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Abstract

Over the last two decades, several approaches have been proposed to tackle the class imbal-
ance problem which is characterized by the inability of a learner to focus on a relevant but
scarcely represented class. The generation of synthetic examples to oversample the training
set and thus force the learner to focus on the important cases is one of such solutions. Re-
cently, generative adversarial networks (GANs) started to be explored as an oversampling
alternative due to their capability of generating samples from an implicit distribution.

Still, data difficulty factors such as class overlap, data dimensionality or sample size,
and were shown to also negatively impact the learners performance under an imbalance
setting. The ability of GANs to deal with the imbalance problem and other data difficulty
factors has not yet been assessed. The main goal of this paper is to understand how data
difficulty factors impact the performance of GANs when they are used as an oversampling
method. Namely, we study the performance of conditioned GANs (CGANs) in an image
dataset with controlled levels of the following data difficulty factors: sample size, data
dimensionality, class overlap and imbalance ratio. We show that CGANs are effective for
tackling tasks with multiple data difficulty factors, exhibiting increased gains on the most
difficult tasks.

Keywords: Conditional Generative Adversarial Network, Class Imbalance, Small Sample
Size, Data Dimensionality, Class Overlap

1. Introduction

One of the main issues predictive models face in real world datasets, is the class imbal-
ance problem, where severe performance losses occur due to the poor representativeness of
one important class. This is a well studied problem for which several types of solutions
have been proposed including pre-processing, post-processing and special purpose learning
methods (Branco et al., 2016). Pre-processing methods are among the most versatile and
thoroughly explored strategies to deal with this problem. These methods modify the train-
ing data distribution in order to bias the learner focus towards the most important and
scarcely represented class. By acting before the learning stage, they enable the application
of any out of the box learning algorithm, which motivates their popularity.

Many alternatives have been put forward for generating synthetic cases as a way to
effectively change the training distribution. Generative modeling is among the proposed
solutions to tackle the class imbalance problem (Ngwenduna and Mbuvha, 2021). Among
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generative models, Generative Adversarial Networks (GANs) have recently been explored
as a data augmentation strategy. GANs have emerged as a way to generate realistic images
(e.g. Goodfellow et al. (2014); Radford et al. (2015)) and have since been applied to a
diversity of tasks. Although being still an under-explored direction (Sampath et al., 2021),
approaches using GANs for tackling the class imbalance problem have been put forward
(e.g. Douzas and Bacao (2018); Suh et al. (2021)).

Despite the relevance of the class imbalance problem, it was shown that, in a real world
setting, several other data characteristics also severely impact the learners performance
(e.g. López et al. (2013); Brzezinski et al. (2021); Branco and Torgo (2019)). Data difficulty
factors, such as the presence of class overlap and the small sample size, raise obstacles
to the performance and typically coexist with the imbalance problem. In particular, the
minority class recognition is heavily affected when these factors are present in imbalanced
datasets (Napiera la et al., 2010). Still, the impact of these data difficulty factors when
carrying out oversampling via GANs has not yet been studied.

The main goal of this study is to understand how other data difficulty factors present
in imbalanced datasets affect the performance of upsampling strategies utilizing GANs.
In particular, we focus on understanding the influence in the performance exerted by the
imbalance ratio, sample size, data dimensionality, and class overlap when using a GAN
architecture for data augmentation. To this end, we selected to apply conditioned GANs
(CGANs) which were shown to improve the classification performance under imbalanced
domains (Douzas and Bacao, 2018). We focus our experiments on a well-know image dataset
(MNIST), for which we generated multiple versions with different levels of the data diffi-
culty factors to observe their effect in a controlled way. Our main contributions are: (i)
a repository with 144 datasets containing different levels of data difficulty factors; (ii) an
extensive experimental study analysing the impact of each data difficulty factor as well as
the combined impact of two factors in the performance of CGANs; and (iii) a repository
with all the code used in our experiments to allow the reproducibility and extension of this
work.

