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Abstract

We analyze the role of rotational equivariance in
convolutional neural networks (CNNs) applied
to spherical images. We compare the perfor-
mance of the group equivariant networks known
as S2CNNs and standard non-equivariant CNNs
trained with an increasing amount of data augmen-
tation. The chosen architectures can be consid-
ered baseline references for the respective design
paradigms. Our models are trained and evaluated
on single or multiple items from the MNIST or
FashionMNIST dataset projected onto the sphere.
For the task of image classification, which is in-
herently rotationally invariant, we find that by
considerably increasing the amount of data aug-
mentation and the size of the networks, it is possi-
ble for the standard CNNs to reach at least the
same performance as the equivariant network.
In contrast, for the inherently equivariant task
of semantic segmentation, the non-equivariant
networks are consistently outperformed by the
equivariant networks with significantly fewer pa-
rameters. We also analyze and compare the in-
ference latency and training times of the differ-
ent networks, enabling detailed tradeoff consid-
erations between equivariant architectures and
data augmentation for practical problems. The
equivariant spherical networks used in the ex-
periments are available at https://github.
com/JanEGerken/sem_seg_s2cnn.
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Figure 1: Sample from the spherical MNIST dataset used
for semantic segmentation. Left: input data. Right: segmen-
tation mask.

1. Introduction
In virtually all computer vision tasks, convolutional neural
networks (CNNs) consistently outperform fully connected
architectures. This performance gain can be attributed to
the weight sharing and translational equivariance of the
CNN layers: The network does not have to learn to identify
translated versions of an image, since the inductive bias of
equivariance already implies this identification. In contrast,
fully connected layers require many more training samples
to learn an effective form of equivariance. One way of
ameliorating this problem is to supply the network with
translated copies of the original training images, a form of
data augmentation. However, training with this kind of data
augmentation requires much longer training times and the
performance of CNNs may not be reached in this way.

A crucial point is that in the equivariant setting, we are
viewing the input image not only as a vector, but as a signal
defined on a two-dimensional grid. The translational sym-
metry then has a geometric origin: it is a symmetry of the
grid. From this perspective it is natural to envision general-
izations of CNNs where not only translational symmetries
are implemented but also more general transformations,
such as rotations. Examples of networks that realize this
property are group equivariant CNNs which are equivariant
with respect to rotations on the plane (Cohen & Welling,
2016), or spherical CNNs which are equivariant with respect
to rotations of the sphere (Cohen et al., 2018). Similarly
to the case of translations discussed above, these symmetry
properties of the data can be learned approximately by a
non-equivariant model using data augmentation.

https://github.com/JanEGerken/sem_seg_s2cnn
https://github.com/JanEGerken/sem_seg_s2cnn
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Figure 2: Semantic Segmentation on Spherical MNIST. The
performance of equivariant (S2CNN) and non-equivariant
(CNN) semantic segmentation models for various amounts
of data augmented spherical MNIST single digit training
images. Performance is measured in terms of mean intersec-
tion over union (mIoU) for the non-background classes. The
numbers in the model names refer to the number of train-
able parameters. The non-equivariant models are trained on
randomly rotated samples, whereas the equivariant models
are trained on unrotated samples.

In the present paper, we evaluate the performance of equiv-
ariant classification and semantic segmentation models
(S2CNNs (Cohen et al., 2018)) on spherical image data
subject to rotational symmetry (see Figure 1 for an exam-
ple), and compare it to the performance obtained using rota-
tional data augmentation in ordinary CNNs (see Figure 2).
We conduct comparisons for several datasets to elucidate
the influence of the type and complexity of the task on
the performance. Our overall aim is to investigate whether
equivariant architectures offer an inherent advantage over
data augmentation in non-equivariant CNN models.

Our choice of using an ordinary CNN, without additional
structure to make it more compatible with spherical data,
is motivated by the desire to isolate the limits of geometric
data augmentation.

While our present investigation is concerned with rotational
equivariance in spherical data, group equivariant networks
generalize to any homogeneous space with a global action
of a symmetry transformation. In fact, the theoretical de-
velopment in Section 2 applies to any homogeneous space,
and the question of equivariance versus data augmentation
is relevant also in the general setting.

1.1. Summary of contributions and outline

Here we list the main contributions of the paper, both theo-
retical and experimental.

• We define a new group equivariant CNN layer (Equa-
tion (2.5)), designed for the task of semantic segmen-
tation for arbitrary Lie groups G. This generalizes
previous results in (Linmans et al., 2018).

• We extend the S2CNN architecture by adding a layer
which allows for equivariant outputs on the sphere, as
required for semantic segmentation tasks, and present
a detailed proof of equivariance (Appendix A).

• We demonstrate that non-equivariant classification
models require considerable data augmentation to
reach the performance of smaller equivariant networks
(Section 3.2).

• We show that the performance of non-equivariant se-
mantic segmentation models saturates well below that
of equivariant models as the amount of data augmen-
tation is increased (Section 3.3). We confirm that this
result still holds when the complexity of the original
segmentation task is increased (Section 3.4).

• We perform detailed inference time profiling of the
GPU-based implementation of the equivariant models,
and measure the throughput overhead compared to the
non-equivariant models. Our results indicate that most
inference time is spent in the last network layers pro-
cessing the largest SO(3) tensors, suggesting possible
avenues towards optimizing the S2CNN architecture
(Section 3.6).

• We show that the total training time for an equivariant
model is shorter compared to a non-equivariant model
at matched performance (Section 3.6).

Appendix A contains mathematical details about our new
final layer used for semantic segmentation. Details of the
model generation for the equivariant and non-equivariant
networks can be found in Appendix B. Appendix C contains
details of the datasets and augmentation. Finally, the latency
profiling is summarized in Appendix D.

1.2. Related literature

The theory of group equivariant neural networks was first
developed in (Kondor & Trivedi, 2018; Cohen et al., 2019;
Esteves, 2020), generalizing the ordinary planar convolution
of CNNs. An implementation for spherical data with a
rotational SO(3) symmetry was introduced in (Cohen et al.,
2018; Kondor et al., 2018; Cobb et al., 2021).
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There are two main approaches to equivariance in semantic
segmentation tasks. In the first, one utilizes the methods
available for ordinary flat CNNs by modifying the shape of
convolutional kernels to compensate for spherical distortion
(Tateno et al., 2018), by cutting the sphere in smaller pieces
or otherwise preprocessing the data to be able to apply an
ordinary CNN without much distortion (Zhang et al., 2019;
Lee et al., 2019; Haim et al., 2019; Eder & Frahm, 2019;
Du et al., 2021; Shakerinava & Ravanbakhsh, 2021). In the
second approach, one avoids spherical distortions by Fourier
decomposing signals and filters on the sphere (Esteves et al.,
2020). Semantic segmentation for group equivariant CNNs
is analyzed in (Linmans et al., 2018).

