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Abstract

Computational antibody design seeks to automat-
ically create an antibody that binds to an antigen.
The binding affinity is governed by the 3D bind-
ing interface where antibody residues (paratope)
closely interact with antigen residues (epitope).
Thus, the key question of antibody design is how
to predict the 3D paratope-epitope complex (i.e.,
docking) for paratope generation. In this paper,
we propose a new model called Hierarchical Struc-
ture Refinement Network (HSRN) for paratope
docking and design. During docking, HSRN em-
ploys a hierarchical message passing network to
predict atomic forces and use them to refine a
binding complex in an iterative, equivariant man-
ner. During generation, its autoregressive de-
coder progressively docks generated paratopes
and builds a geometric representation of the bind-
ing interface to guide the next residue choice. Our
results show that HSRN significantly outperforms
prior state-of-the-art on paratope docking and de-
sign benchmarks.

1. Introduction
Recently, generative models (Saka et al., 2021; Jin et al.,
2021) have demonstrated the feasibility of de novo antibody
design to combat a pathogen of interest (i.e., antigen). In
this paper, we propose to further advance this generation
capacity by tailoring antibody design models for binding
a specific region of an antigen (an epitope). Figure 1 illus-
trates a binding interface consisting of an antigen epitope
and an antibody paratope. While a typical antigen has mul-
tiple epitopes, some of them may constitute more desirable
targets from a therapeutic perspective. For instance, binding
to a more conserved epitope decreases the chance of viral
escape and prolongs antibody efficacy (Yuan et al., 2020).
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Figure 1. Illustration of paratope docking and design. The docking
task assumes a paratope sequence is given and aims to predict the
3D coordinate of each atom. Paratope design assumes only the
epitope is given and seeks to generate a paratope sequence and its
3D structure for epitope binding.

Therefore, conditioning the generation process on a specific
epitope gives us more control in antibody design.

Antibody binding affinity relies on the quality of paratope-
epitope match, similar to a lock and a key. Thus, predicting
the paratope-epitope complex (docking) is the key to anti-
body engineering. There are three modeling challenges for
paratope docking and design. The first is paratope flexibility.
Existing rigid-body docking models (Yan et al., 2020; Ganea
et al., 2021) assume the ligand 3D structure is given and
fixed, so they cannot be integrated into a generative model.
Since the paratope is being generated on the fly, we need to
adjust the inferred paratope structure as more information
arrives. The second is equivariance. Prior work on paratope
design (Jin et al., 2021) cannot model a two-body system
since it predicts the absolute coordinates while the epitope
can be rotated arbitrarily. The third is efficiency. It is com-
putationally expensive to build an all-atom structure from
scratch because a binding interface usually involves hun-
dreds of atoms. Previous methods (Ingraham et al., 2018)
model protein backbone only and ignore the side-chain con-
formation, but side-chain atom contacts play an important
role in binding.

In this paper, we propose a new architecture called Hierar-
chical Structure Refinement Network (HSRN) to address
the above challenges.1 As opposed to rigid-body docking,
HSRN simultaneously folds and docks a paratope sequence
and iteratively refines its 3D structure during generation.

1The code is available at github.com/wengong-jin/abdockgen
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The main novelty of our approach is hierarchical equivari-
ance. HSRN represents a binding interface as a dynamic,
hierarchical graph. It consists of a residue-level graph with
only Cα atoms and an atom-level graph that includes the
side chains. This multi-scale representation allows us to
factorize the paratope docking task into a global backbone
update step and a local side-chain refinement step. To en-
sure equivariance of the docking procedure, HSRN predicts
the pseudo force between atoms instead of their absolute
coordinates. During generation, the HSRN decoder builds a
series of docked paratope-epitope complexes and use their
geometric representation to select the next amino acid.

We evaluate our method on standard paratope docking and
design benchmarks (Adolf-Bryfogle et al., 2018). In terms
of docking, we compare HSRN against HDOCK (Yan et al.,
2020) and combined it with IgFold (Ruffolo & Gray, 2022)
for end-to-end paratope folding and docking. In terms of
generation, we compare HSRN against standard sequence-
based generative models and a state-of-the-art structure-
based methods (Jin et al., 2021). HSRN significantly outper-
formed all baselines in both settings, with over 50% absolute
improvement in docking success rate.