2. Related Work

Class imbalance is a critical issue for many real world applications. Pre-processing methods
are a common approach to this problem whose key idea is to modify the training set distri-
bution to force the learning algorithm to focus on the most relevant cases. The generation
of synthetic minority class instances has been used as a pre-processing solution to balance
the training set and this way improve the performance on the minority class.

Multiple data pre-processing alternatives have been considered that either augment the
minority class or reduce the majority class cases. A popular approach is the generation
of new minority class cases through the generation of synthetic examples. Strategies such
as SMOTE (Chawla et al., 2002), Borderline-SMOTE (Han et al., 2005) or ADASYN (He
et al., 2008) have been broadly used to face the imbalance issue. These methods use the
existing minority class cases to obtain new cases by interpolating them and potentially
adding a particular bias in this generation depending on the proposal.

Recently, GANs have emerged as an alternative upsampling solution. GANs are a class
of generative models based on a game theory scenario that use deep learning methods to
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train two competing models: a generator and a discriminator. The generator is trained to
generate new examples, while the discriminator’s goal is to distinguish between the real and
the generated cases. The two models are trained together in an adversarial game.

GANs have been used with success in several real-world applications including, computer
vision, natural language processing and other fields. Although exhibiting success, their
training procedure is known to be unstable and slow. To this end, Wasserstein GAN
(WGAN) (Arjovsky et al., 2017) was proposed to face the stability problem. WGAN uses
the Wasserstein distance, also known as the earthmover (EM) distance, as a cost function,
which is a more suitable metric for measuring the distance between two distributions as it
does not suffer from the vanishing gradients issue.

A straightforward output of GANs is the generation of synthetic data that approximates
a given real data distribution. Considering that, in an imbalanced context, a key approach is
the generation of class-conditioned examples, a straightforward solution is to use supervised
GAN models such as conditional GANs (CGAN) (Mirza and Osindero, 2014). The key idea
of this solution is the conditioning of the training process on the class labels for the classifier.
This is achieved by simultaneously training a generative model and a fine-grained classifier.
Different conditional GAN alternatives have emerged. For instance, auxiliary classifier
GANs (ACGAN) (Odena et al., 2017) are an extension of class-conditional GANs that
provide varying amounts of control when carrying out image generation, while classification
enhancement GAN (CEGAN) (Suh et al., 2021) incorporates three networks (a generator,
a discriminator and a classifier) to generate minority class examples under the WGAN-
GP (Gulrajani et al., 2017) objective formulation. Douzas and Bacao (2018) showed that
CGANs are able to generate data that improves the learning algorithm’s performance in an
imbalanced context. Still, conditional GANs, such as CGAN and ACGAN, face challenges
in practice given the instability of the training process.

Overall, the use of GANs to specifically tackle the class imbalance problem by balancing
the training data distribution is still a recent idea, whose applicability has not been widely
tested, existing with only a few proposals that assess the effectiveness of these solutions
for this problem (Sampath et al., 2021). Specific modifications of GANs were proposed in
order to use them as an oversampling strategy through the incorporation or combination of
other methods in the GAN architecture. For instance, to face the class imbalance problem,
the application of evolutionary algorithms (e.g. Hao et al. (2020)) and the incorporation of
other generative models, such as auto-encoders, was proposed (e.g. Mariani et al. (2018);
Antoniou et al. (2017); Deepshikha and Naman (2020); Guo et al. (2019)).

Still, the potential of using GANs for dealing with the class imbalance is both under-
explored and not well understood (Sampath et al., 2021). Moreover, to the best of our
knowledge, the co-existence of other data difficulty factors, which is a frequently arising
scenario in imbalanced real-world problems, has not yet been investigated. Our goal is to
assess the performance of a CGAN (Mirza and Osindero, 2014) under different settings that
may hinder the performance on binary imbalanced learning tasks. We will specifically study
the following factors: (1) using different number of features per sample, (2) different levels
of class overlap, (3) varying imbalance ratios, and (4) different sample sizes.
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3. Experimental Evaluation

We conduct several experiments to shed light on different aspects of augmentative upsam-
pling via a CGAN. Learning from an imbalanced domains is our main context. We define
and generate data with multiple data difficulty factors, each of which controlling a different
problem usually coexisting with class imbalanced problems. In each experiment, we train a
classifier with the original imbalanced dataset, and with a dataset balanced with the help of
a CGAN. Our goal is to assess the impact in the performance when carrying out upsampling
with CGAN under the different data characteristics.

