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Abstract

The number of rule-based classifiers specialized for imbalanced data is quite small so far.
In particular, there is no such classifier dedicated for multi-class imbalance data. Thus, in
this work we considered two ways of extending BRACID, which is the effective algorithm
for binary data. In the first approach, BRACID was used in the OVO ensemble along with
modifications of the prediction aggregation strategy. The second approach modifies an
induction of rules for multiple classes simultaneously, additionally combined with their post-
pruning. Experiments showed that both approaches outperformed the baselines. Moreover,
the second approach turned out to be better than OVO with respect to predictive results
and producing a smaller number of rules.

Keywords: Multiple imbalanced data, rule classifier, binary decomposition ensembles

1. Introduction

Despite the development of many methods for improving classification of imbalanced data,
still little interest has been paid to research on induction of rules. Recall that learning
classification rules is one of classical and well - studied tasks in machine learning and data
mining (Firnkranz et al., 2012). As the rules directly provide a symbolic representation of
knowledge discovered from data, they are considered to be more comprehensible and human
readable than other learnt models. In particular single rules could be individually analyzed
as the local patterns corresponding to specific learning examples, which is exploited in
the descriptive perspective in data mining. Furthermore, rules are particularly useful for
explanation of classifiers’ predictions, which is important in explainable Al

The standard rule classifiers are quite sensitive to imbalanced data, see e.g. experi-
ments in (Grzymala-Busse et al., 2005). Their poor performance could be attributed both
to the algorithmic limitations and data difficulty factors. A fairly small number of rule
classifiers specialized for imbalanced data has been introduced so far, for their review see
e.g. (Napierala and Stefanowski, 2012). However, the most of them address only single
algorithmic or data factors. In (Napierala and Stefanowski, 2012) authors introduced a new
algorithm, called BRACID (the acronym of Bottom-up induction of Rules And Cases for Im-
balanced Data), which attempts to handle more of these factors and deals with complexity
of imbalanced data in a more comprehensive way. According to its experimental evaluation
BRACID outperformed several rule classifiers specialized for imbalanced tasks and standard
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ones integrated with resampling techniques (Napierala and Stefanowski, 2016). BRACID
was further extended by rule post-pruning to select smaller sets of rules having both good
predictive and descriptive characteristics (Napierala et al., 2016).

Nevertheless BRACID is designed for working with binary imbalanced classes (single
minority vs. majority class) only. Note that recently, more and more researchers began
to take interest in studying imbalanced data with multiple classes (Fernandez et al., 2018;
Krawczyk et al., 2015). These problems are generally assessed as more difficult than the
binary ones (Krawczyk, 2016). As simple adaptations of methods designed for binary im-
balanced problems do not lead to satisfactory improving the recognition of multiple classes
simultaneously, new more specialized solutions are needed.

Therefore, in this paper we will consider a still open question how to generalize BRACID
to deal with multi-class imbalanced data. We will study two ways: (1) Exploitation of binary
decomposition ensemble frameworks; (2) Generalization of BRACID with a new scheme for
inducing a combined set of rules from multiple classes.

The first direction follows inspirations from current literature on the decomposition of
multi-class tasks into a set of binary ones and solving them in an ensemble framework of
binary classifiers, such as one against one class (Galar et al., 2011). Here BRACID could
be used in an original form, however techniques for the final aggregation of votes should be
studied. The second direction will follow the sequential strategy of inducing rules from all,
multiple classes and requires new solutions taking into account the types of classes.

The main aims of our paper are: to present the formulations of both ways to generalize
BRACID for dealing with multi-class imbalanced data; to carry out their experimental
evaluation and comparison over 20 benchmark datasets. In particular we are interested
in checking which of these ways is better. Finally, their best performing variants will be
compared against baseline multi-class rule based classifiers.