Data augmentation in the context of symmetric tasks was
studied previously in (Gandikota et al., 2021), where a
method to align input data is presented and compared to data
augmentation. Closest to our work is a comparison between
an equivariant model and a non-equivariant model for re-
duced training data sizes for an MRI application in (Müller
et al., 2021). In contrast, we systematically compare data
augmentation with increased training data sizes for different
tasks, datasets and several non-equivariant models with an
equivariant architecture.

2. Theory
2.1. Group equivariant networks

In this section we introduce the basic mathematical structure
of GCNNs. Let G be a group and H ⊂ G a closed sub-
group1. The input space of the network is the homogeneous
spaceM = G/H , meaning that a feature map in the first
layer is a map

f : G/H → RK , (2.1)

where K denotes the number of channels. This feature map
represents the input data, e.g. the pixel values of an image
represented on the homogeneous space G/H . Features
of subsequent layers are obtained using the convolution
between the feature map f and a filter κ : G/H → RK′,K

defined by

(κ ? f)(g) =

∫
G/H

κ(g−1x)f(x) dx , (2.2)

where g ∈ G and dx is the invariant measure on G/H
induced from the Haar measure on G.

The action of G extends fromM = G/H to G itself and
the convolution (2.2) is equivariant with respect to this ac-
tion, g(κ ? f) = κ ? (gf), g ∈ G, meaning that the result
obtained by transforming the convoluted feature map κ ? f
by an element g ∈ G is identical to that obtained by con-

1In this paper, we will always consider the case where G is a
Lie group and H is a compact subgroup.

volving the transformed feature map gf . In other words, the
transformation g ∈ G commutes with the convolution.

The networks considered here all have scalar features
throughout the architecture. In general, however, the group
G can act through non-trivial representations on both the
manifold G/H and the feature maps (see e.g. (Kondor &
Trivedi, 2018; Cohen et al., 2019; Aronsson, 2021; Gerken
et al., 2021)).

Note that the output of the convolution (2.2) is a function on
G, rather than on the homogeneous space G/H . Limiting
feature maps to convolutions on the original manifold G/H
is in general far too restrictive, as was first noticed in the
context of spherical signals by (Makadia et al., 2007). In
order to keep the network as general as possible, and maxi-
mize the expressiveness of each individual layer, subsequent
convolutions will all be taken on the group G,

(κ ? f)(g) =

∫
G

κ(g′−1g)f(g′) dg′ , (2.3)

g ∈ G, except for the last one which will be discussed in
more detail below.

2.2. Semantic segmentation and equivariance

In the final layers we must take into account the desired
task that the network is designed to perform. If we are
interested in a classification task, we want the entire network
to be invariant with respect to G. This can be achieved by
integrating over G following the final convolution

ffinal =

∫
G

f(g) dg . (2.4)

For semantic segmentation, however, we are classifying
individual pixels into a segmentation mask. The network
output should therefore be equivariant with respect to trans-
formations of the input. One way to achieve this aim is to
define a final convolution

ffinal(x) =

∫
G

κ(g′−1gx)f(g
′) dg′ , (2.5)

where gx ∈ G is a representative in G corresponding to the
point x in the coset spaceG/H and κ is required to be anH-
invariant kernel on G. This generalizes the convolution de-
fined in (Linmans et al., 2018) for finite roto-translations on
the plane. The output (2.5) is then a signal on G/H , rather
than G, and equivariance ensures that a transformation by
G on the input image will result in the same transformation
on the output.

Alternatively, similarly to the classification case, an output
segmentation mask on G/H can be obtained by integrating
along the orbits of the subgroup H

ffinal(x) =

∫
H

f(gxh) dh , (2.6)
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Figure 3: The final layer (3.3) of our fully equivariant architecture takes Fourier coefficients on SO(3) and sums them over
n to yield Fourier coefficients on the sphere, representing a segmentation mask.

with gx defined as above. This segmentation mask is equiv-
ariant with respect to the action of G by construction.

3. Data augmentation for classification and
semantic segmentation

In this section, we investigate several aspects of the perfor-
mance difference between equivariant and non-equivariant
models, applied to both classification and segmentation
tasks on spherical images. Consequently, we consider input
data in the form of grayscale images defined on the sphere
M = S2 with continuous rotational symmetry G = SO(3).
Taking H = SO(2) to be the isotropy subgroup of a point
x ∈ S2, the sphere can be expressed as a homogeneous
space S2 = SO(3)/SO(2).

3.1. Equivariant model

As discussed in Section 2, the equivariant network architec-
ture for spherical signals necessitates a redefinition of the
convolution compared to ordinary CNNs. For our imple-
mentation we will use the S2CNN architecture of (Cohen
et al., 2018), in the implementation available at (Köhler
et al., 2021), adapted in the case of semantic segmentation.2

For S2CNNs the first layer takes an input feature map f
defined on S2, convolves it with a kernel κ defined on SO(3)
and outputs a feature map defined on SO(3) according to

(κ ? f)(R) =

∫
S2

κ(R−1x)f(x) dx , (3.1)

where R ∈ SO(3). In subsequent layers, the input feature
map f is also defined on SO(3) and the convolution takes
the form

(κ ? f)(R) =

∫
SO(3)

κ(S−1R)f(S) dS . (3.2)

In the S2CNN architecture, these convolutions are computed
in the respective Fourier domain of S2 and SO(3). For S2,
this amounts to an expansion in spherical harmonics Y `m;

2Our adaptation is available at https://github.com/
JanEGerken/sem_seg_s2cnn.

for SO(3), to an expansion in Wigner matrices D`mn with
` = 0, . . . , L and m,n = −` . . . ` for some bandlimit L.3

The original S2CNN architecture introduced in (Cohen et al.,
2018) was used for classification tasks and hence in the last
convolutional layer the feature map was integrated over
SO(3) to render the output invariant under rotations of the
input. We use the same setup for the classification task
discussed below.