3.1. Datasets

We selected the MNIST dataset (LeCun and Cortes, 2010) as the base dataset for our
experiments. Each MNIST case is a 28 pixels by 28 pixels gray-scale image of a hand
written digit. Our goal is to generate multiple datasets with varying degrees of the following
characteristics: (i) sample size; (ii) class overlap; (iii) imbalance ratio; and (iv) number of
features. This allows us to control the specific difficult factors present in the data that we
aim at studying. We will now explain the data generation process that we used to ensure
that these characteristics are present in each one of them.

The original training set of the MNIST dataset contains 5842 instances of the number
’four’. We selected the digits of number ’four’ of MNIST as the base majority class cases
for all the generated datasets. We set the sample size of a dataset using the majority class
as the main reference. Without changing the order of the 5842 instances of the number
’four’, we selected the first 1000, 400, 200, and 100 instances of this class. These 4 sets
will constitute the majority class cases of 4 base datasets with varying sample size. These
datasets will be combined with the minority class cases through different combinations of
characteristics as we will explain below.

In order to control the class overlap we decided to applied a transformation to the
initial majority class images to generate the minority class. To obtain different levels of
class overlap we generated three levels of rotation of the digits of the original number
’four’. Thus, our minority class cases are obtained by applying a rotation of 30 degrees,
45 degrees, or 90 degrees to the original majority class image. The premise is that, if the
minority class images are a result of the majority class images by small degrees, it will be
harder for the classifier to distinguish between them, i.e., we consider that we achieve a
higher class overlap when using the original images and their rotations by 30 degrees than
when using their rotations by 90 degree. Therefore, it will be comparatively easy for a
model to distinguish between a normal four and a 90 degrees of rotation while it will be
harder to distinguish the original image from an image rotated by 45 degrees. The binary
classification of a image with a normal ’four’ and an image with a 30 degrees of rotation
will be hardest of the three. The image rotation is done via PIL library in Python with
its default settings. We can observe examples of the minority class cases generated by
different rotations in Figure 1. In this figure, the left column shows one majority class case
represented with different number of features. We explain below how the majority class
cases are obtained. The other three columns show the corresponding generated minority
class cases for the three rotations defined.
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Figure 1: Illustration of the generation of different image sizes and rotations applied to an
original MNIST dataset image in the top left corner.

We also created datasets with different imbalance ratios. We adopted in this paper
the definition of imbalance ratio as the number of minority class images divided by the
number majority class images. Three different imbalance ratios (0.4, 0.2, 0.1) are applied
to the minority class. This is achieved by observing the total number of majority class cases
and multiplying this number by the selected imbalance ratio to obtain the total number of
minority class cases to add to the dataset. This data difficulty factor is set to discover the
correlation between imbalance ratio and the CGAN’s ability to upsample the minority class
while improving the learner performance.

Finally, we generated datasets with different number of features by resizing into smaller
sizes the original 28× 28 images. Therefore, for each dataset we generated a resized version
to 14 × 14, 8 × 8, and 4 × 4 pixels. Image resizing is done via open-cv library in Python
through the INTER AREA interpolation algorithm. The main goal of reducing the original
images size is to obtain a representation of the classes with a smaller number of features.
In effect, the procedure described allows us to obtain datasets with 784, 196, 64 and 16
features. The study of this data difficulty factor will give us a better understanding of
the effect of the number of features on CGAN’s efficiency when addressing the imbalance
problem. We hypothesize that a strong reduction in the number of features made available
for the CGAN may be a major challenge. We can observe examples of the different sizes of
the generated minority class cases in Figure 1. Table 1 summarizes all the described settings
used to generate each one of the data difficulty characteristics. Overall, we generated a total
of 144 (4× 3× 3× 4) different datasets by generating all combinations of the configurations
for each characteristic. To ensure the reproducibility of our research, all the generated
datasets are freely available at https://github.com/enazari/GAN-upsampling-LIDTA21.
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Table 1: Values and brief explanation of the different data difficulty factors used.