2. Related Work
Protein docking. Our method is closely related to protein-
protein docking (Kozakov et al., 2017; Yan et al., 2020;
Ganea et al., 2021), which predicts the 3D structure of a
protein-protein complex given the 3D structures of the two
unbound proteins. These approaches assumes the paratope
3D structure is given and perform rigid-body docking. In
contrast, HSRN predicts the 3D structure of a paratope-
epitope complex by simultaneously folding and docking a
paratope sequence to an epitope. In that regard, our work
is more similar to AF2-multimer (Evans et al., 2021) that
simultaneously folds two proteins. However, AF2-multimer
relies on multi-sequence alignment (MSA) and sometimes
template features to predict protein complex structures. An-
tibody paratopes are highly variable and generally lacks
MSA data. Moreover, existing docking models are not di-
rectly applicable to a generative setting where they need to
dock a partial sequence for paratope design. Our approach
does not require MSA data and can be easily integrated into
a generative design workflow.

Generative antibody/protein design. Recently, the anti-
body design community started to explore deep generative
models due to their computational efficiency compared to
traditional physics-based models (Lapidoth et al., 2015;
Adolf-Bryfogle et al., 2018). For example, Liu et al. (2020);
Shin et al. (2021); Saka et al. (2021); Akbar et al. (2021)
trained recurrent neural networks to generate paratope se-
quences. The limitation of sequence-based models is that
they do not utilize the paratope 3D structure. Therefore,

Jin et al. (2021) proposed a graph-based generative model
that co-designs a paratope sequence and its 3D structure.
However, none of these models incorporated the antigen
structure. Thus, existing methods will generate the paratope
distribution for any epitope given a fixed training set.

For general protein design, most previous methods are not
conditioned on a target protein structure. While Ingraham
et al. (2019); Strokach et al. (2020); Karimi et al. (2020);
Cao et al. (2021b) proposed generative models conditioned
on a backbone structure or protein fold, they do not model
the interaction between a generated protein and its target
protein. This limitation also applies to energy-based pro-
tein design models based on TrRosetta (Tischer et al., 2020;
Norn et al., 2021). While non-deep learning based methods
(Adolf-Bryfogle et al., 2018; Cao et al., 2021a) use dock-
ing algorithms to design target-specific proteins, they are
computationally very expensive. In contrast, we propose
a new generative model that leverages both 3D structural
information and epitope structure.

Protein structure encoder. Prior work has utilized graph
neural networks (GNN) (Fout et al., 2017), 3D convolutional
neural networks (Townshend et al., 2019), and equivariant
neural networks (ENN) (Satorras et al., 2021; Eismann et al.,
2021) to encode protein 3D structures. Similar to our work,
Eismann et al. (2021) developed a hierarchical ENN that
represents a protein in terms of backbone (Cα) and side
chains. However, their method assumes the 3D structure of a
full protein complex is given. Therefore, it can only be used
to re-rank docked structures generated by another docking
algorithm. In contrast, our model predicts the 3D structure
of the backbone and side chains from scratch. Somnath et al.
(2021) also developed a hierarchical GNN that represents
a protein in terms of triangulated surfaces and residue Cα

atoms. Their method is not applicable to our setting because
it does not model the side chain atoms.

3. Paratope Docking and Design with HSRN
When an antibody binds to an antigen, they form a joint
structure called an antibody-antigen complex. Its binding
interface consists of a paratope and an epitope. A paratope
is a sequence of residues a = a1 · · ·an in the comple-
mentarity determining regions (CDRs) of an antibody. An
epitope b = b1b2 · · · bm is composed of m residues that
are closest to a paratope. It is a subsequence of an antigen
c = c1c2 · · · cM , where bi = cei and ei is the index of
epitope residue bi in the antigen.

The epitope 3D structure Gb is described as a point cloud
of atoms {bi,j}1≤i≤m,1≤j≤ni

, where ni is the number of
atoms in residue bi. Likewise, the 3D structure of a paratope
and a paratope-epitope binding interface is denoted as Ga

and Ga,b, respectively. The first four atoms in any residue
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correspond to its backbone atoms (N, Cα, C, O) and the rest
are its side chain atoms. The 3D coordinate of an atom bi,k
is denoted as x(bi,k) ∈ R3.

In this paper, we assume the 3D structure of the antigen
and its epitope are given as inputs to our model. Hence,
both paratope docking and generation can be formulated
as a 3D point cloud completion task. Given a training set
of antibody-antigen complexes, HSRN learns to append an
epitope structure Gb with paratope atoms to form a bind-
ing interface Ga,b (Figure 1). Overall, HSRN consists of
three modules to model 3D paratope-epitope interaction for
docking and generation.