2. Rule Induction from binary imbalanced data with BRACID

2.1. BRACID algorithm

Following (Napierala and Stefanowski, 2012) BRACID exploits a hybrid representation
of rules and single instances, where more general rules cover larger, homogeneous data
regions (with more examples) and instances should handle non-linear class borders and rare
cases or outliers. Rules are represented as: IF (conditionpart) THEN (targetclass), where
a condition part is a conjunction of attribute based conditions. For nominal attributes the
conditions are formed as (z; = v;;), where z; represents i-th attribute and v;; is a single
value from its domain. Conditions for numeric attributes are represented as closed intervals
(Vitower < @i < Vi upper ), Where v; jower < Ui upper are values belonging to the domain of the
attribute. In BRACID, instances are treated as maximally specific rules.

The rules are induced in a special bottom-up rule induction strategy. The algorithm
starts from the set of the most specific rule (single, seed learning example) and in the
next iteration it tries to generalize its conditions in the direction of the nearest neighbour
example from the same class, provided that it does not decrease the classification abilities of
the whole rule set. The distance between rules and examples is calculated with the HVDM
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(Heterogeneous Value Distance Metric) distance metric (Wilson and Martinez, 1997)*. The
procedure is repeated until no rule can be further generalized. The candidate rules are
evaluated with the appropriate measures for imbalanced data, either F-score or G-mean.
They are estimated by a special effective variant of the internal leaving one out procedure
(Napierala and Stefanowski, 2012).

Furthermore, the type of difficulty of learning examples is evaluated with the
method (Napierata and Stefanowski, 2016)2, which leads to labeling them as safe or unsafe
examples. The generalization of rules depends on the type of the seed example. The minority
examples tagged as unsafe ones (i.e., belonging to the class overlapping region or being rare
cases inside the majority class) are allowed to be generalized into more than one rule, which
lessen the dominance of the majority class in their neighbourhood. On the other hand, single
majority examples present inside the minority class regions are treated as noise which may
hinder the induction of general minority rules. BRACID has an embedded mechanism for
detecting and removing them from the learning data set.

Finally, BRACID employs a less biased classification strategy on new instances
based on the nearest rules to diminish the domination of strong majority rules during
solving conflict situations while a new instance matches condition parts of several rules.
The distance between rules and the classified instance is calculated with the same HVDM
metric as in the learning phase. If more than one rule is equally distant from the instance,
the sum of rule supports® is calculated and the instance is assigned to the class with the
largest total sum of supports. Due to the increased number of rules for the minority class,
coupled with their higher supports, minority rules are more likely to win with a more general
majority rules in difficult regions of the minority class in the data.

2.2. Weighted rule coverage post-pruning

Although BRACID is an accurate classifier, it can produce quite a large number of rules.
Therefore, the authors of BRACID added in (Napierala and Stefanowski, 2016) a special
post-pruning strategy which aims at selecting sufficiently strong and diversified rules, i.e.
covering diverse subsets of examples corresponding to sub-regions of each class.

In order to identify the rules to be selected, a product aggregation of two following
rule evaluation measures was considered: rule support and Bayesian confirmation measure
N (Napierala et al., 2016). The confirmation measures evaluate differences between the
conditional probability of rule conclusion C} given its satisfied condition part E and the
prior probabilityof the rule conclusion class. It should be higher than zero. N measure is
defined as P(Cy|E) — P(Cy|—F). Following (Napierala et al., 2016) this measure is useful
for imbalanced data.

1. It aggregates both numeric and nominal attributes using different distance functions. The normalized
Euclidean distance is applied to numeric attributes, while the distance between values of nominal at-
tributes is defined with the differences of their class conditional probabilities.

2. The method is based on analysing labels of k nearest neighbours of the example x. The fraction of ncy,
i.e. number of neighbours with the same class label as z, to all k neighbours is the safe level of x. If its
value is higher than 0.67 the example is treated as safe, otherwise it is considered an unsafe one. For
more details of studying it see (Napierala and Stefanowski, 2016).

3. The rule support is a number of learning examples covered by the rule.
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Algorithm 1: The weighted coverage algorithm. Input: S - the rule set for the given class
C), and NR the required number of rules. Output: F'R pruned set of rules from class Cj.

