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Abstract

Novelty detection, which detects anomalies based on a training dataset consisting of only
the normal data, is an important task in several applications. In addition, in the real world,
there may be situations where data is owned by multiple parties in a distributed manner
but cannot be shared with each other due to privacy and confidentiality requirements.
Therefore, how to develop distributed novelty detection while preserving privacy is essential.
To address this challenge, we propose a probabilistic collaborative method that allows
distributed novelty detection for multiple parties without sharing the original data. The
proposed method constructs a collaborative kernel based on a collaborative data analysis
framework, by which intermediate representations are generated from each party and shared
for collaborative novelty detection. Numerical experiments demonstrate that the proposed
method obtains better performance compared with the individual novelty detection in the
local party.

Keywords: Novelty detection, Distributed data, Collaborative data analysis framework,
Intermediate representation, Collaborative kernel.

1. Introduction
1.1. Motivation

Novelty detection detects anomalies in test data which significantly differ from the training
data. Since the training data consists of only the normal data, novelty detection is consid-
ered as a challenging and important task in several applications such as medical diagnostic
problems (Clifton et al. (2011)), sensor networks (Zhang et al. (2010)), video surveillance
(Diehl and Hampshire (2002)), and detection of masses in mammograms (Tarassenko et al.
(1995)). In addition, in the real world, there may be situations where data is owned by mul-
tiple parties in a distributed manner but cannot be shared with each other due to privacy
and confidentiality requirements. Distributed data analysis methods, which aim to analyse
such kind of distributed data without sharing local data between parties, have recently
attracted significant attention.

A motivating example is a failure and defect detection for distributed manufacturing
datasets. When the same type of products are manufactured by multiple companies, the
product data are owned in distributed manner. In addition, for each product, the manufac-
turing data and trial data will be owned by the manufacturing company and the purchasing
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company. Because of a limited number of samples and features, it is difficult to detect
anomalies only using a data in a single party. Centralizing the data from multiple parties
could help to achieve a high-quality novelty detections; however, it is difficult to share man-
ufacturing and trial data between multiple parties due to confidentiality requirements. A
similar situation occurs in medical and financial data.

Thus, a development of a novelty detection method for horizontal and vertical dis-
tributed data, which are partitioned according to samples and features, is essential.

1.2. Main purpose and contributions

Some methods have been proposed for detecting anomalies from distributed data but with-
out considering the privacy-preserving problem (Chatzigiannakis et al. (2006); Deshmeh and Rahmati
(2008)). On the other hand, typical techniques including cryptographic computations (or
secure multi-party computation) (Jha et al. (2005); Cho et al. (2018); Gilad-Bachrach et al.
(2016)) and differential privacy methods (Abadi et al. (2016); Ji et al. (2014); Dwork (2006))
can be applied to protect the privacy of the original data. However, the high computational
cost or the randomization implementation may cause inefficiency for distributed novelty de-
tection. Recently, the federated learning systems been proposed for distributed data analysis
and privacy preserving. The federated learning systems can be classified into model share-
type federated learning (Li et al. (2019); Kone¢ny et al. (2016a,b); McMahan et al. (2016);
Yang et al. (2019)) and non-model share-type collaborative data analysis (Imakura and Sakurai
(2020); Imakura et al. (2021c); Ye et al. (2019); Takahashi et al. (2021); Imakura et al. (2021b)).
To realize a novelty detection method for distributed data without sharing the original
data, in this paper, we propose a probabilistic novelty detection method based on the non-
model share-type collaborative data analysis framework. The proposed method utilizes
least square probabilistic analysis using a collaborative kernel which is constructed based
on the intermediate representations from individual data in local parties. Finally, a novelty
score based on the collaborative kernel is computed to detect the anomalous data.
The main contributions of the proposed method are summarized as follows:

e The proposed method utilizes a least square probabilistic analysis using a collaborative
kernel which contains the relationship information between data in all parties and thus
allows collaborative novelty detection without revealing the private data for horizontal
and vertical data distribution.

e The obtained novelty detection model is constructed based on all features and samples
of the distributed data, which is impossible in individual analysis in a local party.