• Its encoder module learns to encode a docked paratope-
epitope complex into a set of atom and residue vectors.

• Its docking module predicts the 3D structure of a paratope-
epitope complex given any paratope sequence. In contrast
to rigid body docking, our model simultaneously folds
and docks a paratope sequence since the paratope 3D
structure is unknown.

• Its decoder module generates paratope amino acids au-
toregressively and runs the docking module to update the
paratope-epitope complex in each generation step.2

3.1. Hierarchical Encoder

During docking and generation, the input to HSRN is a
point cloud with atoms from an antigen, its epitope, and
its binding paratope. A point cloud typically contains over
103 atoms so we need to encode it at different resolutions
for computational efficiency. Specifically, we propose a
hierarchical message passing network (MPN) composed of
an antigen encoder, an atom-level and a residue-level inter-
face encoder. The antigen encoder models the interaction
between epitope residues and other interior antigen residues.
The atom-level interface encoder captures paratope-epitope
interaction at the finest resolution, including atomic con-
tacts in the side-chains. The residue-level interface encoder
only considers backbone Cα atoms to focus on long-range
residue interactions.

3.1.1. ANTIGEN ENCODER

We represent an antigen as a point cloud Gc with only its Cα

atoms. Each residue ci is represented by a feature vector
f(ci) including its dihedral angles, polarity, hydropathy,
volume, charge, and whether it is a hydrogen bond donor
or acceptor. In the forward pass, we first construct a K
nearest neighbor graph of Gc, build a local coordinate frame
for each residue, and compute edge features f(ci, cj) de-
scribing the distance, direction, and orientation between
two residues (Ingraham et al., 2019). Next, we encode the
antigen graph Gc using a message passing network (MPN)

2The decoder module is not used during paratope docking.

whose inputs include node features {f(ci)} and edge fea-
tures {f(ci, cj)} (details in the appendix). The output of
this MPN is a vector representation h(ci) for each antigen
residue, which will be used for initial distance prediction in
the docking module. Crucially, the whole encoding process
is rotation and translation invariant.

3.1.2. ATOM-LEVEL INTERFACE ENCODER

The atom-level encoder keeps all the atoms in the point
cloud Ga,b and constructs a K nearest neighbor graph GA

a,b.
Each node feature is a one-hot encoding of its atom name
(e.g., N, Cα, Cβ , O). Each edge feature between two atoms
(ai,k, bj,l) is represented as

f(ai,k, bj,l) = RBF(∥x(ai,k)− x(bj,l)∥) (1)

where RBF(·) encodes the distance between two atoms in a
radial basis. We encode GA

a,b by another MPN which learns
a vector representation h(ai,k),h(bj,l) for each paratope
atom ai,k and epitope atom bj,l.

3.1.3. RESIDUE-LEVEL INTERFACE ENCODER

The residue-level encoder only keeps the Cα atoms and
constructs a K nearest neighbor graph GR

a,b at the residue
level. It is encoded by another MPN that operates on top of
the antigen MPN and atom MPN. The initial representation
for epitope and paratope residues are defined as

f̃(ai) = f(ai)⊕
∑

k
h(ai,k) (2)

f̃(bj) = f(bj)⊕
∑

l
h(bj,l) (3)

where ⊕ means vector concatenation and ej is the index
of the epitope residue bj in the antigen c. The initial rep-
resentation is the concatenation of its amino acid features
f(ai) and the sum of atom-level encodings h(ai,k) within
that residue. The edge features are the same as the antigen
MPN. The encoder then takes the node and edge features f̃
into another MPN to compute residue-level representations
{h(ai)}, {h(bj)} for the paratope and epitope.

In summary, the output of our hierarchical encoder is a set
of residue representations {h(ai),h(bj),h(cj)} and atom
representations {h(ai,k),h(bj,l)}.