In contrast, for semantic segmentation, we need an equivari-
ant network, as detailed in Section 2.2 above. To this end,
instead of the Fourier-back-transform on SO(3), we use for
the last convolution

ffinal(x) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

(κ ? f)`mnY
`
m(x) , (3.3)

where κ ? f is as in (3.2) on SO(3). The sum over n corre-
sponds roughly to the Fourier space version of the integral
over H presented in Equation (2.6) and ensures that the out-
put ffinal lives on S2, as illustrated in Figure 3. We provide
more mathematical details in Appendix A.

After a softmax nonlinearity, we interpret ffinal as the pre-
dicted segmentation mask and use a point-wise cross entropy
loss for training.

To facilitate the segmentation task, we use a sequence of
downsampling SO(3) convolutions followed by a sequence
of upsampling convolutions. These networks do not con-
tain any fully connected layers. For the classification task,
we only use the downsampling layers, which are, after the
integration over SO(3), followed by three fully connected
layers, alternated with batch-normalization layers.

The downsampling layers are realized in the S2CNN frame-
work by choosing the bandlimit for the Fourier-back-
transform to be lower than the bandlimit of the Fourier
transform, i.e. we are dropping higher order modes in the
result of the convolution. This is similar to strides used in

3Note that following the original S2CNN code (Cohen et al.,
2018), we use Wigner matrices for the Fourier transform and com-
plex conjugated Wigner matrices for the inverse Fourier transform,
contrary to the usual convention.

https://github.com/JanEGerken/sem_seg_s2cnn
https://github.com/JanEGerken/sem_seg_s2cnn
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downsampling layers of ordinary CNNs. Since the Fourier
transforms of the feature maps are computed using the FFT
algorithm, this also decreases the spatial resolution of the
feature maps.

For the upsampling layers, we select the Fourier-back-
transform to have higher bandlimit than the Fourier trans-
form. The missing Fourier modes are here filled with zeros,
yielding a feature map of higher spatial resolution (but of
course with still lower resolution in the Fourier domain).
This is similar to upsampling by interpolation.

To fix the precise architectures and hyperparameters for
the experiments without biasing for or against the equiv-
ariant models, we generated architectures at random. For
the equivariant models, we generated 20 models at random
for each parameter range and selected the one performing
best on a reference task, as detailed for the semantic seg-
mentation models in Appendix B.2. This resulted in two
equivariant models with 204k and 820k parameters, respec-
tively for the semantic segmentation tasks and one model
with 150k parameters for the classification task.

For the semantic segmentation tasks, we generated three
non-equivariant models as a baseline with 218k, 1M and
5.5M parameters, respectively. Each of these performed
best out of 20 randomly generated models with a fixed
parameter budget. The non-equivariant models have (ordi-
nary) convolutional layers for downsampling and transpose
convolutions for upsampling layers which mirror the im-
age dimensions and channels of the downsampling layers
exactly. We add skip connections over each (transpose) con-
volution, resulting in a ResNet-like architecture. For details,
cf. Appendix B.1. The precise architectures of the models
used in our experiments are summarized in Tables 4 and 5
in the appendix.

Similarly, for the classification task, we generated three
non-invariant models with 114k, 0.5M and 2.5M parame-
ters, respectively. These models only have downsampling
layers, followed by an average pooling layer and three fully
connected layers alternated with batch-normalization layers.
We did not use skip connections in this case.

3.2. Classification

The primary question we want to investigate in this work is
whether data augmentation can make up for the benefits of
equivariant network architectures. We first study this ques-
tion in the context of classification by training equivariant
and non-equivariant models on training data with different
amounts of data augmentation, as depicted in Figure 4. The
input data consists of single digits sampled with replace-
ment from the MNIST (Lecun et al., 1998) dataset which are
projected onto the sphere and labeled with the classes of the
digits. The spherical pictures are rotated by a random rota-
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Figure 4: Image Classification on Spherical MNIST. Ac-
curacy of invariant and non-invariant classification models
for various amounts of data augmentation as in Figure 2.
Training data for the equivariant model is sampled randomly
with replacement from the available 60k training samples.

tion matrix in SO(3). A sample is depicted in the left panel
of Figure 1. For dataset larger than the 60k original MNIST
dataset, digits are necessarily repeated but have different
rotations, hence these correspond to data augmentation as
compared to the original dataset. The equivariant networks
were trained on unrotated spherical images with the dig-
its being projected on the southern hemisphere, sampled
randomly with replacement from the original 60k training
samples of MNIST.4

Figure 4 shows that for the smaller data regimes the accu-
racy of the equivariant model dominates the non-equivariant
models, even though it uses fewer parameters than the non-
equivariant models. Whereas the non-equivariant models
continue to benefit from the increased dataset size, the equiv-
ariant model does not improve beyond the original 60k
training samples of MNIST as expected. Looking at the
trend of the non-equivariant models in Figure 4 it is unclear
if they would eventually match the equivariant model for
large enough augmented datasets. It turns out that for the
task of spherical MNIST classification, a large enough non-
equivariant CNN trained on augmented data can achieve
similar performance to an equivariant model, see Figure 10
left.

A priori, it is not clear whether increasing model size and
data augmentation is always sufficient for non-equivariant
models to match the performance of equivariant models.
What is clear is that spherical MNIST classification leaves
much to be desired in terms of task and dataset complexity.

4Note that we did not take special precautions to treat ambigu-
ous cases such as “6” vs. “9”.
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3.3. Semantic segmentation

Semantic segmentation is an interesting example of a task
where the output is equivariant, in contrast to the invariance
of classification output. This example lets us investigate if
data augmentation on large enough non-equivariant models
can match the equivariant models not only in classification
tasks, but also in more difficult and truly equivariant tasks.

For our experiments, we replaced the classification labels
from the spherical MNIST dataset described above by seg-
mentation masks. A sample mask is depicted in the right
panel of Figure 1, further details can be found in Ap-
pendix C.

In order to investigate whether data augmentation can push
the performance of non-equivariant networks to match that
of equivariant architectures, we trained the non-equivariant
networks on rotated samples and compare to equivariant net-
works trained only on non-rotated samples. For evaluation,
we use the mean intersection over union (mIoU) where we
drop the background class. More technical details can be
found in Appendix C.