Numerical experiments on both artificial and real-world data indicate that the proposed
method obtains better performance than individual novelty detection and comparable to
that of centralized novelty detection.

1.3. Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
probabilistic novelty detection and federated learning systems as related works. In Section 3,
we propose a novel collaborative novelty detection method for distributed data. Numerical
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results are reported in Section 4. Finally, in Section 5, we summarize our results and
conclude the paper.

2. Related works
2.1. Probabilistic novelty detection

Typical novelty detection methods include probabilistic, distance-based, domain-based,
reconstruction-based, and information theoretic methods (Chandola et al. (2009)).

Here, we focus on probabilistic novelty detection methods. Probabilistic novelty detec-
tion computes a novelty score w(zx) € R for the data & and detects whether « is anomalous
using a prescribed threshold 7 € R. If w(z) > 7, = is anomalous otherwise & is normal.
Some non-parametric methods have been proposed (Parzen (1962); Sugiyama et al. (2008)),
which contains no information on the underlying distribution. However, when training data
is multimodal, their performance decrease. To deal with the multimodal data, a novelty de-
tection method based on least square probabilistic analysis (ND-LSPA) has been proposed
(Yoda et al. (2020)).

Here, we briefly introduce ND-LSPA for multimodal data. Assume that the datasets
{x1,@9,...,x,} is multimodal. Let L be the number of classes and y, € {1,2,...,L} be
the label for each training data @;. A novelty score is defined as

L
w(®m) :==ply =0lz) =1-Y ply={|z), (1)
/=1
where p(y = 0O|x) is a posterior probability for anomalous and p(y = ¢|x) is a posterior
probability for each class of normal data. Then, the posterior probability p(y = f|x)
(¢ =1,2,...,L) is modeled as

p(y = lz) ~ q(y = l|z; 0n) = of p(),

with a weight vector acy € R™ and a basis vector ¢(x) = [K(x, z1), K (x, x2), ..., K(x,z,)|T €

R"”, where

Nl — =3
202

is a kernel function with a band width o. The weight vector oy is set to minimize the
following squared loss,

K(:n,ack):exp< ), k=1,2,...,n

1

T = 5 [ (aty = tlzse) = ply = t2))? i) e )

2.2. Federated learning systems

The federated learning systems can be classified into model share-type federated learning
(Li et al. (2019); Koneény et al. (2016a,b); McMahan et al. (2016); Yang et al. (2019)) and
non-model share-type collaborative data analysis (Imakura and Sakurai (2020); Imakura et al.
(2021c); Ye et al. (2019); Takahashi et al. (2021); Imakura et al. (2021b)).

The model share-type federated learning has been first proposed by Google (Koneény et al.
(2016b,a)), which are mainly based on (deep) neural network. All parties share the model
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and update it in each iteration without sharing the local data. The federated averaging
(FedAvg) algorithm is widely used for model updating, which takes either the model aver-
age or the gradient average of the local model weight or gradient updates from all parties
(Li et al. (2019)). However, for model share-type federated learning, we may need to care
for a privacy of the original dataset due to the shared functional model (Yang (2019)).

Instead of sharing the model, the non-model share-type collaborative data analysis was
proposed in (Imakura and Sakurai (2020)) to utilizes intermediate representations from each
party. By allowing different functions to be used in different parties to generate interme-
diate representations, the collaborative data analysis ensure both the recognition perfor-
mance and privacy as analyzed in (Imakura et al. (2021a)). Unlike the model-sharing fed-
erated learning, the collaborative data analysis does not require iterative computing with
cross-organization communications. The performance comparison between the non-model
share-type collaborative data analysis and the model share-type federated learning has been
reported in (Bogdanova et al. (2021)).

