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Abstract

Online supervised learning from fast-evolving data streams has application in many areas.
The development of techniques with highly skewed class distributions (or ’class imbalance’)
is an important area of research in domains such as manufacturing, the environment, and
health. Solutions should not only be able to analyse large repositories in near real-time
but also be capable of providing accurate models to describe rare classes that may appear
infrequently or in bursts, while continuously accommodating new instances. Although
online learning methods have been proposed to handle binary class imbalance, solutions
suitable for multi-class streams with varying degrees of imbalance in evolving streams have
received limited attention. In order to address this knowledge gap, this paper introduces
the Online-MC-Queue (OMCQ) algorithm for online learning in multi-class imbalanced
settings. Our approach utilises a queue-based resampling method that dynamically creates
an instance queue for each class. The number of instances is balanced by maintaining a
queue threshold and removing older samples during training. In addition, new and rare
classes are dynamically added to the training process as they appear. Our experimental
results confirm a noticeable improvement in minority-class detection and in classification
performance. A comparative evaluation shows that the OMCQ algorithm outperforms the
state-of-the-art.
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1. Introduction

Algorithms for online learning from data streams use techniques that process each incoming
example “on arrival” without the need for storage and multiple scans while maintaining a
model that reflects the current data. This type of learning contributes to various real-world
applications, such as spam filtering, fault detection in manufacturing, and medical diagnosis
(Gomes et al., 2019). Learning from such streaming data is challenging, especially in the
presence of multiple skewed class distributions, also known as “multi-class imbalance”. In
this scenario, a large number of majority-class examples may lead to the minority classes
being ignored. This problem is aggravated in an online setting because a steady arrival
of minority instances cannot be guaranteed, and a minority class may become a majority
concept and vice versa (Fernandez et al., 2018). In addition, evolving streams are susceptible
to concept drifts, which is the phenomenon of unexpected changes in the underlying data
distribution (Lu et al., 2018).

Only a limited number of studies have addressed the combined problem of learning from
such evolving streams that contain multi-class imbalance. Recent studies (Fernandez et al.,
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2018) have mainly focused on binary imbalanced data, propose modifications of resampling
methods, or worked only with stationary streams. Also, they do not address dynamic class
evolutions. In this paper, we introduce the Online-MultiClass-Queue (OMCQ) approach,
which learns directly from the original data in a multi-class imbalanced setting. Our multi-
class learning algorithm maintains separate queues for each class, thus facilitating training
based on the current data. In our work, we do not generate any artificial samples, since
introducing “synthetic” cases in real-world domains such as health care and cybersecurity
may be questionable to domain experts. Our algorithm is able to dynamically adapt to
changes in label arrivals. That is, we do not make any assumptions regarding the frequency
of classes, which implies that minority classes may become majority classes, and vice versa.

Furthermore, we introduce a drift detection mechanism able to separately detect changes
in the individual classes, while simultaneously handling multiple class drifts. The novelty
of this approach is that, for each class, we maintain a queue of instances and flag for drifts
when a detection threshold is reached. Thus, drifts in minority classes with fewer samples
are not ignored. Our algorithm combines batch-incremental and instance-incremental online
learning. That is, initially a batch of data with all classes is presented to the learner and
it subsequently proceeds to update the model with new instances as they arrive. Our
experimental results confirm that our algorithm is efficient in terms of storage space and
multi-class concept separation.

The paper is organized as follows. Section 2 presents related work while Section 3
introduces the OMCQ algorithm. Section 4 describes the experimental evaluation, and
Section 5 concludes the paper.

2. Background and Related Work

In online learning, a data-generating process provides at each time step t a sequence of exam-
ples (2, y;) from an unknown probability distribution, where x; is a vector consisting of qual-
itative or quantitative f features, and y; € Y is the class label, where Y = {c1,¢2,...,cn}
and NN is the number of classes. An online classifier is built receiving an example x; at
time step t, resulting in a prediction ¢;. In a supervised learning setting, the label y; is
available, and the performance of a learning algorithm is evaluated using a loss function
f(xy) = U(ye, 9e) to find the best predictor for future data at each step (Gomes et al., 2019).
In this paper, we focus on online learning from multi-class imbalanced data, where N > 2.