The plot in Figure 2 shows the results of this experiment.
Sample predictions for the same task with four digits are
shown in Appendix C.4. As expected, more training data
(and hence stronger data augmentation) increases the perfor-
mance of the non-equivariant models. However, the equiv-
ariant models outperform the non-equivariant models even
for copious amounts of data augmentation. As is also shown
in Figure 2, larger models outperform smaller models, as ex-
pected. However, there seems to be a saturation of this effect
as the 5.5M parameter model performs on par (within statis-
tical fluctuations) with the 1M parameter model. Notably
though, even the largest model trained on data augmented
with a factor of 20 cannot outperform the equivariant models.
We also trained the non-equivariant models on even larger
datasets with up to 1.2M data points, but their performance
saturates at a level comparable to what is reached at 240k
train data points, see Figure 10 right.

We also trained larger spherical models to see if we could
push performance even further. However, even the 820k
parameter model specified in Table 5 in the appendix per-
formed only at 76.71% non-background mIoU for 60k
training data points. This is on par with the performance
of 78.28% non-background mIoU that the 204k spherical
model reached for this dataset and hence suggests that the
smaller model already exhausts the chosen architecture for
this problem. Since the larger model requires much more
compute, we performed all the remaining experiments only
with the 204k spherical model.

In order to verify that our non-equivariant models are in
principle expressive enough to learn the given datasets, we
also trained them on unrotated data, as we did for the spher-

ical models. From the plot in the left panel of Figure 5, it
is clear that all the models perform well when evaluated on
the same data on which they were trained. As shown in the
right panel of Figure 5, performance deteriorates to almost
random guessing (as expected) if the models are evaluated
on rotated test data. The performance of the equivariant
models is identical for both cases. For the task of train-
ing and evaluation on unrotated data, which contains no
symmetries, the considerably larger non-equivariant models
slightly outperform the equivariant model. The performance
of the smallest non-equivariant model is on par with that of
the equivariant model.

Note that the performance of the non-equivariant models fur-
thermore crucially depends on where on the spherical grid
the digits are projected. For the runs depicted in Figure 5,
the digits were projected in the center of the Driscoll-Healy
grid, so that the ordinary CNNs could benefit maximally
from their translation equivariance and distortions were min-
imal. In Appendix C.3 we show that performance is greatly
reduced if the digits are projected closer to the pole of the
sphere, where distortions in the equirectangular projection
of the Driscoll-Healy grid are maximal.

3.4. Dataset complexity

The experiments described in the previous section used a
very simple dataset, and since only one class needed to be
predicted, all non-zero pixels belonged to the same fore-
ground class. We have therefore investigated if the observed
performance gain of the equivariant models persists for more
complex datasets.

The first modification we performed on the dataset depicted
in Figure 1 is to project four MNIST digits onto the same
sphere and construct a corresponding segmentation mask. A
sample from this dataset is shown in Figure 6. The results of
these experiments are summarized in Figure 7, sample pre-
dictions for the best equivariant and non-equivariant models
are shown in Appendix C.4. Note that the non-monotonic
increase in performance in Figure 7 is due to sampling ef-
fects during the data generation. We have explicitly verified
that these features are within the range of the statistical fluc-
tuations of this sampling and since this affects all models
equally, these features are irrelevant for the model compari-
son. More details on this point are given in Appendix C.2.

Moreover, for an increased number of digits, we observe a
clear benefit of the equivariant architectures. Again, increas-
ing model sizes beyond a certain parameter count does not
translate into an increase in performance. In comparison to
Figure 2, we see that all models in Figure 7 benefited from
seeing more samples during training, with a steeper increase
in performance with number of training samples and earlier
saturation.
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Figure 5: Training on Unrotated Images. Performance of equivariant and non-equivariant models in semantic segmentation
for various amounts of data augmentation for models trained on unrotated data with one digit. Performance is measured in
terms of mIoU for the non-background classes. Left: evaluated on unrotated test data. Right: evaluated on rotated test data.

Figure 6: Sample from the spherical MNIST dataset with
four digits projected onto the sphere. Left: input data. Right:
segmentation mask.

In addition to increasing the number of MNIST digits in
each datapoint, we have also made the object recognition as-
pect more difficult by swapping the MNIST digits for items
of clothing from the FasionMNIST dataset (Xiao et al.,
2017). A sample datapoint is depicted in Figure 8. The
results shown in Figure 9 reflect the higher difficulty of this
task: The performance of all models is lower compared to
Figure 2. This is partly due to the difficulty of constructing
segmentation masks for the items of clothing, as discussed
in Appendix C. However, the equivariant models still outper-
form the non-equivariant models for all training data sizes
that we tried by a large margin.

3.5. Non-equivariant performance saturation

To check whether the non-equivariant models could be
pushed to the performance of the equivariant models by
extending the training data even further, we trained our
non-equivariant models on larger datasets.
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Figure 7: Segmentation on four digit Spherical MNIST.
Performance of equivariant and non-equivariant models in
semantic segmentation for various amounts of data augmen-
tation as in Figure 2, but with four digits projected onto the
sphere.

For spherical MNIST classification the non-equivariant mod-
els can match the accuracy of the smaller equivariant model
with enough augmented data, cf. Figure 10 left. On the
other hand, for semantic segmentation, as shown in Fig-
ure 10 right, even these much larger training datasets did not
improve the test performance of the non-equivariant models.

These experiments support the intuition that for equivariant
tasks, equivariant models perform so much better than non-
equivariant models that even very large amounts of data
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Figure 8: Sample from the spherical FashionMNIST dataset.
Left: input data. Right: segmentation mask.
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Figure 9: Segmentation on Spherical FashionMNIST. Perfor-
mance of equivariant and non-equivariant models in seman-
tic segmentation for various amounts of data augmentation
as in Figure 2, but with items of clothing from the Fashion-
MNIST dataset projected onto the sphere.

augmentation cannot compensate for this advantage. In
contrast, although equivariant models (which were made
invariant only in the last layer) still show higher performance
for invariant tasks, non-equivariant models can ultimately
reach the same performance if enough data augmentation is
applied.

3.6. Inference latency and training times

At similar parameter counts, the GPU based implementation
(Cohen et al., 2018) of the equivariant layers have an order
of magnitude higher inference latency as can be seen in
Tables 1 and 2.