3. Probabilistic collaborative novelty detection for distributed data

3.1. Distributed novelty detection

Let m, n, and s denote the numbers of features, training data samples, and test data sam-

ples. Novelty detection aims to detect whether the test data X't = [gtost gpiest  glest]T ¢
R$*™ is normal or anomalous based on only normal training dataset X = [z, x2,...,2,|" €
Rnxm_

In this paper, for distributed novelty detection, we consider the horizontal and vertical
distribution, i.e., data samples are partitioned into ¢ parties and features are partitioned
into d parties as follows:

AX-171 X1’2 . Xl,d Xicast Xtest .. Xtest

. X test Xtest .. Xtest

| Xan Xap Xo.d rost 2,1 2,d
XC,l XC72 e XC,d Xtebt Xg?;t T Xéedst

Then, the (7, j)-th party has partial dataset X; ; € R"*™ and X] teSt € Rsi*™s - All parties
do not want to share the original data X; j, X}, but aim to detect the test data X, Since
the training dataset is distributed in multiple parties, the training dataset is considered to
be multimodal.

Individual novelty detection using only the dataset in a local party may not have high-
quality novelty detection results due to a lack of feature information or insufficient samples.
If we can centralize the datasets from multiple parties and analyze them as one dataset,
i.e., centralized novelty detection, then we expect to achieve a high-quality novelty detection.
However, it is difficult to share the individual data for centralization due to privacy and

confidentiality concerns.

2. Main concept

Here, we derive a probabilistic collaborative novelty detection for distributed dataset (3).
The proposed method utilizes least square probabilistic analysis using a collaborative kernel
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which is constructed based on the intermediate representations from individual data in local
parties. The main concepts of the proposed method are the followings.

e The novelty score w(x) is computed by (1) based on the idea of ND-LSPA method to
deal with multimodal data from multiple parties.

e A collaborative kernel is constructed without sharing the local data by the non-model
share-type collaborative data analysis framework.

3.3. Derivation of practical algorithm

For distributed novelty detection, we need to compute the kernel function without sharing
the local data X; ;. To realize this, we newly introduce a collaborative kernel based on
the idea of collaborative data analysis framework as follows. Based on the framework of
the collaborative data analysis, the proposed method is operated by two roles: worker
and master. Each worker, who has the private dataset X;;, individually constructs a
dimensionally-reduced intermediate representation and shares it to the master. The master
transforms the shared intermediate representations to the collaboration representations and
analyzes them to compute a novelty score.

First, all workers generate the same anchor dataset X2"¢ € R"*™ which is a shareable
data consisting of public data or dummy data randomly constructed, and partition it by
features as X2"¢ = [Xf?c,ngc, ..., X¢. The usage of a large number of anchor data is
expected to improve recognition performance as shown in (Bogdanova et al. (2021)) for clas-
sification problems. On the other hand, the computational costs increase with increasing the
number of anchor data. Also, the usage of statics of training dataset for constructing anchor
data is expected to improve recognition performance as shown in (Takahashi et al. (2021))
for a medical dataset, although the collaborative data analysis shows a good performance
even with random anchor data (Imakura and Sakurai (2020); Imakura et al. (2021c)).

Then, each worker constructs the intermediate representations,

Xij = fij(Xij) € R M, X9 = £ ;(X2°) € R,

where f; ; denotes a linear or nonlinear row-wise mapping function and centralize the in-
termediate representations to the master. A typical setting for f;; is an unsupervised di-
mensionality reduction (Pearson (1901); He and Niyogi (2004); Maaten and Hinton (2008)),
with m; ; < m, ;. If some workers have label information for classification of workers’ local
data, they can use supervised methods (Fisher (1936); Sugiyama (2007); Li et al. (2017);
Imakura et al. (2019)).