1. Delete rules with too low confirmation measure from S and set FR = ()
2. For each example x € Cj do ¢(x)=1
3. Repeat

(a) For each rule R € S evaluate(R)

(b) Select R, with the best value of evaluate(R)

(c) For each example e covered by Ry, do ¢(x) = c¢(x) +1
(d) Remove Ry from S and FR = FRU S

4. until size of rule set 'R = NR

The rules are selected by a weighted coverage algorithm in an iterative way focusing on
examples still not covered by previous rules. Its pseudocode is presented in Algorithm 1.
Note that it is run for each class separately. Firstly, it initializes each example weight c¢(x)
to 1 and calculates both rule evaluation measures with the inverse weights (e.g., the rule
support is a sum of 1/¢(z) for examples covered by this rule). As c(z) of all examples covered
by this rule are incremented by an unit, they contribute less to rule weights and evaluation
measures in the subsequent iterations. It promotes rules covering examples from other
subregions (still not covered) and follows some inspirations from (Gamberger and Lavrac,
2002). The algorithm is run until covering a sufficient percentage of learning examples or
producing a required number of rules NR.

The experiments presented in (Napierata and Stefanowski, 2016; Napierala et al., 2016)
showed that this algorithm could strongly reduce the number of rules in binary imbalanced
data (leaving between 10% — 50% of the original BRACID rule sets) and improve at the same
time the average values of interestingness measures for selected rules, without considerable
decreases of predictive abilities (with respect to the G-mean, F1-score or sensitivity).

3. Binary decomposition techniques for multi-class data

The number of methods for multiple imbalanced classes is much smaller than designed for
the binary problem. For their comprehensive review, see e.g., (Fernandez et al., 2018). The
most popular approaches are decomposition ones transforming the multi-class problem into
a series of binary problems and solving them with the ensemble framework. Such methods
have initially been proposed for standard classification tasks to enable binary classifiers to
handle multi-class problems (Kuncheva, 2014). The most related frameworks are:

One-versus-all ensemble (OVA) constructs binary classifiers to recognize a particular
class against the remaining ones aggregated into one class (Galar et al., 2011). During the
prediction, the test instance is classified by all base classifiers and is assigned to the class
of the most confident base classifier.
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One-versus-one ensemble (OVO, also called pairwise coupling) constructs binary classi-
fiers for all pairs of classes (for C classes, the number of base classifiers is C'(C-1)/2). The
training set for a particular base classifier contains learning examples from the selected pair
of classes only. Note that binary problems usually have smaller imbalance ratios than the
original problem and could be easier for learning. The final decision for the new instance can
be taken by majority voting of base classifiers’ predictions, weighted voting with confidence
scores, or more complex aggregation functions(Kuncheva, 2014).

Since these approaches train classifiers on binary problems, they can be easily used in
combination with the standard techniques for binary imbalanced data. OVO and OVA are
often used with oversampling or undersampling approaches applied on each binary training
set (Fernandez et al., 2013). Experiments of (Galar et al., 2011) with several multi-class data
demonstrated that OVO outperformed OVA ensemble, which guided our further approaches.

4. Extending BRACID for multi-class imbalanced data

We will present two ways of extending BRACID for multi-class imbalanced data. The first
one follows one versus one (OVO) framework while keeping binary BRACID. The other,
called multi-class BRACID requires more modifications within the rule generation schema.
In both ways, we assume that it is indicated which classes are minority and which are
majority ones.

4.1. Exploiting OVO framework

As BRACID in its original formulation generates rules from two classes only, we have decided
to adapt OVO framework following inspirations from related works and consider all pairs
of classes in the given dataset.

4.1.1. AGGREGATION OF BASE CLASSIFIER PREDICTIONS

Firstly, we consider BRACID in its original form to generate binary classifiers in OVO
and to aggreaget their predictions with the standard majority voting, i.e. the class most
often indicated by the base classifiers was assigned to the classified instance - this variant
is abbreviated as MV in further experiments.Then, we extend the prediction aggregation
phase by two different solutions:

1. Prediction Weighted Voting: Weights are assigned to each induced BRACID
classifier depending on the evaluation of its predictive accuracy. They are real numbers
in the range [0;1] and are used as votes in the final voting for the classified instances.
Their values are estimated when using the given classifier to re-classify examples from the
corresponding pair of classes in the dataset. Due to class imbalance, the predictive ability
of the binary classifiers in OVO is evaluated by the standard measures for classification of
imbalanced data, i.e. either by Fl-score or by G-mean (of sensitivity and specificity). These
variants of weighted voting will be further denoted as WVF or WVG, respectively.