Data Difficulty Factor values used explanation

Sample Size {1000; 400; 200; 100} Set by fixing the majority
class cases used in each dataset

Class Overlap {30◦; 45◦; 90◦} Rotation applied to generate the
minority class cases

IR {0.4; 0.2; 0.1} Imbalance ratio obtained by adding
or removing minority class cases

Nr. of Features {28× 28; 14× 14; 8× 8; 4× 4} Image resize for all cases

3.2. Experimental Setting

We carry out our experiments using the 144 datasets previously generated with different
data difficulty factors. Our main goal is to test the impact of different data difficulty factors
when tackling the class imbalance by upsampling the minority class cases through a CGAN.
To this end, we setup two main evaluation settings: (1) without data augmentation, and
(2) with data augmentation via a CGAN upsampling of the minority class that ensures
a balanced training set. We selected as our learning algorithm a neural network binary
classifier which is used on both settings. The main difference between the two settings is
the on setting one (without data augmentation) we observe the performance achieved when
using the dataset as is, while on the second experimental setting we use the conditional
GAN to balance the training set before training the model. Figure 2 displays a detailed
overview of the system implemented on both experimental settings. For the baseline setting
we have a simple training/test flow, while for the setting with data augmentation, we have
an extra upsampling module. The CGAN model is trained after which the generator is
extracted and used to generate synthetic minority class cases. The new generated cases are
added to the training set to balance the classes distribution. The balanced dataset is then
used to train a model.

We used a 5-fold non-stratified cross validation procedure to estimate the performance
and selected precision, recall and F1-score (cf. Equations 1, 2 and 3) as the performance
assessment metrics. In these equations we used TP, TN, FP, FN for representing True
Positive, True Negative, False Positive, and False Negative respectively.

Precision =
TP

TP + FP
(1) Recall =

TP

TP + FN
(2)

F1− score =
2 ∗ Precision ∗Recall

Precision + Recall
(3)

Due to the imbalance nature of our problem, we cannot rely on standard performance
evaluation metrics such as accuracy which can be misleading for this context (Branco et al.,
2016). Moreover, we opted to report the metrics results for both the majority and minority
classes instead of restricting our results to the minority class as typically done. This way,
we will be able to observe the impact of the data difficulty factors and CGAN upsampling
on both classes which may also provide interesting insights.

Our experiments are carried out for a total of 144 datasets. For each dataset, the
performance results on the two settings (with and without using augmentative upsampling)
are reported. This means a total of 288 tests are conducted.
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Figure 2: Detailed experimental settings: without data augmentation (top) and with data
augmentation (bottom).

Regarding the classifier, an MLP with one hidden layer with 10 perceptrons is used.
The activation function for the hidden layer and the output layer are ReLU and sigmoid
respectively. Table 2 shows the described architecture. The loss function used is the bi-
nary crossentropy and the optimiser is Adam (Kingma and Ba, 2017) with the following
parameters: learning rate=0.001, beta 1=0.9, beta 2=0.999, and epsilon=1e-07.

Regarding the CGAN used for our experiments, Figure 3 displays the CGAN archi-
tecture of the generator and the discriminator respectively for the particular case of a
dataset with a total of 784 features. For other datasets with a different number of fea-
tures, the output of the generator and the input of the discriminator are changed to match
the number of the features of the images. For the generator and discriminator architec-
tures, we used the implementations provided in https://github.com/eriklindernoren/

Keras-GAN/tree/master/cgan. To ensure the reproducibility of our experiments, all the
datasets and code used in these experiments are available on the following link https:

//github.com/enazari/GAN-upsampling-LIDTA21.
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Figure 3: The architecture of the CGAN generator (on the left) and discriminator (on the
right), for a dataset with 784 features.