In the master-side, the mapping function g; for the collaboration representation is con-
structed satisfying

)?ianc _ gi<)?lanc) c Rrxﬁl St )?ngc ~ )?ia/nc (Z 7& Z'l)7

in some sense, where X"¢ = [X21¢ X25¢ ... X¢]. In practice, we use a linear function
bl b K

)?i = gz()?z) = )Z-G,;, as the same manner as written in (Imakura and Sakurai (2020);
Imakura et al. (2021c)). Using the low-rank approximation based on singular value decom-
position of the matrix [X&"¢, X3¢ .. X ~ [;%1V;', the matrix G; is computed as
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G; = (anC)TUl, where 1 denotes pseudo-inverse. We also set X; = (X1, Xi2, ..., Xidl
and Xi = gZ(Xl) N

Then, the obtained collaboration representations X; (i = 1,2,...,¢) can be analyzed as
one dataset,

X1
A X, _
X =[@1,2,..., 2, = , € R™™,
X

Using the collaboration representation, we define the collaborative kernel function K (x, x)

/\_/\ 2
K(x,xp) = exp <—sza§k”2>, k=1,2,...,n
o

with a band width o, where  and Z; are the corresponding collaboration representation
of  and xy, respectively. Note that the collaborative kernel K (x,xi) is defined by the
collaboration representations. Therefore, K (x,x)) can be computed without sharing the
original data via the intermediate representation. On the other hand, K (x,x)) is an ap-
proximation of a standard kernel K (x,xj) using the original data in some sense. We will
evaluate its approximation in numerical experiments.

Then, for computing the novelty score w(x) by (1), we model the posterior probability
ply="»lx) (£=1,2,...,L) as

ply =Lz) = q(y = l|z; o) = o (), (4)
with a basis vector using the collaborative kernel,

b(x) = [K(z,x1), K(z,22),...,K(x,x,)]" € R".

as

For computing ay in (4), the squared loss J(ay) (2) is rewritten as

Jew) = 4 / aly = fa; ap)’p(@)da

- [ aty =t ity = tlelpe)de + 5 [ oy = the)pl@)de

2

where we used the model (4) and

= 1/a}$(m)$(a¢)Ta¢p(m)daz — /aga(w)p(w,y = /)dx + Const,

plx,y=1)

p(x)
Then, using approximations based on sample average and sample rate of the training
datasets,

ply =tz) =
/a2f$<w)$(w)Taep(w)dw ~ %Z of p(zi)p(xi) oy,
=1

[ atd@pte.y = da = 3" af dla),

yi=t
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Algorithm 1 Probabilistic collaborative novelty detection
Input: X;; € R"*™ and ' individually
Output: w(X!*") for each i

worker-side (i, 7) master-side

Training phase

1:  Generate X7 and share to all workers
2: Set X¢
3:  Generate f; ;
4: Compute )’Zi,j = fi,j(Xi,j)
5:  Compute X’f;lc = fiy (X27°) _ _
6: Share X;; and X"} to master —  Get Xj; and X7} for all 7 and j
T Set X; and X?"¢
8: Construct g; from )?fmc for all ¢
9: Compute )?l = gi(f(i) for all 4
10: Set X
11: Construct w from X

Prediction phase
12:  Set Xz'tfit = fi,j (X_te_st)

.7 _ _
13:  Share X" to master —  Get X" and set X}
14: Compute w (X ) = w(g; (X))
15:  Get w(X[*sY) +  Return w(X}*") to worker

and 2-norm regularization with a parameter \, the approximated weight vector &y is ob-
tained by minimizing

1 &K pey 1 ~ A
o Zagfl’(wiW(wi)Tae - Z aj o(x;) + 5”0@”2-
=1

yi=¢

Then, taking the derivative, a, is computed by solving the linear system of size n,
(®TD + Anl,)ay = " 2,

where & € R"™ " is a collaborative kernel matrix ® = [¢(x1), p(x2), . . ., (,g(:cn)lT and zy =
[60.41sOt.yps - -+ 500y, | T with the Kronecker delta &; ;. Note again that since ® is defined
by the collaborative kernel, ® can be computed without sharing the original data via the
intermediate representations.

