dataset.

The FPR comparison for both the golden sample and the reconstructed strategies is
shown in Figure 7. This figure demonstrates how unlikely it is to choose a good reference
training image, while GanoDIP can build it for all training datasets. Indeed, most of the
best golden samples fail to achieve results that compete with GanoDIP. Taking a sample
of reference in the training dataset almost always provides distributions that are difficult
to discriminate. This means that even if our method produces reconstructed images that
are somewhat similar to each other, it can solve the problem for any dataset with the same
characteristics as ours, while the golden sample strategy only seems to work in specific cases.
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Figure 7: False positive rate (FPR) comparison between the reconstructed and the golden
sample strategies. Our FPR (in blue) of 14% is compared to the golden sample
having the lowest FPR in 10 groups of 36 random training images (in orange).

The quality of the reconstructed images being highly important in anomaly detection,
a Visual Turing Test (VTT) has been performed with 5 domain experts with different
expertise, all working with PCBAs. This test evaluates the realness of reconstructed images,
which reflects how the latent vector fed into the decoder yields realistic images, and, thus,
will be able to provide the best reference possible at the inference step. A classic VTT
protocol (see, e.g., Schlegl et al. (2019); Han et al. (2018)) has been followed, initially
proposed by Salimans et al. (2016). Latent vector values are randomly sampled to generate
50 images. These generated images and 50 original ones are randomly presented one by one
to a group of participants, who have 16 seconds to label their realness (original or generated).
Between each image, nothing is presented during 5 seconds, to reset the visual memory of
the participants and to make them ready to focus on the next image. No indication is
given about how many images are in each class and no training on the distinction between
the original and generated images is provided before the evaluation. A 5 minutes break is
given at the middle of the sequence, with no possibility for them to talk. An example of a
sequence of two images is shown at the beginning, without any explanation, to understand
how images are presented during the evaluation. A timer and the image id are shown.

The results of the VTT is an accuracy of 58.2% of the images being correctly labeled.
This demonstrates the realness of the generated images and their adequateness as references
for the inference step. Indeed, experts seem to randomly guess how to detect the generated
PCBA, showing the difficulty to distinguish real images from generated ones, and thus
proving their similarity.

This section shows that the ability to discriminate between normal and abnormal images
is driven by an important set of intermediate patches. The use of intermediate patches, after
the encoder-decoder step, enables the isolation of the anomalies, and makes it possible to
localize them on the original full-size image. Furthermore, the FPR is greatly reduced
compared to the image processing algorithm currently used. From a business point of view,
this achievement is considered as a significant improvement. The time spent is not only
decreased by the FPR reduction, but also by the fact that clear areas are provided for the
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operator to pay attention. It should also be noted that the inference step proposed with our
method GanoDIP is roughly 85% faster than the image processing non-machine-learning-
algorithm actually used by our industrial partner. The main limitation lies in the abnormal
images scarcity, i.e., quantitative results should be considered with care.

7. Conclusion

In this work, a method is proposed to tackle an anomaly detection task on a real-world
industrial dataset, being highly imbalanced. No matter the skewness degree of the dataset,
the one-class nature of the learning technique enables a full applicability on all imbalanced
problem. As state-of-the-art techniques are not suitable to tackle our problem, we propose
to extend f-AnoGAN with intermediate patches (GanoDIP) to make it usable on high-
resolution images that may contain small or large anomalies, and whose localisation in the
image is important.

The industrial context adds constraints. For instance, images in the latent space need
to be realistic, so that they can be shown to domain experts to gain their trust in the
generative model, and thus its adoption. It is also required to minimize the false positive
rate under a zero-defect constraint, instead of optimizing any accuracy, precision or recall
metric, as classically done.

Our experiments show that our proposed method can deal with the above challenges.
A false positive rate of 14% can be achieved, resulting in 2.24 seconds of manual inspection
time, which is far below the 8 seconds currently observed. This means that 72% of the time
could be saved to check products by a human operator, if our method is deployed.

These promising results raise new questions to be investigated in future works. In
particular, it would be interesting to study the behaviour of our method when trained for
multiple product lines. Indeed, the currently considered dataset comes from a particular
product line, with specificity cameras (e.g., in terms of luminosity). In practice, a new
model would be needed for each product line, motivating future work to create a single
model for all product lines in a factory.
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