2.1. Online class imbalance learning

In an online class imbalance learning setting, the main goal is to correctly classify minority
examples because the minority class is often of most interest. Resampling is an effective
data-level approach that proceeds independently of the learning algorithm; this method
has been used in the data stream setting for binary classification problems. The major
types of resampling are oversampling (increasing the number of minority-class examples),
undersampling (reducing the number of majority-class examples), and hybrid sampling
(Gomes et al., 2019). However, under-sampling methods may lead to crucial information
being overlooked, while oversampling may potentially introduce artificial instances, which
may be deemed unacceptable in real-world domains.
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For example, in (Wang et al., 2014), the authors integrate resampling into ensemble
algorithms to define the Oversampling Online Bagging (OOB) and Undersampling Online
Bagging (UOB) techniques for binary classification. The work extends Bagging ensembles
following a class-based ensemble approach to dynamically change the learning rate by main-
taining a base learner for each class and dynamically updating the base learners with new
data to deal with binary class imbalance. Resampling will be triggered to either increase
the chance of training minority-class examples (in OOB) or reduce the chance of training
majority-class examples (in UOB).

Online queue-based resampling (Malialis et al., 2018) has also been proposed as a method
for binary classification. The main idea of this algorithm is to selectively include a subset
of the positive and negative examples in the training set that thus far have appeared in the
stream. The examples are selected by maintaining, at any given time ¢, separate queues
based on class labels received from data of equal lengths L € Z%, ¢, = {(zi,y:)}; and ¢}, =
{(zi,y:)}£ | that contain the negatives as majority examples and the positives as minority
examples, respectively. Once the queues are filled, the classifier is incrementally updated
after combining the two queues into one training set (Malialis et al., 2018). The algorithm
employs an interleaved test-then-train evaluation (Bifet and Frank, 2010) in which each
individual example is used to test the model before the example is appended to the queues
for training, thus implementing a sliding window method. Our work extends the notion of
queues as presented in (Malialis et al., 2018) to the multi-class scenario by incorporating
explicit concept drift detection during learning, while eliminating resampling.

2.2. Multi-class imbalanced learning

Multi-class classification problems are often considered more challenging than their binary
counterparts because multiple classes can increase the data complexity and aggravate the
imbalanced distribution (Fernandez et al., 2018). Current approaches in a batch setting
are mostly based on binary decomposition techniques, algorithmic-level modifications us-
ing misclassification costs, and resampling methods (Wang et al., 2014). These algorithms
are typically combinations of binarisation techniques that transform the original multi-
class data into binary subsets. For instance, the authors of the One-versus-One (OVO)
(Fernandez et al., 2013) decomposition strategy, first select a subset from the original data
that only contains the instances for each pair of classes, and proceed to train a binary clas-
sifier for each pair. On the other hand, in the One-versus-All (OVA) approach (Fernandez
et al., 2013), the authors decompose a multi-class dataset into several binary class problems
and subsequently train single classifiers for each class, i.e. by considering a single class ver-
sus a combination of all the remaining classes. A disadvantage of binarisation techniques is
that the interactions between multiple classes cannot be considered simultaneously.

A limited number of research studies considered multi-class online learning from evolving
streams, focusing on resampling techniques. Specifically, in a recent study (Wang et al.,
2016), the authors proposed two ensemble learning methods for multi-class online learning.
These two algorithms, Multi-class Oversampling-based Online Bagging (MOOB) and Multi-
class Under-sampling-based Online Bagging (MUOB) use re-sampling to overcome class
imbalance, with the framework of Online Bagging (OB), as introduced above (Wang et al.,
2014). In MOOB, the minimum (wy,;,) and maximum (w,q,) class sizes among all classes
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Figure 1: High-level overview of Online-MC-Queue methodology

are calculated at each time step. Subsequently, the algorithm sets A = %gjt, where w§

is the size of class ¢, at time ¢. This approach thus ensures that minoriéy classes have
a larger sampling rate. The MUOB algorithm inverses this idea, where A controls the
undersampling rate. Thus, in MOOB, oversampling is used to increase the possibility of
learning minority-class examples based on the occurrence probability of examples belonging
to each class, while in MUOB undersampling is used to reduce the chance of learning
majority-class examples. These algorithms are able to process multi-classes directly without
using class decomposition, but the performance is based on underlying assumptions, such
as that sampling is efficient, useful, and does not introduce bias. In addition, MOOB and
MUOB do not include a drift detector.