Table 2: The architecture of the neural network binary classifier used in the experiments.

Layer Number Nodes Count Activation Function

first layer one of: 784, 196, 64, 16 -
second layer 10 relu
final layer 1 sigmoid

3.3. Results and Discussion

We start by introducing the notation used throughout this section. We report precision,
recall and F1-score on both the majority and minority classes. Thus, we adopted the prefix
maj or min to refer to a metric calculated on the majority or minority class respectively.
After the prefix, we express the metric under consideration by using p, r or f1 to represent
the precision, recall and F1-score respectively. Finally, when result is computed on the
original dataset, no suffix is appended. When the result is obtained on the balanced training
set, then the suffix bal is appended. As an example, the notation maj r bal refers to the
recall metric calculated on the majority class after balancing the training set, while min f1
refers to the F1-score metric evaluated on the minority class when the original dataset is
used. In order to compare the impact observed after applying the CGAN, for each metric,
we also compute its ratio after and before balancing the training set. We used the suffix imp
after the class and metric under consideration to represent this importance. For instance,
min p imp represents the impact on the minority class precision which is measured as the
ratio between min p bal and min p.

Our initial analysis regards a global overview of all our results. Table 3 shows the
obtained performance results when using the original imbalanced datasets and after applying
CGAN as a data augmentation strategy. As we can observe in Table 3, four out of six scores
are improved when applying upsampling via CGAN. All minority class scores as well as the
majority class precision show improvements. The overall aggregated F1-scores after the
data augmentation process show a decrease of 3% for the majority class and a remarkable
26% increase for the minority class. This shows that, considering the minority class, using
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Table 3: The average of all the metrics results on the 144 tests before data augmentation
and the 144 tests after data augmentation through CGAN.

metric score without augmentation score with augmentation
precision of the majority class 0.895806 0.943221
recall of the majority class 0.994758 0.898354
F1-score of the majority class 0.940310 0.912214
precision of the minority class 0.556739 0.707897
recall of the minority class 0.391511 0.763900
F1-score of the minority class 0.434325 0.701059

Table 4: Average of all conducted tests’ results by rotation angle.

p
re

ci
si

o
n rot angle maj p maj p bal maj p imp min p min p bal min p imp

30 0.879204 0.923472 1.05 0.499225 0.600382 1.2
45 0.899937 0.947635 1.05 0.564149 0.733548 1.3
90 0.908278 0.958557 1.06 0.606842 0.789759 1.3

re
ca

ll

rot angle maj r maj r bal maj r imp min r min r bal min r imp

30 0.992280 0.863538 0.87 0.309874 0.672050 2.17
45 0.995319 0.911442 0.92 0.413347 0.796543 1.93
90 0.996676 0.920082 0.92 0.451313 0.823106 1.82

F
1-

sc
or

e rot angle maj f1 maj f1 bal maj f1 imp min f1 min f1 bal min f1 imp

30 0.930060 0.883843 0.95 0.358458 0.596278 1.66
45 0.942688 0.923152 0.98 0.450307 0.732212 1.63
90 0.948183 0.929648 0.98 0.494209 0.774687 1.57

an augmentative upsampling via a CGAN presents an advantage for datasets with multiple
data difficulty factors. The overall gains achieved with data augmentation are significant,
ranging between 1̃5% and 3̃7%. Regarding the majority class, we observe gains only for
the precision score. However, both the recall and F1-score show a small decrease for the
majority class. This is however expected when using data augmentation techniques.

Table 4 shows the detailed results when considering different levels of class overlap
through the use of rotated images. We observe that all metrics calculated on both the
minority and majority class display lower scores for lower rotation angles. This matches
our initial expectations as lower rotation angles will produce images with a higher overlap
with the initial images, thus making the classification task more challenging. We also verify
an increase in all results after applying the CGAN upsampling method, except for the recall
and F1-score evaluated on the majority class. This shows that our method is effective even
for imbalanced problems suffering from class overlap. The gains achieved on the minority
class are significant reaching improvements between 120% and 217%. For the minority class,
the precision scores are the ones exhibiting a lower positive impact, while both recall and
F1-score display gains above 157% after balancing. The gains occur for all rotation angles
applied but are higher for lower rotation angles which correspond to scenarios with more
overlap between the classes.