A detailed profiling of the model and CUDA implementation
shows that the bulk of the inference time is spent in the later
upsampling layers which compute the largest SO(3) tensors
in the network. In terms of operations, almost half of the
time is spent in the custom implementation of the complex
matrix multiplication of SO(3) tensors. There is also a

Table 1: Runtime latency and throughput for the equivariant
semantic segmentation model (204k S2CNN in Appendix
Table 5) on an Nvidia T4 16GB GPU. Latency measures
the time of a forward pass through the model on the GPU,
throughput is the corresponding number of samples per
second given the batch size. The larger batch size is chosen
to maximize the throughput for the T4.

Batch size Latency (ms) Throughput (N/s)
1 111± 0.6 9.0± 0.04
7 479± 2.2 14.6± 0.07

Table 2: Runtime latency and throughput for non-
equivariant CNN model (200k CNN in Appendix Table 5)
on an Nvidia T4 16GB GPU. Latency measures the time of
a forward pass through the model on the GPU, throughput
is the corresponding number of samples per second given
the batch size. The larger batch size is chosen to maximize
the throughput for the T4.

Batch size Latency (ms) Throughput (N/s)
1 5.93± 0.24 169± 5.8
60 87.98± 0.17 682± 1.3

significant overhead in the transformation back and forth to
the Fourier domain. See Appendix D for the details on the
profiling of layers and operations.

The backpropagation latency of the equivariant models mir-
rors the inference latency resulting in about an order of mag-
nitude slower training as compared to the non-equivariant
CNNs. Note that even though the training is slower, be-
cause of the increase in data augmentation needed for the
non-equivariant models, at a fixed performance goal the
equivariant model actually trains faster, cf. Table 3 for train-
ing times for the classification task at about 97.5% accuracy
level. A similar comparison for semantic segmentation is
less relevant as even large amount of data augmentation
leaves a big performance gap compared to the equivariant
model.

4. Conclusions
Our results indicate that equivariant models possess an in-
herent advantage over non-equivariant ones, which cannot
be overcome by data augmentation when applied to tasks
probing the full rotational equivariance of the spherical im-
age data. In order to corroborate and generalize these find-
ings, several extensions of the current study are natural to
pursue. In particular, it would be interesting to consider
non-equivariant models specifically adapted to the sphere.

Furthermore, even though our results indicate that the ad-
vantage of equivariance is not explained by low data com-
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Figure 10: Non-equivariant performance saturation for segmentation. Left: For classification of spherical MNIST as in
Figure 4, the non-equivariant models reach the test accuracy of the equivariant models for very large amounts of data
augmentation. Right: For semantic segmentation of one-digit spherical MNIST as in Figure 2, the non-background IoU
of the non-equivariant models saturates well below the performance of the equivariant model even for moderately high
amounts of data augmentation.

Table 3: Training times for the S2CNN classification model
and non-equivariant CNN model at matched accuracy on
rotated spherical images. The S2CNN model is trained
on non-rotated images whereas the CNN is trained on an
augmented dataset with rotated images. A single Nvidia T4
16GB was used for training.

Model Accuracy Training time
150k S2CNN 97.64% 15h
5M CNN 97.49% 26h

plexity, it would be interesting to investigate data sets which
are both richer in complexity and native to the sphere rather
than projected onto it.

In terms of inference latency the CUDA implementation of
the equivariant convolution in the Fourier domain, together
with the large SO(3) tensors, is significantly slower than
a traditional spatial convolution and the profiling shows
where future optimizations should be targeted. With wider
adoption it is likely that this situation would improve on
multiple fronts.

It is appealing to think of symmetries as a fundamental
design principle for network architectures. In this paper we
use the symmetry of the sphere as a guiding principle for
the network architecture. From this perspective it is natural
to consider the question of how to train neural networks in
the case of other “non-flat” data manifolds, i.e. when the
domainM is a (possibly curved) manifold. This research
field is referred to as geometric deep learning, an umbrella

term first coined in (Bronstein et al., 2017) (see (Bronstein
et al., 2021) and (Gerken et al., 2021) for recent reviews).
The results of the present paper may thus be viewed as
probing a small corner of the vast field of geometric deep
learning.

Extending the exploration of inherent advantages of equiv-
ariance to other tasks, data manifolds and, possibly local,
symmetry groups offers exciting prospects for future re-
search.
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A. Mathematical properties of the final
S2CNN layer

In this appendix, we show the equivariance of the final
S2CNN layer used for semantic segmentation (3.3) and give
an interpretation in terms of the projection (2.6) from G to
G/H . For convenience, we reproduce (3.3) here,

ffinal(x) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

(κ ? f)`mnY
`
m(x) . (A.1)

A.1. Proof of equivariance

Using basic properties of Wigner matrices and spherical
harmonics, we find for R ∈ SO(3)

ffinal(Rx) =

L∑
`=0

∑̀
m,n=−`

(κ ? f)`mnY
`
m(Rx) (A.2)

=

L∑
`=0

∑̀
m,n,k=−`

(κ ? f)`mnD`mk(R)Y
`
k (x) (A.3)

=

L∑
`=0

∑̀
m,n,k=−`

(κ ? f)`mnD`km(R−1)Y `k (x) , (A.4)

where in (A.3) we used the transformation property of the
spherical harmonics and in (A.4) that the Wigner matrices
form a unitary representation. For a summary of the neces-
sary formulae and the conventions5, see, e.g., (Gerken et al.,
2021).

Using the definition of the Fourier coefficients on SO(3),

5We want to reiterate that we use the complex conjugate con-
ventions for Wigner matrices in comparison to the reference.

we obtain

∑̀
m=−`

(κ ? f)`mnD`km(R−1)

=
∑̀
m=−`

2`+ 1

8π2

∫
SO(3)

(κ ? f)(S)D`mn(S)D`km(R−1) dS

=
2`+ 1

8π2

∫
SO(3)

(κ ? f)(S)D`kn(R−1S) dS

=
2`+ 1

8π2

∫
SO(3)

(κ ? f)(RS′)D`kn(S′) dS′

=(κ ? LRf)
`
kn , (A.5)

where we have used the notation (LR(f))(Q) = f(RQ)
and the equivariance of (3.2) in the last step.