The novelty score is finally computed as

L
w(@) =1-Y qly = t|a; &)
/=1

with some normalizations for ¢(y = ¢|x; ay) and w(x) such that the maximum value of ¢
for all training datasets is 1 and the minimum value of w for all test datasets is 0. Here,
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Figure 1: Features 1 and 2 of the train- Figure 2: 10 largest canonical angles.
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respectively.

for computing the novelty score of the test data, the test data x'*! is also transformed to

the collaborative representation Z'**' via centralizing its intermediate representation.
The algorithm of the proposed collaborative novelty detection is summarized in Algo-
rithm 1. In Algorithm 1, the local data X; g X5 fest and the function f;; are not shared

to others. Instead, the dimensionality-reduced intermediate representations XZ g X teSt
shared only to the master. Note that this algorithm requires a class label information of each
training data. In the case when there is no class information, we employ some clustering
method to X in Step 11.

4. Numerical experiments

This section evaluates the performance of the proposed collaborative novelty detection (Al-
gorithm 1) and compares it with those of centralized and individual novelty detections. Note
that centralized novelty detection is considered as an ideal case since the private datasets
X; j cannot be shared in our target situation. The proposed collaborative novelty detection
aims to achieve a better performance than individual novelty detection.

For the centralized and individual novelty detection, we used ND-LSPA (Yoda et al.
(2020)). For the proposed method, we used PCA for constructing intermediate represen-
tations. The anchor data X?"¢ is constructed as a random matrix on the range of each
feature and the number of the anchor data is set as » = 1000. For all methods, we set
A = 0.01 as a regularization parameter. The bandwidth o is set based on the local scaling
(Zelnik-Manor and Perona (2005)).

All the numerical experiments were performed on Windows 10 Pro, Intel(R) Core(TM)
i7-10710U CPU @ 1.10GHz, 16GB RAM using MATLAB2019b. All random values are
generated by Mersenne Twister in MATLAB.

4.1. Experiment I: artificial data

Herein, we used a 20-dimensional artificial data for performance evaluation of novelty de-
tection methods. Figure 1 depicts the first two dimensions of all the training dataset, where
the number of samples is n = 2000. The other 18 dimensions were random values in [0, 0.1].
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Figure 3: Novelty scores obtained by centralized, individual and collaborative novelty de-
tections.

We considered the case in which the dataset in Figure 1 is distributed into four parties:
¢=d =2. The (1,1) and (2, 1)-parties have features 1,3,5,...,19 of o and x samples in
Figure 1, respectively. The (1,2) and (2, 2)-parties have features 2,4,6,...,20 of o and X
samples in Figure 1, respectively.

Firstly, we evaluate the approximation of the collaborative kernel matrix o regarding
canonical angles of eigenvectors corresponding to the 10 largest eigenvalues, i.e.,

o (UTU), i=1,2,...,10,

where o; is the i-th largest singular value of the matrix and U and U € R"¥10 are the orthog-
onal matrices whose columns are eigenvectors corresponding to the 10 largest eigenvalues
of the collaborative and standard kernel matrices ® and & = [p(x1), p(x2), ..., d(x,)],
respectively. Note that if all o; = 1 then U and U have the same range space.

Figure 2 demonstrates 10 largest canonical angles for m;; = 1,2,5 and 10. These
results indicate that even small m;;, the collaborative kernel matrix ® well approximates the
standard kernel matrix ® regarding the subspace spanned by some principle eigenvectors.
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Figure 6: Feature distributions for test dataset.

Next, we computed novelty scores of the test datasets in which each test sample has
values in [0, 1] for features 1 and 2 and in [0, 0.1] for other features. Here, we set m;; = 5
for all parties.