3.2. Docking Module

Given a paratope sequence a and epitope 3D structure Gb,
our docking module predicts the 3D coordinate of each atom
to form a correct paratope-epitope complex Ga,b. The dock-
ing task is challenging as the model needs to simultaneously
fold and dock the paratope. It is hard to predict the 3D struc-
ture in one shot due to the complex dependency between
different variables x(ai,k),x(bj,l) and various physical con-
straints. Thus, we propose an iterative refinement procedure
to fold and dock a paratope onto a epitope.
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Figure 2. Illustration of the docking process (one iteration). In each refinement step, the docking module first encodes the residues
and atoms into vector representations. It then computes the residue-level force between the Cα atoms and the local force between the
side-chain atoms of the same residue. Finally, HSRN update the paratope-epitope structure based on the predicted forces.

3.2.1. INITIALIZATION

At the outset of structure refinement, we need to properly
initialize the coordinates of all paratope atoms. Here we
explore two initialization strategies.

Random initialization. A simple strategy is to initialize all
coordinates by adding a small Gaussian noise around the
center of the epitope

x(0)(ai,k) =
1

m

∑
i

x(bi,1) + ϵ, ϵ ∼ N (0, 1), (4)

where the epitope center is defined as the mean of epitope
Cα atoms. From now on, we will abbreviate paratope coor-
dinates x(0)(ai,k) as x(0)

i,k to simplify notation.

Distance-based initialization. Random initialization can
be far from the final solution and difficult for HSRN to op-
timize. Another strategy is to directly predict the pairwise
distance D ∈ R(n+m)×(n+m) between paratope and epi-
tope atoms. This scheme can be beneficial since coordinates
inferred from D are closer to the final solution. Specifi-
cally, let hseq(ai) be the paratope representation learned
by a recurrent neural network. HSRN predicts the pairwise
distance as the following:

Di,j =


∥hseq(ai)− hseq(aj)∥ i, j ≤ n

∥hseq(ai)− h(cej )∥ i ≤ n, j > n

∥x(bi)− x(bj)∥ i, j > n

Intuitively, if i belongs to the paratope (i ≤ n) and j to the
epitope (j > n), Di,j is the Euclidean distance between
hseq(ai) and the antigen encoding h(cej ). Similarly, the
distance between two paratope residues is modeled as the
Euclidean distance between their sequence representations
hseq. The distance between two epitope residues are directly
calculated from their given coordinates x(bi).

Given this pairwise distance matrix D, we can obtain the 3D
coordinates of each residue via eigenvalue decomposition

of the following Gram matrix (Crippen & Havel, 1978)

D̃i,j = 0.5(D2
i,1 +D2

1,j −D2
i,j), D̃ = USU⊤ (5)

where S is a diagonal matrix with eigenvalues in descending
order. The coordinate of each residue ai is calculated as

x̃
(0)
i = [Xi,1,Xi,2,Xi,3], X = U

√
S. (6)

Note that the predicted coordinates {x̃(0)
i } retain the orig-

inal distance D, but they are located in a different coor-
dinate frame from the given epitope. Therefore, we ap-
ply the Kabsch algorithm (Kabsch, 1976) to find a rigid
body transformation (R, t) that aligns the predicted epi-
tope coordinates {x̃(0)

n+1, · · · , x̃
(0)
n+m} with the given epi-

tope {x(b1,1), · · · ,x(bn,1)}. Lastly, the Cα coordinates of
each paratope residue is predicted as

x(0)(ai,1) = x
(0)
i,1 = Rx̃

(0)
i + t (7)

To predict the initial coordinates x(0)
j,k for other atom types

k, we apply the same alignment procedure but with different
reference points {x(b1,k), · · · ,x(bn,k)} from the epitope.

3.2.2. EQUIVARIANT STRUCTURE REFINEMENT

The initial coordinates are often inaccurate since the pair-
wise distances Di,j are predicted independently for each
residue pair and many higher-order interaction terms be-
tween different residues are ignored. For example, if two
epitope residues i and j are far from each other, it is impos-
sible for a paratope residue k to be near both i and j. To
this end, we propose an iterative structure refinement pro-
cedure to incorporate these higher-order interactions. The
refinement procedure must be equivariant because epitope
coordinates are given and they can be rotated and translated
arbitrarily. Inspired by force fields in physics, we propose
to model the force between atoms rather than predicting ab-
solute coordinates (Jin et al., 2021) to achieve equivariance.
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Let G(t)
a,b be the predicted paratope-epitope complex in the

t-th iteration, with predicted paratope coordinates {x(t)
i,k}.