Plugging (A.5) into (A.4) completes the prove of equivari-
ance of the last layer

ffinal(Rx) =

L∑
`=0

∑̀
m,n=−`

(κ ? LRf)
`
mnY

`
m(x) . (A.6)

A.2. Projection from SO(3) to S2

To see the connection between (A.1) and the integration
over H (in this case H = SO(2)) in (2.6), we rewrite (A.1)
in position space

ffinal(x) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

(κ ? f)`mnY
`
m(x) (A.7)

=

L∑
`=0

∑̀
m,n=−`

∫
SO(3)

(κ ? f)(S)D`mn(S)Y `m(x) dS

=

L∑
`=0

∑̀
n=−`

2`+ 1

8π2

∫
SO(3)

(κ ? f)(S)Y `n(S
−1x) dS .

Now, we factorize S into an element α ∈ SO(2) which
stabilizes x and an element y ∈ S2. This can always be
done uniquely. With this, we obtain

ffinal(x) =

∫
S2

(̃κ ? f)(y)

L∑
`=0

∑̀
n=−`

2`+ 1

8π2
Y `n(y) dy

(A.8)

where we have defined

(̃κ ? f)(y) =

∫
SO(2)

(κ ? f)(y, α) dα . (A.9)

From (A.8), we can conclude that (A.1) can be understood
as the projected version of κ ? f , (A.9), integrated against
the function

∑L
`=0

∑`
n=−`

2`+1
8π2 Y

`
n .
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B. Random model generation
In this appendix, we give further details about the procedure
used to randomly generate the model architectures we used
in our experiments.

We generated 20 random models for each desired parameter
range, trained it to convergence, evaluated it on a holdout
dataset and picked the best model according to the non-
background mIoU.

It should be noted that the goal of the procedure is not to
come up with a selection of models that perform optimally
on the given task for a certain parameter budget, but rather
to select architectures to fairly compare equivariant and
non-equivariant models.

B.1. Non-equivariant models

As mentioned in the main text, the non-equivariant models
consist of skipped convolutional downsampling and skipped
transposed convolutional upsampling layers. Specifically,
the downsampling layers are defined by

down(ni, no, k, s) = conv(ni, no, k, s) (B.1)
+ conv(ni, no,1,1) ◦maxPool(k,s) ,

where conv(ni, no, k, s) is a 2d convolution with ni input
channels, no output channels, kernel size k and stride s, ◦
denotes function composition and maxPool(k, s) is a 2d
max pooling operation with kernel size k and stride s. The
upsampling layers are defined by

up(ni, no, k, s) = tConv(ni, no, k, s) (B.2)
+ upsample(d) ◦ conv(ni, no,1,1) ,

where tConv(ni, no, k, s) is a 2d transpose convolution
with ni input channels, no output channels, kernel size k
and stride s and upsample(d) is a 2d upsampling layer to
a feature tensor with spatial resolution d × d and nearest
neighbor interpolation. In (B.2), d is chosen such that the
spatial dimensions of both summands match. After each
down- and upsampling layer, we apply a ReLU nonlinearity.

We randomly select the number of layers and their channels,
the kernel sizes and the strides in the following way: First,
we select the depth of the network between 1 and bp̂/(2 ·
104)c, where p̂ is the upper limit of the parameter range.
Then, in order to obtain an hourglass-shape for the network,
we select the size of the image dimension at the bottleneck
between 2 and 30 and linearly interpolate from that to the
size of the input (and output) image. These interpolated
image sizes are the target dimensions dtargeti which we then
try to approximate by choosing the kernel sizes and strides
of the convolutions appropriately. This is done only for the
downsampling layers as the upsampling layers are set to
exactly mirror the downsampling architecture.

The kernel sizes ki are selected at random to be odd integers
between 1 and 9. If the image in layer i has smaller size
than 9×9, we take instead the highest odd integer below the
image dimension as the upper bound for the random choice.
The strides si are then computed from the target dimension
dtargeti , the input dimension dini of the layer and the kernel
size ki according to

si = round
( dini − ki
dtargeti − 1

)
. (B.3)

If the number generated by (B.3) is 0, we set the stride to 1
instead. The actual output dimensions are then given by

dini+1 =
dini − ki
si

+ 1 . (B.4)

In order to keep the total number of features roughly con-
stant across layers, we set the number of channels N c

i to

N c
i =

⌈
f

(dini+1)
2

⌉
, (B.5)

where f = 11 · (2 ·L)2 is the number of features in the final
layer and L is the bandwidth of the input (and output) data.

During the model generation process, architectures are gen-
erated according to the procedure summarized above and
the total number of parameters for each architecture is com-
puted. If the parameter count lies in the desired range, the
model is accepted, otherwise it is rejected and a new model
is generated.

All models are trained with batch size 32 and learning rate
10−3 using Adam on a segmentation task with one MNIST
digit on the sphere and 60k rotated training samples until
convergence and then evaluated. In all experiments, we use
early stopping on the non-background mIoU metric and a
maximum of 100 epochs.

In this way, for each desired parameter range, 20 models
were trained and evaluated, we then picked the best per-
forming models (according to the non-background mIoU)
and used them for our experiments. The resulting architec-
tures of the three non-equivariant models are summarized
in Table 4.

B.2. Equivariant models

The equivariant models consist of the three layers described
in Section 3.1. We will denote the operation (3.1) which
takes input features on S2 and returns output features on
SO(3) by

S2SO3conv(ni, no, bi, bo, β̂) , (B.6)

where ni is the number of input channels, no is the number
of output channels, bi is the bandwidth of the input feature
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Table 4: Non-equivariant model architectures used in our experiments. The up- and down-sampling layers are defined
in (B.1) and (B.2), respectively. The columns labeled as “output” contain the channel- and spatial dimensions of the output
feature maps.