In Figure 3, we show the novelty scores obtained by centralized, individual and collabo-
rative novelty detections. Since the individual novelty detections used only a part of features
and of a part of samples, they computed completely different novelty scores (Figure 3(c)—(f))
from that of the centralized novelty detection (Figure 3(a)). We observed that, in this case,
we cannot detect anomalous data correctly, even if we share novelty scores of the individual
novelty detections. Instead, the proposed collaborative novelty detection obtained similar
novelty score (Figure 3(b)) as the centralized novelty detection, even the original datasets
remain distributed. Note that the novelty score of the collaborative novelty detection shows
larger values than that of the centralized novelty detection for the regions with no train-
ing data. This may be because the dimensionality reduction in the collaborative novelty
detection reduces the effect of noise.

4.2. Experiment II: performance v.s. number of parties

We used a handwritten digit dataset (MNIST) (LeCun (1998)) and a credit rating dataset
“CreditRating_Historical” from the MATLAB Statistics and Machine Learning Toolbox for
evaluating the recognition performance v.s. the number of parties.
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Figure 7: Average AUC with 95% confidence interval v.s. number of parties.

For MNIST, we set the training dataset with four digits “1” to “4” and set the test
dataset additionally with “0” as anomalous data as shown in Figure 4. We split each
picture with 28 x 28 pixels into 2 x 2 sub-pictures with 14 x 14 pixels as shown in Figures 5
and 6. Thus, the number of partitions for features is d = 4 and each party has a sub-picture
set (m; = 196) of n; = 25 samples.

CreditRating Historical has five financial ratios: Working capital / Total Assets (WC_TA),
Retained Earnings / Total Assets (RE_TA), Earnings Before Interests and Taxes / Total
Assets (EBIT_TA), Market Value of Equity / Book Value of Total Debt (MVE_BVTD),
Sales / Total Assets (S_TA), and industry sector labels from 1 to 12. We set the training
dataset with credit ratings from “AAA” to “B” and set the test dataset additionally with
“CCC” as anomalous data. We split each sample into two parties: {WC_TA, RE_TA, and
EBIT_TA} and {MVE_BVTD, S_TA, and Industry sector label}. Each party has n, = 20
samples.

Then, we evaluated the area under curve (AUC) for each test dataset by increasing the
number of partitions for samples ¢ from 1 to 30. For the proposed method, we set m;; = 25
for MNIST and m;; = 2 for CreditRating_Historical.

We evaluated 50 trials and show the average AUC with 95% confidence interval in
Figure 7(a) for MNIST and in Figure 7(b) for CreditRating Historical. It is observed that
the performance of the proposed method increases with an increase in the number of parties
and achieves a higher recognition performance than the individual novelty detection and
comparable to the centralized novelty detection.

4.3. Experiment III: real-world data

We evaluated the performance of the novelty detection methods for mislabeled detection
of the binary and multi-class classification problems obtained from (Samaria and Harter
(1994)) and feature selection datasets !. Let Y € R™*¢ and Y**! be label of training data
X and test data X', Mislabeled detection aims to find mislabeled data in test datasets
Xtest ytest from the training datasets X,Y only with the correct label.

For mislabeled detection problems, we compute novelty scores of [ Xt aY*t] by train-
ing [X, aY] to find the mislabeled data in [ X', aY**5!] where a € R is a scaling parameter.
We set oo = 1.1 X min;,; || p; — pj]|2 where p; is the center of data belong to each class.

1. available at http://featureselection.asu.edu/datasets.php.
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Table 1: Average AUC with 95% confidence interval for novelty scores by the centralized,
individual and proposed collaborative novelty detections.