In each iteration, we first encode G(t)
a,b using our hierarchical

encoder to compute residue-level and atom-level represen-
tations h(t)(·) for each residue. The force between two Cα

atoms (k = 1) is calculated based on their residue-level
representation

g
(t)
i,j = g

(
h(t)(ai),h

(t)(aj)
)
·
(
x
(t−1)
i,1 − x

(t−1)
j,1

)
(8)

g
(t)
i,k = g

(
h(t)(ai),h

(t)(bk)
)
·
(
x
(t−1)
i,1 − x(bk,1)

)
(9)

where g is a feed-forward neural network with a scalar
output. In practice, we truncate the output of g(·) so that
two atoms do not clash after the update. We then update the
Cα atom coordinates of each paratope residue by averaging
the pairwise forces

x
(t)
i,1 = x

(t−1)
i,1 +

1

n

∑
j ̸=i

g
(t)
i,j +

1

m

∑
k

g
(t)
i,k (10)

For other atoms types (k ̸= 1), we only model the force
between atoms in the same residue. It is computationally
expensive to calculate forces between all atom pairs due to
the large number of atoms in the binding interface. Specif-
ically, the force from atom ai,j to ai,k is calculated from
their atom-level representations

g
(t)
ik,ij = g

(
h(t)(ai,j),h

(t)(ai,k)
)(
x
(t−1)
i,k −x

(t−1)
i,j

)
(11)

Similarly, we truncate the force term if the atom distance
is less than the Van der Waals radius. We update the atom
coordinates by applying all the pairwise forces

x
(t)
i,k = x

(t−1)
i,k +

1

ni

∑
j

g
(t)
ik,ij (12)

In summary, the Cα update step in Eq.(10) focuses on the
global structure refinement and the atom update step in
Eq.(12) focuses on the local side-chain arrangement. Fol-
lowing the proof from Satorras et al. (2021), it is easy to
show that this coordinate update procedure is equivariant
under epitope rotation and translation.

3.3. Decoder Module

Our decoder works together with the docking module to
generate a paratope sequence autoregressively. The major
difference between HSRN and standard RNN decoders is the
representation of intermediate states. In standard RNNs, an
intermediate state is a partial paratope sequence. In contrast,
the intermediate state in HSRN is a paratope-epitope point
cloud G(t)

a,b predicted by our docking module, which provides
more structural information than a partial sequence. The
overall generation process is illustrated in Figure 3 and
detailed below.

ARNTL???????

Docking module

Hierarchical 
encoder

Next residue: T

ARNTLT??????

Docking module

Reuse for 
initialization

Current state 𝒢(t)
a,b Next state 𝒢(t+1)

a,b

Next residue: G

Softmax

Hierarchical 
encoder

Softmax

Figure 3. Illustration of the decoding process. In each generation
step, HSRN first use the docking module to predict the paratope-
epitope complex given the current paratope. It then encodes the
predicted complex G(t)

a,b with a hierarchical encoder and predict the
amino acid type of the next residue. To avoid waste of computa-
tion, the docking module reuses the previous state to initialize the
structure refinement process.

3.3.1. INITIAL STATE

To construct the initial state G(0)
a,b , we need to first guess

the amino acid type for every paratope residue because the
docking module takes an entire sequence as input. There-
fore, we guess the amino acid type of each paratope residue

p
(0)
i = softmax

(
W⊤

0 FFN(Epos(i))
)

(13)

where FFN(·) is a feed-forward network and Epos(i) is
the positional encoding (Vaswani et al., 2017) of paratope
residue ai. p

(0)
i [k] is the probability of residue ai being

amino acid type k. Notably, the input to our docking module
is a sequence (p

(0)
1 , · · · ,p(0)

n ) with “soft” amino acid as-
signments. Based on this soft sequence, the docking module
predicts the binding interface G(0)

a,b as the initial state.

Due to the soft assignment, there are two slight modifica-
tions in the docking module during paratope generation.
First, the node feature in the hierarchical encoder is defined
as an expectation f(ai) =

∑
k p

(0)
i [k]f(k). Second, the

docking module only predicts the four backbone atoms (N,
Cα, C, O) for the paratope since different amino acids have
distinct side-chain atom configurations. Adding all side-
chain atoms would require a hard assignment of all residue
types before generation starts. Nonetheless, our hierarchical
encoder still models all side-chain atoms in the antigen and
epitope since they does not need to generated.
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3.3.2. INTERMEDIATE STATES

In each generation step t, HSRN first use the docking mod-
ule to predict the paratope-epitope complex given the current
paratope sequence. It then encodes the predicted complex
G(t)
a,b with another hierarchical encoder to learn a hidden

representation for each residue h(t)(ai). Finally, we predict
the amino acid type of the next residue at by

pt = softmax
(
Wsh

(t)(at)
)

(14)

During training, we apply teacher forcing and set at to its
ground truth. During testing, we sample an amino acid type
k ∼ pt and set at = one hot(k). The future residues re-
main as their initial guesses, i.e. the new paratope sequence
becomes (a1, · · · ,at,p

(0)
t+1, · · · ,p

(0)
n ).