2. Competent Classifier Selection: The new instance will be classified by only these
base classifiers in OVO which were trained on examples from classes related to this instance
and skipping other classifiers in the voting. This dynamic selection of competent classifiers
is based on the analysis of the neighbourhood of the classified instance in the original
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dataset. If neither of classes for which a classifier was trained belongs to this example’s
neighbourhood, then such a classifier is not taken into account in the aggregation. Here,
we follow proposals of (Galar et al., 2013), where the authors recommended to use the
neighbourhood size equal to 3C examples, where C' denotes the number of classes in the
dataset. If all neighbours belong to the same class, the neighbourhood of double size (6C)
is additionally analyzed. The approach will be further denoted as CCS.

4.1.2. MODIFYING RULE GENERALIZATION IN BRACID

Recall that the original BRACID treats minority and majority classes differently during
the generalization from the seed example to rules. For safe majority examples, only one
generalization to a single nearest example is considered. For unsafe majority examples and
safe minority examples, k& nearest neighbours are analysed and only one best generated
rule is chosen. For unsafe minority examples the generalization to & nearest neighbours is
carried and all rules are added, if they improve the evaluation measure for the candidate
rule set (Napierala and Stefanowski, 2012). As a result it may lead to increasing the number
of minority rules and improving their support.

This solution worked effectively for binary imbalanced data, where one class was minor-
ity and the other majority. However, other combinations of types of classes (e.g. majority
vs. majority) occur in OVO and it should affect the induction of rules without excessively
increasing their number for the majority classes. This is why we modify this rule general-
ization with respect to types of classes considered for a particular binary classifier. More
precisely,

e If two majority classes are considered, then (1) the generalization is done to a single
nearest example for the safe seed examples and (2) to one, best of rules induced by
generalization to k nearest examples for an unsafe example.

e For two minority classes following generalizations are applied: to one, best of rules
induced by generalization to k nearest examples — for the safe seed examples, and up
to k best rules examples induced by generalization to k nearest examples — for the
unsafe examples.

4.2. Extending BRACID to sequential inducing rules from many classes

This extension of BRACID constructs a single classifier based on the combined sets of rules
from all classes. It partly follows a sequential class covering schema for an iterative induction
of rules from successive classes (Fiirnkranz et al., 2012). The number of iterations is equal
to the number of classes. In each iteration, the temporary training dataset is constructed.
It contains positive examples from the class considered in this iteration and the negative
examples from all other classes. BRACID algorithm is run on these examples and only rules
describing the considered positive class are added to the final set of rules, while the other
class rules are discarded. This is repeated for each class in the input data and the final set
contains rules from all classes.

The next important modification of the rule generalization takes into account the type of
the class considered in the given iteration. If the class is treated as a majority one, the rule
generalization from seeds majority examples is modified as it was described in the previous
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subsection 4.1.2. The rule generalization from the minority class is done as in the original
BRACID. This modification limits the number of produced rules from majority classes. If
the number of rules is still too high, then the weighted coverage algorithm could be used to
post-prune them - see Section 2.2.

The classification strategy is based on matching the instance description to the nearest
rules as it is done in the original BRACID algorithm (Napierala and Stefanowski, 2012).

5. Experiments
5.1. Aims and experimental setup

The experiments are planned to check the following points:
e Which way of generalizing BRACID for multi-class imbalanced data is more effective?
e The usefulness of different extensions of OVO frameworks with BRACID.
e The impact of rule post-pruning in multi-class BRACID.

e The comparison of best variants of both ways of the generalization of BRACID against
standard rule classifiers for multi-class data.