Dataset Centralized Individual Collaborative
ALLAML 0.96 + 0.017 0.92 + 0.011 0.96 £+ 0.017
Carcinom 0.93 + 0.015 0.72 £ 0.009 0.79 £ 0.024

CLL-SUB-111 0.67 £ 0.058 0.49 £ 0.023 0.51 £ 0.059
COLON 0.87 £+ 0.046 0.83 £+ 0.020 0.84 £+ 0.032
GLA-BRA-180 0.82 + 0.028 0.69 + 0.012 0.71 + 0.021
GLI-85 0.93 £+ 0.042 0.83 £ 0.020 0.92 £+ 0.030
jaffe 0.99 + 0.004 0.86 £ 0.008 0.92 £ 0.009
leukemia 0.97 £ 0.017 0.89 £ 0.016 0.97 £ 0.017
lung 0.99 4+ 0.004 0.95 £ 0.004 0.96 £+ 0.008
lymphoma 0.92 + 0.023 0.70 £ 0.016 0.84 £ 0.025
pixraw10P 0.99 + 0.006 0.74 £ 0.018 0.93 £ 0.021
Prostate_GE 0.76 £ 0.020 0.82 £ 0.014 0.83 + 0.040
SMK-CAN-187 0.62 + 0.020 0.62 £ 0.016 0.66 £+ 0.031
TOX-171 0.89 £ 0.027 0.77 £ 0.014 0.87 £ 0.027
warpAR10P 0.84 4+ 0.041 0.65 + 0.019 0.71 £ 0.051
warpPIE10P 0.96 £ 0.008 0.72 £ 0.016 0.83 £ 0.035

Let the X and Y be partitioned as

X1
X=|b
[ X21

X12

X13 Yy
31y = .
X2 ] [ ]

Xo3 Y

Then, we consider the case that the dataset [X, Y] is distributed into six parties as

(6% « (6%
X ,—Y], [X ,4/}, [X ,—Y],
[1,131 L2, 311 L3 51
(6% « (6%
X ,—Y], [X ,4/}, [X ,—Y].
[2,132 22, 3%2 23,312

The performance of each method is evaluated by utilizing five-fold cross-validation. In
each training set of the cross-validation, we evaluated 10 trials with random data distribu-
tion. We set 10% as the rate of mislabeling in test data. For the proposed method, we set
m;; = 25. For the centralized and individual novelty detection, we reduce the dimension-
ality of the data using PCA that improves the recognition performance in our preliminary
experiment.

The numerical results of centralized, individual, and the collaborative novelty detections
for 16 test problems are presented in Table 1. We can observe from Table 1 that the proposed
method has a recognition performance higher than that of individual novelty detection and
competitive to that of centralized novelty detection on most datasets.
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4.4. Remarks on numerical results

The experiment I demonstrates that the introduced collaborative kernel matrix well ap-
proximates the standard kernel matrix and thus it provides a high recognition performance
by the proposed novelty detection. The results of experiments II and III indicate that
the proposed collaborative novelty detection achieves a high recognition performance for
real-world problems.

Therefore, we conclude that the efficiency of the main aspects of the proposed method
is confirmed by these numerical experiments.

5. Conclusions

To address the challenge of distributed novelty detection while preserving privacy in real-
world applications, we propose a probabilistic distributed novelty detection method for
horizontal and vertical distributed datasets. The proposed method is a probabilistic and
non-parametric novelty detection method using a collaborative kernel based on a non-
model share-type collaborative data analysis framework. The proposed method generates
dimensionally-reduced intermediate representations from individual data in local parties,
which are then shared instead of the individual data and models. Then, the proposed
method computes a novelty score based on a collaborative kernel via the intermediate rep-
resentations for detecting anomalous data using whole features.

Numerical experiments on both artificial and real-world data show that the proposed
method realizes a novelty detection with better recognition performance than individual
novelty detection and comparable to that of centralized novelty detection. It is inferred that
the proposed method would become a breakthrough technology for distributed data analysis
in the real-world including distributed medical data analysis and distributed manufacturing
data analysis.

In our future studies, we will apply the proposed method to practical distributed data
in, e.g., medical or manufacturing fields and evaluate its recognition performance. We will
investigate to combine the ideas of data collaboration method and other novelty detection
method.
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