Table 5 shows the performance results obtained for both classes aggregated by number
of features of the datasets. In this case, there is a clear positive impact of the augmentative
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Table 5: Average of all conducted tests’ results by number of features.

p
re

ci
si

on

nr features maj p maj p bal maj p imp min p min p bal min p imp

16 0.825056 0.894222 1.08 0.135569 0.422668 3.12
64 0.885336 0.956430 1.08 0.548632 0.699522 1.28
196 0.927271 0.960783 1.04 0.724369 0.826931 1.14
784 0.945563 0.961451 1.02 0.818384 0.882467 1.08

re
ca

ll

nr features maj r maj r bal maj r imp min r min r bal min r imp

16 0.997253 0.748980 0.75 0.030961 0.656321 21.20
64 0.995445 0.907104 0.91 0.325673 0.800540 2.46
196 0.993056 0.963236 0.97 0.551118 0.787337 1.43
784 0.993281 0.974095 0.98 0.658294 0.811400 1.23

F
1-

sc
or

e

nr features maj f1 maj f1 bal maj f1 imp min f1 min f1 bal min f1 imp

16 0.900711 0.794932 0.88 0.045959 0.471036 10.25
64 0.935136 0.926155 0.99 0.380603 0.717461 1.89
196 0.957646 0.960770 1.00 0.601239 0.788395 1.31
784 0.967748 0.966999 1.00 0.709498 0.827345 1.17

Table 6: The average of all conducted tests’ results by imbalance ratio

p
re

ci
si

on

imbalance ratio maj p maj p bal maj p imp min p min p bal min p imp

0.1 0.928318 0.960770 1.03 0.355617 0.611449 1.72
0.2 0.892025 0.941435 1.06 0.552048 0.708164 1.28
0.4 0.867077 0.927459 1.07 0.762551 0.804077 1.05

re
ca

ll

imbalance ratio maj r maj r bal maj r imp min r min r bal min r imp

0.1 0.998732 0.905932 0.91 0.234442 0.664055 2.83
0.2 0.997305 0.890322 0.89 0.366842 0.784659 2.14
0.4 0.988238 0.898808 0.91 0.573250 0.842985 1.47

F
1-

sc
or

e imbalance ratio maj f1 maj f1 bal maj f1 imp min f1 min f1 bal min f1 imp

0.1 0.961613 0.921095 0.96 0.268097 0.586425 2.19
0.2 0.940043 0.907120 0.96 0.414639 0.707478 1.71
0.4 0.919275 0.908428 0.99 0.620238 0.809274 1.30

strategy applied. Moreover, the magnitude of this impact is dramatically high for the
scenarios with the most adverse conditions reaching an improvement of 312% 2120% and
1025% from the original imbalanced dataset for the cases with 16 features. This is an
important observation as it shows that CGAN can be very effective for datasets where the
number of available features is not high.

In Table 6 we can observe the impact in the performance of the different imbalance
ratios tested. Similar to the previous data difficulty factors, there are important gains on
the minority class results when applying CGAN data augmentation. The recall and F1-score
on the majority class suffer a small negative impact. We also confirm that for the most
difficult scenarios associated with a higher difference between the minority and majority
class cases the upsampling strategy produces the highest benefits to the minority class. It
is important to highlight that, although there is some performance loss on the majority
class, that loss magnitude is much smaller that the magnitude of the gains observed.