In the next section, we introduce our OMCQ algorithm, which learns directly from the
original data without any resampling and incorporates a drift detector mechanism.

3. Online Multi-Class Queue-Based Learning

Our OMCQ framework maintains a queue for each one of our multiple classes, consisting of
two stages: queue construction and online learning. Initially, all queues will be empty. As
instances arrive, they are added to the appropriate queue, as per their true label. When a
queue has been filled up, training commences.

We subsequently implement a forgetting mechanism, where the first elements are re-
moved as the data continue to stream in. In other words, our algorithm initially ‘waits’
until we have enough instances in our queues and then proceeds to incrementally update
the model using a sliding window (Read et al., 2012). That is, we assume that the number
of instances from the minority classes are sufficient in order to fill a queue, in order to
commence training. Figure 1 illustrates how our contributions fit together and operate in
one iteration of an interleaved test-then-train loop using instance-by-instance learning.
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Figure 2: Example of Queues resampling (adapted from (Malialis et al., 2018))

The online learning phase of OMCQ incorporates three processes; dynamic class balanc-
ing, concept drift detection, and evaluation. In the class balancing module, our algorithm
creates a queue space to separate the instances from each class as they arrive within the
stream. The concept drift detector captures changes in the data distributions by adapting
the DDM algorithm (Wang et al., 2013) and subsequently updating the instances in the
queues. The evaluator is used to predict the class label of arriving instances and to update
the evaluation metrics.

3.1. Queue-Based Learning

Incremental online learning is a subarea of online learning that are additionally bounded
by memory resources and capability of continuous learning with limited data compared to
offline learning. This method considers a given stream of data x1,x9,...,x; and learns a
sequence of models hi, ho, ..., hy, where the models are updated as instances arrive. In our
work, following (Malialis et al., 2018), we consider a sequence of streaming data {(x1,y1),-
ooy (@, y)} € R x {1,..., K} where n is the data dimension and K is the total number
of classes. The key idea is to keep fixed number of examples (queue size denoted by L), for
each class in a stream, to form the initial training set. In other words, each arriving sample
(z¢,y¢) at any given time t will be stored in a separate queue of equal length thk = L, where
cr, is the class label received with the data. Together, the queues form a batch.

Figure 2 illustrates how Queuey, works when ¢ = 3. The upper part shows the examples
that arrive at each time step, e.g., 2% and z* arrive at ¢t = 0 and ¢ = 4, respectively. Assume
that the dataset contains three classes Y = {c1,c2,c3} and that all instances have their
own queues. The queues are of equal length L € Z*, gz, = L, q¢,, = L, and g, = L and
contain the samples of class ¢j, class co, and class c3, respectively. After instances have
been separated based on their labels, the arriving samples for class ¢, are placed at the
front of the queue.,. When the queues fill up, we combine the full queues in order to form
a training set and commence online learning. Here, we employ a forgetting mechanism,
where the oldest instance will be removed from the head of the queue, thus implementing
a sliding window.

As shown in Figure 3, B; is a batch of data with size p, defined as the number of
instances used to train the model. As an initial training step, we construct an initial model
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with instances from all classes. For each arriving instance (x4, y;) at time ¢, the oldest sample
from the queue to which 1; belong, will be removed, and the recent sample is added to batch
B;. Next, the learner will use batch B; to update its model, i.e., the training process utilises
a balanced set consisting of the most recent data. In this way, the algorithm waits until it has
enough instances from the classes, including the current minority classes, before updating
its model. It follows that both the batch size p and the sizes of the individual queues are
highly domain dependent; these values are set by inspection. Recall that an underlying
assumption of our approach is that we will have enough instances from all minority classes
in order to fill a small queue that will be able to facilitate accurate model construction.
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Figure 3: Illustration using batch-instance incremental model.