All experiments are carried out on 20 popular multi-class imbalanced datasets, which
were previously studied in (Janicka et al., 2019). Nearly all of them are benchmark data from
UCI ML Repository, which were also considered in many earlier experiments concerning
methods for multi-class imbalanced data, see e.g. (Ferndndez et al., 2013). They differ
in terms of the overall number of classes, the proportion of minority vs majority classes,
the number of attributes, the data imbalance ratios between classes and data difficulty
(measured by the average safe level). For more details on the data characteristics and
information which classes are identified as minority ones see the online appendix 4. Following
(Janicka et al., 2019) the minority classes are those that do not contain more examples than
25% of the size of the entire dataset.

BRACID algorithm is always run with the following parameters: k=5 neigjbourhood
for estimating safe or unsafe types of examples; F1-score is used as the internal measure to
evaluate rules generalizations.

Predictive performance of all classifiers is evaluated by the following measures specialized
for multiple classes: Class sensitivities (TPR or Recalls) and their aggregation with G-mean;
Average minority — i.e. an arithmetic mean of sensitivities of the minority classes; Mean
Minority F-measure — i.e. an arithmetic means of F1 scores for the minority classes. The
values of all measures were estimated by 5 runs of 10 fold stratified cross validation.

5.2. Studying extensions of OVO based framework

Firstly, we compared the standard OVO frameworks (with the basic BRACID and the ma-
jority voting) and considered extensions of the aggregation of classifier predictions (weighted
WVF and WVG + competent classifiers selection CCS). We also studied the usefulness of

4. Due to page limits we present information on datasets and detailed results of experiments in an online
appendix http://www.cs.put.poznan.pl/jstefanowski/pub/append-bracid.pdf
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Table 1: G-mean of rule based classifiers obtained by all OVO extensions.

dataset MV WVEF WVG MB MB MV CCS
MV WVF WVG

artl 0.9675 0.9675  0.96747 0.9675 0.9675 0.9675 0.9675
art2 0.7590 0.7596 0.7596 0.7575 0.7591 0.7582 0.7596
art3 0.5180  0.5186 0.5175 0.5205 0.5220 0.5220 0.5175
art4 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317
autos 0.6851 0.6892 0.6881  0.6779 0.6757 0.6762 0.6921
balance-scale 0.4076  0.4086 0.4086  0.4099 0.4114 0.4114 0.3208
car 0.9102 0.9022 0.9090 0.8707 0.9012 0.9067 0.9048
cleveland 0.1716  0.1750 0.1759 0.1187 0.1342 0.1342 0.1865
cme 0.5009  0.4987 0.4994 0.4969 0.4959 0.4946 0.5022
dermatology  0.9471  0.9204 0.9204 0.9572 0.9578 0.9578 0.9580
ecoli 0.7641 0.7404 0.7403 0.7405 0.7430 0.7593 0.7725
flare 0.4484  0.3904 0.1374 0.4958 0.5003 0.5017 0.1500
glass 0.0470 0.0883 0.0873 0.0728 0.1114 0.0979 0.0963
hayes-roth 0.7837 0.7849 0.7849 0.7784 0.7785 0.7785  0.7760
led7digit 0.7690 0.7736 0.7592 0.7664 0.7701 0.7557  0.7217
nursery 0.9797 09796 0.9796 0.9795 0.9794 0.9794 0.9796
new-thyroid 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684 0.9684
vehicle 0.9218 0.9222 0.9222 0.9222 0.9222 0.9222 0.9241
winequal-red 0.4472  0.4530  0.4729 0.4653 0.4933 0.5120 0.4434
yeast 0.0531 0.0808 0.0581 0.0556 0.0565 0.0560 0.0673

modifying rule generalization in BRACID (abbreviated as MB). The results of G-mean for
all variants of OVO classifiers are presented in Table 1, where bold fonts indicate the best
result for a given datasets®.