Regarding the sample size, Table 7 displays the overall results obtained for the different
scenarios considered. Similar gains are observed for the results of this data difficulty factor,
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Table 7: The average of all conducted tests’ results by majority class count.

p
re

ci
si

on

maj count maj p maj p bal maj p imp min p min p bal min p imp

100 0.854340 0.903191 1.06 0.274914 0.544614 1.98
200 0.882872 0.939053 1.06 0.497944 0.703507 1.41
400 0.908053 0.961276 1.06 0.636845 0.764151 1.20
1000 0.937960 0.969365 1.03 0.817252 0.819315 1.00

re
ca

ll

maj count maj r maj r bal maj r imp min r min r bal min r imp

100 0.994862 0.789104 0.79 0.163082 0.698022 4.28
200 0.996836 0.921883 0.92 0.311874 0.699107 2.24
400 0.994648 0.932106 0.94 0.449297 0.803802 1.79
1000 0.992688 0.950323 0.96 0.641793 0.854667 1.33

F
1-

sc
or

e

maj count maj f1 maj f1 bal maj f1 imp min f1 min f1 bal min f1 imp

100 0.916672 0.818838 0.89 0.189529 0.548599 2.89
200 0.934167 0.926713 0.99 0.359792 0.662593 1.84
400 0.947295 0.944452 1.00 0.498504 0.765536 1.54
1000 0.963108 0.958853 1.00 0.689474 0.827510 1.20

Figure 4: Minority class F1-score before (blue) and after upsampling (orange) by: rotation
angle (top left), number of features (top right), imbalance ratio (bottom left),
and sample size (bottom right).

confirming that CGAN is effective in this setting and provides higher performance gains for
the most difficult scenarios.

Figure 4 shows the F1-score results on the minority class for the four difficult factors con-
sidered in this study: class overlap (achieved through the rotation angles applied), number
of features (achieved through images resizing), imbalance ratio (achieved through minority
class examples added) and sample size (achieve through the base majority class count). This
figure shows that in all cases balancing the distribution via CGAN has a positive impact in
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the performance of the learner. It is also clear that this method has significant advantages
even for the more difficult tasks where we observe lower performance results on the original
imbalanced datasets.

Figure 5: Minority class F1-score for two data difficulty factors (blue: original data, orange:
upsampled data). From top left to bottom right: sample size-imbalance ratio,
sample size-number of features, sample size-class overlap, number of features-class
overlap, number of features-imbalance ratio, and imbalance ratio-class overlap.

To analyse the impact on the performance of multiple data difficult factors we formed
all paired combinations of two difficult factors. Figure 5 shows the F1-score of the minority
class for all these combinations. The factors are sorted by decreasing level of difficult.
We observe that as the combination of the levels of the factors becomes less difficult the
minority class performance improves. This happens with and without the application of
CGAN upsampling. We notice that the gains in performance obtained with CGAN tend to
be more reduced as the difficulty of the factors reduces. The toothed saw effect displayed
on the majority of factors combinations for the dataset modified via CGAN shows that each
difficult factor has an important impact when the other factor considered is fixed.

4. Conclusions

In this paper we studied the suitability of CGAN as a upsampling strategy when the predic-
tive task includes multiple data difficulty factors. Namely, we considered the impact of class
overlap, data dimensionality, imbalance ratio and sample size. Data sets with varying levels
of these factors were generated using the MNIST data. Our extensive experiments show
that upsampling through CGAN is an effective way of tackling the data difficulty factors
studied, providing significant performance gains in the minority class in all scenarios. Over-
all, we found this strategy to work well under the different tested conditions. The use of
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CGAN exhibited larger gains for the most extreme difficult scenarios tested associated with
a lower dimensionality, higher imbalance, higher class overlap and lower sample size. The
case where a low dimension data set was used, provided the most impressive gains. When
analysing two difficult factors we observe a performance degradation with CGAN exhibiting
increased gains for the scenarios including higher difficulty levels. Overall, our experiments
show that CGAN can be effectively used to tackle multiple data difficulty factors that tend
to coexist in real-world problems.

As future work we plan to explore the suitability of other GAN architectures as well as
carry out more experiments with both real-world and synthetic data sets. We also consider
an interesting future research direction the intelligent combination of GANs with other
upsampling strategies.
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