Algorithm 1 illustrates our methodology. Intuitively, our aim is to select examples
from all classes in order to balance the training set during learning. When online learning
starts, each instance receives the true label, and the example is then inserted into the queue
corresponding to the actual label. Next, the label is compared with a list of class labels
that have been seen so far. When an instance with a new class label arrives, the queue for
the corresponding class is initiated. That is, if the true label of a new instance has not been
seen before, we initialise ()., corresponding to class ¢; and this process continues until @,
is full. At every iteration, the queue sizes for all current classes are assessed; if the queues
are full, the classifier is able to update the learning model. The newly arriving instance in
a queue replaces the oldest example. In this way, we always maintain the latest examples
for each class and train using these sliding batches. Our framework is thus designed so that
each class that appears in the stream will be used to update the model after reaching the
queue size L, ensuring enough instances from minority classes are available prior to training.

Recall that we also included a concept drift detector to handle evolving streams. To
this end, we adapted the DDM drift detection algorithm in our framework (Wang et al.,
2013). The main task of a drift detector is to prompt the learner to update the model after
drift occurs. The number of misclassified instances corresponding to each class is used as
a drift indicator based on the results so far. Following (Wang et al., 2013), we employ two
counters for each class, where w; denotes a warning level and d; refers to the drift detection
threshold. That is, we continuously update w; and d;, and if the number of misclassified
instances reaches d; then a drift is detected. Subsequently, a new model is induced using
the examples stored between w; and d;. Practically, this process aids in removing outdated
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Algorithm 1: OMCQ algorithm

while stream.has_more_instances() at each time step t do

zl,y! = get.next_instance();

yl_predict = Classifier.Predict(z!); // Test then train evaluation
Driftlistc, = [ ];

af, = TestForDrift(x}, yf);

// Test for concept drifts

if y' in previously seen class C; // Add to queue

then

‘ Increment Counterc,; thi :g:l) .append(i); Update(atci)
end

else

‘ Counterc, = 1; Initializetci,thi.append(i); Update(atci)
end

if (af, > wg, ) is TRUE // Warning, Start Drift list
then

| Add instance i to Drift list(c,)

end

if (o}, >dg, ) is TRUE // Drift detected

then

| Update Q¢, = Driftlistc,

end

if Qc, == L // Online learning

then

| Training_set = J;"_, Qc,

end

Classifier.Incremental. Update(Training_set);
Qc; = Qc; (Th,yn);

Return G_mean, F_Measure, x, Model,

end

samples and updates the queue with new instances. Our drift detector process is initiated
once an instance is misclassified then continues until it reaches the specified proportion
of the queue (denoted by L/n). The rational behind this approach is to find a trade-off
between the ability of the learner to adapt faster, while not testing for drift too often in
order to limit the overhead associated with detection. That is, our aim is to maintain only
the optimal “small subset” of data necessary to accurately flag for drift. Intuitively, if L = 1
then the process corresponds to testing for drift as every instance arrives, i.e. n = 1.
Figure 4 shows our results against a radial basis function (RBF) data stream (Bifet et al.,
2010), one of the repositories we used in our experiments where n was set to 2 by inspection.
The reader will notice that, as expected, the drift detection threshold has a considerable
influence on the predictive performance. In this setting, once a misclassification takes place,
we signal a warning for potential drift and start to collect all instances from this point of
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time into the drift detector queues. Next, we test for drift when we reach (L/n) instances
and proceed accordingly. That is, we either detect a drift (and reset the learner) or continue
to monitor. If no drift has been detected but the warning level remains, we proceed to collect
and to test with the next (L/n) instances. This process continues until the set of examples is
equal to our queue size L. Throughout this process, in the scenario when a drift is detected,
the learner is reset and a new model is learned using a training set consisting of all the
examples in the drift detection queues, as maintained since the warning was triggered. It
follows that the values of n and L are domain-dependent and should be carefully selected
to ensure the accuracy and efficiency of the drift detector. The next section details our
experimental evaluation.
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Figure 4: G-mean value with different thresholds against the RBF dataset.