Note that there is no clear winning variant, depending on the particular datasets some
extensions lead to slightly higher values. Moreover, for some datasets the differences in the
results are almost imperceptible. This is supported by performing the Friedman’s ranked
tests. For G-mean the average ranks of OVO classifiers (the lower, the better) are following:
MV 4.24; WVF 3.77; WVG 4.09; MB MV 4.88; MB WVF 3.71; MB WVG 3.82 and CCS
3.53. However, due to high p-values = 0.602 the null hypothesis on similar performance
of multiple classifiers cannot be rejected. Average ranks calculated with Average minority
are the following: MV 4.73; WVF 3.05; WVG 3.5; MB MV 5.4; MB WVF 3.3; MB WVG
3.53 and CCS 4.43 with p-values = 0.021. Therefore the null hypothesis is rejected, but the
critical difference C'D = 2.12 show that the differences between the best classifier variants
are insignificant. Quite similar rankings of OVO variants are obtained for F1-score.

We interpret these results that considered extensions of OVO aggregation or modifica-
tions of BRACID rules generalization are slightly better than standard OVO MYV version.
However, these extensions perform quite similarly with some difference with respect to

5. Results of other measures are provided in the online appendix.
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Table 2: G-mean results obtained by modified BRACID with complete rule set without
pruning (CRS) and its extensions with various pruning - the percentage of dis-
carded rules is presented as p%.

dataset CRS PR CONF PR 30% PR 50% PR 70% PR 90%
artl 0.9688 0.9678 0.9677 0.9640 0.9563 0.9363
art2 0.7555  0.7500 0.7521 0.7591 0.7618 0.8012
art3 0.5298  0.5191 0.5137 0.5184 0.5253 0.5752
art4 0.8353  0.8258 0.8333 0.8285 0.8420 0.8818
autos 0.6791 0.6457 0.6460 0.5932 0.5801 0.4369
balance-scale 0.5111 0.3457 0.2002 0.1078 0.1692 0.3212
car 0.9000  0.9008 0.8977 0.8842 0.9108 0.8212
cleveland 0.1367  0.1857 0.1452 0.1683 0.1861 0.2322
cme 0.4681  0.4676 0.4699 0.4699 0.4723 0.4830
dermatology 0.9082 0.9120 0.9082 0.9071 0.9040 0.8803
ecoli 0.7876  0.7908 0.7940 0.7951 0.7868 0.7814
flare 0.4631 0.4661 0.4639 0.4340 0.4132 0.3269
glass 0.4053  0.3725 0.4156 0.4517 0.3720 0.2473
hayes-roth 0.7401 0.7371 0.7257 0.6944 0.6680 0.4605
led7digit 0.7209  0.7669 0.7771 0.7839 0.7861 0.7716
nursery 0.9754 0.9755 0.9710 0.9566 0.9149 0.8410
new-thyroid 0.9758 0.9559 0.9706 0.9681 0.9358 0.9551
vehicle 0.9232  0.9260 0.9240 0.9235 0.9212 0.9084
winequality-red 0.5361 0.5027 0.5338 0.5156 0.5132 0.4901
yeast 0.0758 0.0544 0.0758 0.0544 0.0541 0.0672

evaluation measures. If one focus on improving the recognition of the minority classes (F-
measure and Average minority sensitivities) Weighted Voting with F-measure is the first in
average ranking (there is no big difference if BRACID is used with modified generalization
or not). On the other hand, if one also analyse improvements for the majority class (higher
G-mean) competent classifier selection and modified BRACID are slightly better.
Nevertheless, for the final comparison we choose OVO with weighted voting by F1-score
as it was the best for the minority classes and still highly placed in the G-mean ranking.

5.3. Multi—class BRACID with post-pruning

We evaluated the multi-class generalization of BRACID, which generates the complete set
of rules from all classes (denoted as CRS) and its usage with different post-pruning. In
order to limit the size of the complete rule set (see results for CRS in Table 5) we applied a
weighted coverage algorithm discussed in subsection 2.2. Following (Napierala et al., 2016)
we used the percentage of rules in each class as the stopping conditions and tested several
values (e.g. CRS PR 70% denotes that 70% of rules in each class was discarded). Moreover,
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we checked a simpler pruning with confirmation measures only (PRCONF) - see the first
line of Algorithm 1. The obtained results for G-mean are presented in Table 2.