Model 218k CNN 1M CNN 5.5M CNN
block output block output block output

input 1×1002 input 1×1002 input 1×1002
Down conv(1,13,5,1) 13×962 conv(1,12,3,1) 12×982 conv(1,12,3,1) 12×982

down(13,15,3,1) 15×942 down(12,13,3,1) 13×962 down(12,15,5, ,1) 15×942
down(15,22,9,1) 22×862 down(13,16,5,1) 16×922 down(15,16,3,1) 16×922
down(22,31,7,1) 31×802 down(16,77,5,2) 77×922 down(16,85,7,2) 85×432
down(31,141,3,2) 141×392 down(77,96,3,1) 96×422 down(85,191,3,1) 191×392

down(96,163,5,1) 163×382 down(191,191,3,1) 191×372
down(191,1100,3,2) 1100×182

Up up(141,31,3,2) 31×802 up(163,96,5,1) 96×422 up(1100,191,3,2) 191×372
up(31,22,7,1) 22×862 up(96,77,3,1) 77×442 up(191,141,3,1) 141×392
up(22,15,9,1) 15×942 up(77,16,5,2) 16×922 up(141,85,5,1) 85×432
up(15,13,3,1) 13×962 up(16,13,5,1) 13×962 up(85,16,7,2) 16×922

tConv(13,11,5,1) 11×1002 up(13,12,3,1) 12×982 up(16,15,3,1) 15×942
tConv(12,11,3,1) 11×1002 up(15,12,5,1) 12×982

tConv(12,11,3,1) 11×1002

Params. 218,144 1,042,013 5,519,335

Table 5: Equivariant model architectures used in our experiments. The notation for the layers is introduced in (B.6)–(B.8).
Note that the product of the input bandwidth and β̂ stays constant throughout the network. The columns labeled as “output”
contain the channel- and spatial dimensions of the output feature maps.

Model 204k S2CNN 820k S2CNN
block output block output

input 1×1002 input 1×1002
Down S2SO3conv(1, 11, 42, 0.1238 · π) 11×843 S2SO3conv(1, 13, 43, 0.1881 · π) 13×863

SO3conv(11, 12, 35, 0.1474 · π) 12×703 SO3conv(13, 16, 36, 0.2187 · π) 16×723
SO3conv(12, 13, 27, 0.1768 · π) 13×543 SO3conv(16, 19, 30, 0.2613 · π) 19×603
SO3conv(13, 14, 20, 0.2292 · π) 14×403 SO3conv(19, 21, 23, 0.3135 · π) 21×463

SO3conv(21, 24, 16, 0.4089 · π) 24×323
SO3conv(24, 27, 10, 0.5878 · π) 27×203

Up SO3conv(14, 13, 27, 0.3095 · π) 13×543 SO3conv(27, 24, 16, 0.9405 · π) 24×323
SO3conv(13, 12, 35, 0.2292 · π) 12×703 SO3conv(24, 21, 23, 0.5878 · π) 21×463
SO3conv(12, 11, 42, 0.1768 · π) 11×843 SO3conv(21, 19, 30, 0.4089 · π) 19×603

SO3S2conv(11, 11, 50, 0.1474 · π) 11×1002 SO3conv(19, 16, 36, 0.3135 · π) 16×723
SO3conv(16, 13, 43, 0.2613 · π) 13×863

SO3S2conv(13, 11, 50, 0.2187 · π) 11×1002

Params. 204,073 820,184



Equivariance versus Augmentation for Spherical Images

map, bo is the bandwidth of the output feature map and β̂
is related to the kernel size as described further down. The
operation (3.2) which takes and returns feature maps on
SO(3) is similarly denoted by

SO3conv(ni, no, bi, bo, β̂) (B.7)

and the operation (3.3) with input feature maps on SO(3)
and output feature maps on S2 is denoted by

SO3S2conv(ni, no, bi, bo, β̂) . (B.8)

After each layer, we apply a ReLU activation function.

We also experimented with adding the equivariant skip con-
nections provided by the original S2CNN implementation
to the layers (B.7) but found no performance gain, so we
did not use them in the experiments.

For the spherical models, the procedure to generate archi-
tectures is similar to the non-equivariant case, but now the
bandlimit replaces the role of the image dimension in the
construction.

First, we select the depth and the bottleneck size in the
same way as for the non-equivariant models. Then, we
select the bandlimit at the bottleneck between 3 and 20 and
compute a linear interpolation between the input bandlimit
and the bandlimit at the bottleneck. Since the equivariant
layers in the S2CNN architecture directly take the input-
and output bandlimits as parameters, we only have to round
those interpolated bandlimits to integers.

On top of the bandlimits, the spherical convolutional layers
also depend on the grid on which the kernel is sampled. For
this grid, we take a Driscoll-Healy grid (Driscoll & Healy,
1994) around the unit element in SO(3). The three Euler
angles α, β and γ of the grid points lie between 0 and 2π
for α and γ but β takes values between 0 and some upper
bound β̂. This upper bound is responsible for the locality
of the kernel and is analogous to the kernel size in standard
CNN layers. However, since the bandlimit Li of the feature
map determines how fine the grid for the feature map is, the
effective kernel size is characterized by the product β̂ ·Li. In
order to keep this product fixed throughout the network, we
set β̂i = L/Li · β̂ref where L is the bandlimit of the input
and β̂ref is a reference value that we pick at random between
0.02 and 0.25. Note that this construction implies that the
number of trainable parameters in the spatial dimensions of
the kernel is fixed throughout the network.

For the equivariant models, we randomly select the channel
numbers by first sampling a maximum channel number at
the bottleneck between 11 and 30 and then linearly interpo-
lating between 11 (the channel number at the output) and
this maximum.

Again, as in the non-equivariant case, we generate architec-
tures according to this procedure and reject the ones whose

parameter count lies outside the desired range. The models
obtained in this way are trained which batch size 32 and
learning rate 10−3 using Adam on a segmentation dataset
of 60k unrotated training samples containing one MNIST
digit on the sphere each until convergence and then evalu-
ated. In all experiments, we use early stopping on the non-
background mIoU metric and a maximum of 200 epochs.

As in the non-equivariant case, we generated, trained and
evaluated 20 models in the desired parameter ranges and
picked the best performing ones according to the non-
background mIoU. These models were then used for the
experiments. The resulting architectures of the two equiv-
ariant models are summarized in Table 5.

C. Details on experiments
In this appendix, we give more details about the experimen-
tal setup for the spherical runs described in Section 3.

C.1. Data generation

As discussed in the main text, the input data to our models
consist of MNIST digits and FashionMNIST items of cloth-
ing which were projected onto the sphere, labeled by their
corresponding segmentation masks. Here we give more
details on the data generation process.

For an input image with n digits / items of clothing on the
sphere, we first sampled n images from MNIST or Fashion-
MNIST and pasted them at a random position on a 60× 60
canvas. This canvas is then projected onto the sphere by
projecting the spherical grid points onto the plane using a
stereograhpic projection and performing a bilinear interpo-
lation in the plane. To obtain a rotated input sample, we
rotate the grid points with a random rotation matrix before
projecting them.