4. Experimental evaluation

All experiments were conducted on a MacBook Pro with a Dual-Core Intel Core i5 processor,
CPU @ 3.1 GHz processor, 8.0 GB RAM on the Mac Catalina Operating System (OS) and
the Name Withheld Cloud with 10 Core CPUs. Our code was implemented using the Scikit-
Learn (Pedregosa et al., 2011) and Scikit-Multiflow (Montiel et al., 2018) packages in Python
version 3.8.2. The framework’s implementation and all the code for the experiments will be
made available in GitHub upon publication. The no-change and majority-class classifiers
were used as our baselines. The no-change classifier assumes that the class label of instance
x; would be the same as the last seen instance x;_1, while the majority-class learner assigns
the class seen most often so far to a new instance (Montiel et al., 2018). Additionally,
we employed three classifiers, namely, Hoeffding Adaptive Tree (HAT) (Bifet and Gavalda,
2009), Hoeffding Tree (HT) (Domingos and Hulten, 2000), and the Self-Adjusting Memory
(SAM) model for the K-nearest neighbor (KNN), denoted by SAMKNN (Losing et al., 2017).
HTs are incremental decision trees for data stream classification that use Hoeffding’s bound
to commence online learning. HAT is an extension of HT that adaptively learns from data
streams that change over time without needing a fixed-size sliding window. SAMKNN is
an online implementation of KNN and we set k£ = 7 by inspection.

The performance measures we used are the F-measure, geometric mean (G-mean), and
Cohen’s k statistic. The F-measure refers to the harmonic mean of two metrics, recall and
precision. The F-measure may be weighted depending on the value assigned to a. We used
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a balanced value, which is referred to as the Fl-score, by setting « = 1, which implies
that precision and recall are assumed to carry equal weights in the metric. The F-measure
is macro-averaged over the sum of Fl-score over all classes which assigns equal weights
to the existing classes. Additionally, we employed the G-mean to separately consider the
classifier’s accuracy rate on each of the classes and calculate the geometric mean of the
classes. This measure maximizes the accuracy for each of the classes while keeping these
accuracies balanced. Moreover, Bifet and Frank in (Bifet and Frank, 2010) proposed the x
statistic for online learning; this statistic is used to address the effect of predicting a label
by chance when calculating a classifier’s accuracy in a streaming setting (Montiel et al.,
2018).

We conducted two sets of experiments to assess our OMCQ algorithm. First, we con-
sidered the performance of our algorithm when utilizing the baseline and component clas-
sifiers. Second, we compared OMCQ to the previously mentioned state-of-the-art MOOB
and MUOB algorithms. We chose these algorithms for our comparison because they are
directly applicable to multi-class streams. MOOB and MUOB are implemented using the
parameters detailed in (Wang et al., 2016). Note that the algorithms do not handle con-
cept drift. In order to conduct a fair comparison, we incorporated the DDM method with
MOOB and MUOB in a manner similar to that of the OMCQ algorithm. For each class
k, two values (p; and s;) will update if the new sample z; belongs to the class ¢, where
p; is the probability of misclassifying and s; = pill=Pi) i the standard deviation of ;-
A significant increase in the error rate of each class signals the drift detector. Throughout
online learning, we calculate (p; + $; > Pmin + ASmin) Where A = 2 and A = 3 correspond to
w; and d;, respectively. If a drift is detected, the model constructed by MOOB or MUOB
is reset, and a new model is learned using the examples stored since the warning trigger.

4.1. Datasets

Our experimental study was based on the following multi-class datasets as depicted in
Table 1: historical weather data obtained from Open Data Canada (Government, 2020),
the Shuttle dataset from KEEL (Alcala et al., 2011), the LED dataset (Bifet et al., 2010), the
RBF stream (Bifet et al., 2010), the Gas Sensor dataset (Vergara et al., 2012), the Human
Activity Recognition (HAR) stream (Casale et al., 2012) and the Covertype dataset (Frank
and Asuncion, 2010). The weather dataset contains data from probes located across Canada
to detect adverse weather. The Shuttle dataset considers three classes and is used to predict
when an auto-landing would be preferable to the manual control landing of a spacecraft. The
LED dataset comprises of seven Boolean attributes and ten labels; the goal was to predict
the digit displayed on a seven-segment LED display, where each attribute has a 10% noise
level. We used a version of LED available through Scikit-MultiFlow that includes concept
drifts in the datasets by simply changing the attribute positions. The radial basis function
(RBF) generates a fixed number of random centroids, where each center has a random
position, a single standard division (SD), a class label, and a weight. The generated RBF
datasets have ten numerical attributes and 50 centers with four classes. The Gas Sensor
dataset contains 13610 measurements from 16 chemical sensors utilised in simulations for
drift compensation in a discrimination task of six gases at various levels of concentrations.
The HAR dataset contains uncalibrated accelerometer data collected from 15 participants
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performing seven activities. We combined activity of three participants to create drift in the
dataset. Covertype is a benchmark dataset for evaluating stream classifiers. This dataset
represents a forest cover type for 30 x 30m cells, where each cover type is represented by
one of the seven classes.