We carried out the Friedman’s ranked test to compare all pruning versions of BRACID.
As it gives p-value = 0.091, we cannot reject the null hypothesis for a equal to 0.05. However,
looking at results in Table 2 and other measures presented in the WWW appendix one can
notice that performance of extensions depend on particular datasets. To better interpret it,
we calculated safe levels of examples in all classes according to the method of (Napierala
and Stefanowski, 2012) and then averaged them in the minority classes and majority ones,
separately (see their values in the online appendix). The lower values of safe levels indicate
the higher difficulty of the dataset. It seems that more difficult datasets (e.g. balance scale,
hayes roth or yeast) are associated with no pruning, while for easier datasets the amount
of pruning may be much higher.

Table 3: G-mean obtained by J48, PART, OVO WVF and CRS ADPR algorithms.

dataset J48 PART OVO WVF CRS ADPR
artl 0.9408 0.9366  0.9675 0.9688
art2 0.6933  0.6717  0.7596 0.8012
art3 0.3416  0.3995 0.5186 0.5752
art4 0.8040 0.7535  0.8317 0.8818
autos 0.8044 0.7062  0.6892 0.6791
balance-scale 0.0099 0.3136  0.4086 0.6790
car 0.7925 0.8950 0.9022 0.9000
cleveland 0.0848  0.0597  0.1750 0.2322
cme 0.4728 0.4431  0.4987 0.4681
dermatology 0.8860 0.8944 0.9204 0.9082
ecoli 0.6413 0.6374  0.7404 0.7876
flare 0.0442  0.1717  0.3904 0.4639
glass 0.3174  0.3155  0.0883 0.4156
hayes-roth 0.8318 0.8080 0.7849 0.7401
led7digit 0.7919 0.7112  0.7736 0.7771
nursery 0.9084 0.9922 0.9796 0.9754
new-thyroid 0.8778  0.8948  0.9684 0.9758
vehicle 0.9160 0.9147  0.9222 0.9232
winequality-red 0.2837  0.2917  0.4530 0.5338
yeast 0.0112 0.0312 0.0808 0.0758

Assuming that user may be interested in the smaller rule sets, we propose to consider
an adaptive selection of the rule pruning percentage. It is done heuristically — select the
percentage of pruning according to the difference between the average safe level in the
majority and minority classes. If this difference is smaller than 0.16, then BRACID rules
are not pruned. The resulting sets of rules will be further denoted as CRS ADPR; see e.g.
the obtained numbers of rules in Table 5.
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Then, we compared this variant CRS ADPR of BRACID and the best OVO ensemble
with the weighted voting (OVO WVF) against two popular rule and tree classifiers PART
and J.48 (implementation classes available in Java for WEKA). Although these algorithms
were not designed for imbalanced data, they are good representatives of standard and ac-
curate multi-class approaches offering also the rule representation. Moreover, they demon-
strated good competitive performance for binary imbalanced problems in earlier BRACID
papers, see experiments of (Napierala and Stefanowski, 2012). Both algorithms were run
with standard parameters, except using the unpruned mode as it works better for imbal-
anced data. The results of G-mean and Average Minority are presented in Tables 3 and 4
respectively.

Table 4: Average Minority obtained by J48, PART, OVO WVF and CRS ADPR algorithms.

dataset J48 PART OVO WVF CRS ADPR
artl 0.9308 0.9383  0.9700 0.9733
art2 0.6283 0.5900 0.7113 0.7742
art3 0.3346  0.3633  0.4267 0.5092
art4 0.7642 0.6871  0.8213 0.9046
autos 0.8472 0.7544  0.7372 0.7617
balance-scale 0.0040  0.1480  0.2230 0.7340
car 0.7426  0.8588 0.8852 0.8762
cleveland 0.2160  0.1969  0.2976 0.3493
cme 0.4263 0.3889 0.5218 0.5136
dermatology 0.8800  0.9000  0.9700 1.0
ecoli 0.6889  0.7034  0.7809 0.8196
flare 0.1293 0.1708 0.5055 0.3852
glass 0.6333 0.6089 0.4344 0.6500
hayes-roth 1.0 0.9617  0.9550 0.9933
led7digit 0.7848 0.6912 0.7718 0.7832
nursery 0.7315  0.9867 0.9564 0.9727
new-thyroid 0.8642 0.8817  0.9800 0.9900
vehicle 0.9168 0.9103  0.9445 0.9539
winequality-red 0.3183  0.3141  0.4592 0.5218
yeast 0.3933 0.3678  0.4362 0.4475