We generate the segmentation mask for a single digit / item
of clothing by considering all pixels with a grayscale value
above a certain threshold as belonging to the target class
and to the background class otherwise. These segmentation
masks are then assembled into the 60× 60 canvas and pro-
jected onto the sphere. Instead of a bilinear interpolation,
we use nearest-neighbor interpolation for the segmentation
masks.

For MNIST, a threshold value of 150 yielded good results.
For FashionMNIST however, we use a value of 10 to cap-
ture finer details of the cloths, as illustrated in Figure 11.
Even lower values lead to a blurring along the edges in the
segmentation mask.

For validation, we generated datasets in the same way as for
training, but sampling 10,000 data points from the test split
of the MNIST dataset.
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Figure 11: Examples of segmentation masks for Fashion-
MNIST generated from the original (left) with threshold
values of 150 (center) and 10 (right).
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Figure 12: Variation in Performance. Performance for the
non-equivariant 218k parameters model trained three times
on rotated datasets of 2 MNIST digits on the sphere of
various sizes.

C.2. Performance variation due to data sampling

As mentioned in the main text, increases or decreases in per-
formance with varying dataset sizes that occur completely
in parallel for all models are due to sampling effects dur-
ing the data generation process. This point is illustrated
by the plot depicted in Figure 12, where we trained the
non-equivariant model with 218k parameters three times
on rotated datasets of various sizes with 2 MNIST digits
on the sphere. One run is for reference, one with randomly
reinitialized weights before training and one was trained
on a randomly regenerated dataset. We can see clearly that
the weight reinitialization only had a minor influence on
the model performance, but the peculiar irregularities of
the performance increase with growing training dataset are
within the variation of regenerating the dataset.

C.3. Influence of projection point for non-rotated data

The spherical data we use in our experiments is given in the
Driscoll-Healy grid which is an equispaced grid in spherical

Figure 13: Example of the input data in the Driscoll–Healy
grid for a digit projected onto the grid center (left) and onto
the pole of the sphere (right).

coordinates, i.e. in the azimuthal angle φ and polar angle
θ. Therefore, what the input data looks like on this grid
depends crucially on the projection point relative to the grid.
Figure 13 illustrates this with a digit projected into the center
of the φ, θ grid (i.e. on the equator, close to the φ = π line)
and a digit projected onto the pole.

For the experiments for non-rotated data depicted in Fig-
ure 5 of the main text, we projected the input images onto
the grid center, to help the non-equivariant networks. For
this projection point, slight variations of the digit positions
correspond almost to translations in the Driscoll-Healy grid
with respect to which the ordinary CNNs are equivariant.
For comparison, Figure 14 shows the results of training on
data projected onto the pole of the sphere. Note that the
performance on unrotated data is reduced considerably as
compared to Figure 5, but slightly improved on rotated data.
The reason is that slight positional variations across the pole
lead to very non-linear deformations of the data represented
in the Driscoll-Healy grid and the translational equivariance
of the CNNs cannot help the training process. On the other
hand, since the polar projections are most challenging, over-
all performance on rotated test data is improved (although
of course still very poor).

Since the S2CNN models are equivariant with respect to
all rotations on the sphere, their performance does not de-
pend on the projection point of the digit, cf. Figure 14 vs.
Figure 5. Therefore, we trained the S2CNN models for all
other experiments on images projected onto the pole.

C.4. Sample predictions

In Figures 15 and 16, we show ten random sample predic-
tions from the best equivariant and non-equivariant models
in the four-digit task.

D. Inference latency profiling
Table 6 shows the inference latency per layer for the equiv-
ariant semantic segmentation model. Here the bulk of the
time is spent in the upsampling layers and in particular
the last SO(3) to S2 convolution takes up almost half of
the total inference time. Comparing with Table 5 this also
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Figure 14: Polar Training Images. Performance of equivariant and non-equivariant models for various amounts of data
augmentation for models trained on unrotated data, projected on the pole of the sphere. Performance is measured in terms of
mIoU for the non-background classes. Left: Evaluated on unrotated test data. Right: evaluated on rotated test data.

Table 6: Latency per layer and fraction of total time for the
equivariant semantic segmentation model (204k S2CNN in
Appendix Table 5) on an Nvidia T4 16GB GPU as measured
by NSight systems with NVTX for batch size 1. Latency
measures the time of a forward pass through the layer on
the GPU.

Layer Latency (ms) Fraction (%)
Down S2SO3conv 6.7 5.0
Down SO3conv 16.1 11.8
Down SO3conv 7.3 5.3
Down SO3conv 3.1 2.3
Up SO3conv 6.8 5.0
Up SO3conv 15.3 11.2
Up SO3conv 26.4 19.4
Up SO3S2conv 54.5 40.0

coincides with the largest SO(3) tensors being processed.

In Table 7 the fraction of inference time is instead shown
per operation. Here it is clear that a large portion is spent
in the custom CUDA implementation for the complex ma-
trix multiplication of SO3 tensors, a possible avenue for
optimization reducing overall inference latency. Most of
the remaining time is spent in the Fast Fourier Transform
(SO3_fft_real) and the inverse FFT (SO3_ifft_real).

Table 7: Fraction of time spent per operation (> 1%) for the
equivariant semantic segmentation model (204k S2CNN in
Appendix Table 5) on an Nvidia T4 16GB GPU as measured
by NSight systems for batch size 1.

Module Op Fraction of time (%)
s2cnn _cuda_SO3_mm 45.2
s2cnn SO3_ifft_real 15.6
s2cnn SO3_fft_real 14.4
pytorch einsum 12.2
pytorch contiguous 8.4

95.7
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Input image Ground truth mask 204k S2CNN 1M CNN

background 0 1 2 3 4 5 6 7 8 9

Figure 15: Sample predictions on the test dataset for the best equivariant model (240k S2CNN, trained on 240k samples) and
non-equivariant model (1M CNN, trained on 600k samples) on the four-digits task depicted in Figure 6. The five samples
were selected at random from the dataset and we depict here the raw data on the Driscoll–Healy grid. Five more samples are
depicted in Figure 16.
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Input image Ground truth mask 204k S2CNN 1M CNN

background 0 1 2 3 4 5 6 7 8 9

Figure 16: Five more samples of model predictions, cf. Figure 15.