Table 1: Data streams and their properties.

Dataset Size | Number of Class | Class Imbalance Ratio
Weather 29375 4 1:2.5:1.5:13
Shuttle 2167 3 1:5:13

LED 7205 4 1:1.5:2.7:5.7

RBF 200000 4 1:1:1:2

Gas Sensor 13610 4 1:1:1:4.4

HAT 35300 4 1:1:1.7:6.3

Cover Type | 50000 7 1:1:1:1:1:5:13

4.2. Experimental results

First, we investigated the effect of queue size on our OMCQ algorithm to assess how the
size of L affects the performance of queue-based learning. Figure 5 depicts the behavior of
the proposed method on different sizes of queue L € {1,10,20,30,50}. As expected, the
figure shows that the smaller the queue length, the faster the learning speed. ()1 dominated
in the first 500 time steps; however, at the end of training it reached a G-mean similar to
that of Q19 and Q2¢. In online learning, there is an obvious interplay between accuracy and
learning time. Our results indicate that, for our experiments, a queue size of 20 resulted in a
good trade-off between accuracy and speed, and we subsequently report the results of using
this queue size against all datasets. It follows that queue sizes are highly domain-dependent;
this value was set by inspection.

Compare Queue Size Compare Queue Size

08

06

04

G_Mean

- queue 1 - queue 1
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02 queue 20 0.2 queue 20
- queue 30 - queue 30
— queue 50 — queue 50
0.0 0.0
0 500 1000 1500 2000 0 5000 10000 15000 20000 25000 30000

Time_Steps Time_Steps

Figure 5: Results against different queue sizes (RBF stream).

Table 2 depicts the G-mean results for all four datasets when assessing the performance
of our OMCQ algorithm with various base learners compared to the two baseline algorithms.
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The results clearly show the benefit of our method compared to the majority class and no-
change learners, which were not able to learn the concepts within our multi-class imbalanced
streams. The other algorithms performed comparably. Readers should notice that fast drift
detection, together with the associated recovery process, prevent a significant performance
drop in our results.
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Table 2: Results of model construction for different learners.

Table 3 presents the results of our comparative study when contrasting the OMCQ,
MOOB, and MUOB algorithms. The three component classifiers (HT, HAT and SAMKNN)
had comparable results across all data sets. In addition, the OMCQ algorithm produced the
highest values in terms of G-mean for all data streams and for all component classifiers. The
same observation holds for the F-measure, where again, OMCQ produced higher results.
Notably, this was especially the case for the LED, RBF, Gas Sensor and Covertype data
streams, which contained concept drift, where the MOOB and MUOB algorithms struggled
to obtain high values for these two metrics. Regarding the x statistic, the three algorithms
yielded comparable values against the weather, Shuttle, and LED streams. For the RBF
dataset, OMCQ used together with HAT and HT produced significantly higher values, while
the MOOB algorithm using SAMKNN-7 as base-line gave the best results, with OMCQ as
a close second. In the case of the Gas Sensor, HAR and Covertype datasets, OMCQ
achieved significantly higher results when utilising SAMKNN-7. These results indicate that
the queuing mechanism of OMCQ, where we consider all original instances rather than
resampling, clearly benefits online learning.
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Table 3: Evaluation results against data streams.