According to the Friedman’s test, the differences between these classifiers are significant:
p-value = 0.0002 for G-mean and p-value = 0.000026 for Average Minority. The average
ranks for G-mean are as follows: J.48 3.05, PART 3.2, PVO WVF 2.05 and CRS ADPR 1.7;
and for Average Minority: J.48 3.1, PART 3.3, PVO WVF 2.25 and CRS ADPR 1.35. The
critical difference with post-hoc Nemenyi CD is 0.93. So both ways of extending BRACID
are significantly better than baseline classifiers. Although this post-hoc analysis does not
show the significant difference between OVO WVF and CRS ADPR, we decided to analyse
them more precisely with the signed one-tailed Wilcoxon test. For o = 0.05, CRS ADPR
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algorithm is better than OVO WVF (The critical value = 60, while the value of T statistics
are 53 for G-mean and 23 for Average Minority).

Finally, we calculated the number of rules produced by BRACID in different extensions,
see Table 5. As one could expect, the way of changing rule induction in single BRACID
classifier always produces less rules than OVO, which needs to build several binary classifiers.
Then, the adaptive pruning ADPR strongly reduces the number of rules generated in the
multiple class BRACID for many datasets, see in particular art4, balance-scale, cleveland,
or led7digits. For some datasets the number of rules may be acceptable for the potential
human inspection.

Table 5: Numbers of rules induced by OVO WVF, CRS BASIC and CRS ADPR ap-

proaches.
dataset OVO WVF CRS BASIC CRS ADPR
artl 231 162 162
art2 523 428 43
art3 745 574 58
art4 463 407 41
autos 292 110 110
balance-scale 757 470 123
car 754 333 333
cleveland 611 315 32
cme 2004 1277 1277
dermatology 468 163 163
ecoli 343 210 210
flare 1558 576 404
glass 259 97 68
hayes-roth 127 108 108
led7digit 682 280 195
new-thyroid 108 42 42
nursery 4096 3584 3584
vehicle 467 359 359
winequality-red 3626 1314 920
yeast 6515 1143 1143

6. Final remarks

This paper was intended to increase interests in the problem of inducing rules from imbal-
anced data. Two ways of extending binary BRACID rule induction algorithm to deal with
multi-class imbalanced data were presented. The experiments demonstrated that the new
multi-class BRACID is better than the adaptive using of the binary BRACID within OVO
ensemble, both with respect to higher predictive abilities and the number of rules.
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We also observed that the considered extensions of techniques for aggregating classifiers
predictions in OVO performed quite similarly. Nevertheless, the weighted voting seems
to be slightly better than the competent classifier selection, in particular with respect of
measures evaluating the recognition of only minority classes. The deeper analysis of the
classifiers selection showed that in some datasets all classes were quite often present in the
analysed neighborhood or in some cases the class of the testing example was absent in its
neighborhood. Therefore, we hypothesize that other, more specialized, dynamic classifier
selection techniques should be studied. Furthermore, we observed that modifying the rule
generalization in BRACID was not so profitable, in particular for data with the single ma-
jority class and many minority ones (see e.g. cleveland data). Perhaps due to characteristics
of the particular pairs of minority classes it was better to additionally generalize more rules
from one smaller class only.

The multi-class single BRACID produces a much smaller number of rules than the OVO
ensemble. However, due to using two fold representation of rules and single instances, it can
still generate relative large sets of rules. In particular, it occurred for more unsafe, difficult
datasets (e.g. yeast or winequality). We showed that for many datasets their number
may be reduced with the presented weighted covering algorithm without loosing predictive
abilities. The more general heuristics for tuning the amount of rule pruning should be
still more deeply developed. Furthermore, for the descriptive perspective or for supporting
explanations of predictions the future research on new rule selection approaches is worth to
be undertaken.
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