oMCQ MOOB MUOB
Stream Classifier |G-mean|F-score| & |G-mean|F-score| &k |G-mean|F-score| &
HAT 0.950 | 0.945 | 0.915 | 0.867 | 0.833 |0.930| 0.826 | 0.796 | 0.891
Shuttle HT-Tree 0.951 | 0.942 [0.922| 0.838 | 0.815 | 0.883 | 0.800 | 0.764 | 0.882
SAMKNN-7| 0.968 | 0.964 | 0.943 | 0.896 | 0.879 [0.960| 0.845 | 0.723 | 0.931
HAT 0.854 | 0.838 | 0.780 | 0.785 | 0.733 [0.785| 0.790 | 0.750 | 0.774
Weather HT-Tree 0.857 | 0.831 | 0.771 | 0.791 | 0.752 |0.825| 0.787 | 0.749 | 0.801
SAMKNN-7| 0.880 | 0.868 | 0.813 | 0.839 | 0.786 |[0.872| 0.771 | 0.694 | 0.851
HAT 0.921 | 0.902 |0.876| 0.784 | 0.756 | 0.850 | 0.789 | 0.761 | 0.854
LED HT-Tree 0.912 | 0.888 [0.860| 0.780 | 0.747 | 0.855| 0.780 | 0.747 | 0.855
SAMKNN-7| 0.911 | 0.893 | 0.866 | 0.767 | 0.699 | 0.890 | 0.792 | 0.754 |0.895
HAT 0.886 | 0.854 |0.801| 0.620 | 0.478 | 0.460 | 0.645 | 0.494 | 0.525
RBF HT-Tree 0.844 | 0.819 |0.785| 0.701 | 0.590 | 0.650 | 0.617 | 0.476 | 0.575
SAMKNN-7| 0.861 | 0.841 | 0.810 | 0.777 | 0.721 |0.865| 0.643 | 0.547 | 0.822
HAT 0.846 | 0.826 |0.756| 0.619 | 0.640 | 0.686 | 0.640 | 0.544 | 0.400
Gas Sensor |HT-Tree 0.982 | 0.963 [0.949| 0.740 | 0.587 | 0.711| 0.550 | 0.414 | 0.495
SAMKNN-7| 0.975 | 0.965 |0.954| 0.964 | 0.910 [ 0.899 | 0.857 | 0.837 | 0.769
HAT 0.839 | 0.745 | 0.684 | 0.806 | 0.674 | 0.681 | 0.796 | 0.640 |0.687
HAR HT-Tree 0.854 | 0.781 | 0.701 | 0.859 | 0.743 |0.755| 0.812 | 0.652 | 0.712
SAMKNN-7| 0.883 | 0.817 |0.784| 0.839 | 0.704 |0.783 | 0.767 | 0.655 | 0.664
HAT 0.844 | 0.728 |0.714| 0.835 | 0.715 | 0.705| 0.772 | 0.661 | 0.600
Cover Type|HT-Tree 0.888 | 0.844 [0.811| 0.777 | 0.661 | 0.698 | 0.662 | 0.387 | 0.591
SAMKNN-7| 0.909 | 0.846 |0.837| 0.818 | 0.682 | 0.680 | 0.800 | 0.641 | 0.623

5. Conclusion

The paper addressed the challenge of online learning from evolving multi-class imbalanced
data streams, which are susceptible to concept drifts. An advantage of our OMCQ method
is that it operates independent of a base classifier, thus providing a general framework for
dealing with evolving multi-class streams. The OMCQ algorithm maintains queues for each
of the classes and thus implicitly balances the data, without having to resort to resampling.
In this way, all classes are equally represented during online learning. Concept drift is
handled by considering individual classes, which implies that drifts in minority classes are
detected as soon as enough instances have been collected. Our experimental results show
the benefits of our approach, and we determined that the OMCQ method is a promising
candidate for further experimentation.

Our OMCQ algorithm is highly suitable for scenario where the minority class instances
are numerous enough to fill a queue. We plan to also study highly skewed multi-class
scenarios where minority classes are very scarce or may only arrive after long delays. In
addition, we aim to investigate the trade-offs between performance and time complexity.
Moreover, we plan to conduct ablation studies to explore the influence of queue sizes on the
learning outcomes. Further, a detailed investigation of the interplay between multi-class

32




ONLINE-MC-QUEUE

imbalanced learning and concept drift detection is needed. Future work will also include a
comparison with other resampling methods, such as SCUT-DS (Olaitan and Viktor, 2018),
an approach for stationary streams that combines over-sampling based on SMOTE with
cluster-based undersampling, and SOUP, a Bagging ensemble that uses the notion of safe
levels to resample data in an offline setting (Janicka et al., 2019).
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