Reusing docked structures. As the docking module applies
L refinement iterations to finalize the paratope coordinates,
a naive implementation costs in total nL refinement steps
for generation. In fact, we can speed up the entire process
by reusing previously docked structures instead of predict-
ing the pairwise distance from scratch every time. In each
step t, the docking module starts with paratope coordinates
from G(t−1)

a,b and perform only one refinement step to predict

the next state G(t)
a,b (Figure 3). By interleaving structure re-

finement with sequence generation, it only takes n docking
steps to generate a sequence.

3.4. Training Loss

Docking loss. The training loss of our docking module con-
tains two terms. The first term comes from initial distance
prediction, which is calculated as the Huber loss between
the predicted distance Di,j and its ground truth. The sec-
ond term comes from the iterative refinement procedure.
We compute the pairwise distance ∥x(t)

i,k − x
(t)
j,l ∥ between

all atoms in the binding interface and calculate the Huber
loss against its ground truth in every refinement step. For
training stability, we do not propagate the gradient across
multiple refinement steps during back-propagation.

Generation loss. For paratope generation, our training loss
includes another cross entropy term between the predicted
probabilities p(t)

i and their ground truth amino acid types.
During training, the docking module and decoder module
are optimized simultaneously in one backward pass.

4. Experiments
We evaluate HSRN on two challenging tasks: paratope dock-
ing and generation. For simplicity, we only consider the
CDR-H3 paratope of a heavy chain, which is the most flexi-
ble and important part of an antibody. The corresponding
epitope is constructed by the following procedure. For each
antigen residue ci, we first compute its shortest distance

Table 1. Paratope docking results with epitope size m = 20.

Method DockQ Success
HDOCK 0.237 48.3%
HSRN (Ours) 0.438 100%

Table 2. HSRN docking performance with different epitope sizes.

m = 20 m = 40 m = 80

DockQ 0.438 0.413 0.375
Success 100% 96.6% 89.7%

di = minj,k,l ∥x(ci,k) − x(aj,l)∥ to the paratope a. We
then rank the antigen residues based on di and take the
top m residues as our epitope. The final epitope sequence
b1 · · · bm = ce1 · · · cem are sorted in the ascending order
e1 < · · · < em, to ensure it’s a subsequence of the antigen.

Data. Our training data comes from the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014), which contains
around 3K antibody-antigen complexes after filtering struc-
tures without antigens and removing duplicates. The test
set for this task comes from a paratope design benchmark
compiled by Adolf-Bryfogle et al. (2018). It contains 60
antibody-antigen complexes with diverse antigen types. To
measure the ability to generalize to novel paratopes, we
remove any paratope sequences from the training set if it
is similar to one of the test set paratopes (sequence identity
above 70%). The training set contains 2777 complexes and
the same dataset is used for docking and generation.

4.1. Paratope Docking

In this task, the input to our model is an antigen 3D structure
with a specified epitope b1 · · · bm and a paratope sequence
a1 · · ·an. The goal is to predict the 3D coordinates of all
paratope atoms, namely the 3D paratope-epitope complex.
This task is also called local docking, as opposed to global
docking which does not assume the epitope is given.

Baselines. We compare HSRN with HDOCK (Yan et al.,
2020), a docking algorithm with state-of-the-art perfor-
mance on protein docking benchmarks (Ganea et al., 2021).
We choose HDOCK because it allows us to specify the
receptor binding site and perform local docking. Since
HDOCK is a rigid-body docking software that requires a
paratope unbound structure as input, we use the IgFold al-
gorithm (Ruffolo & Gray, 2022) to fold antibody heavy
chains to provide paratope unbound structures. IgFold is a
state-of-the-art antibody folding algorithm with comparable
performance to AlphaFold (Jumper et al., 2021). Thus, we
believe the combination of HDOCK and IgFold is a strong
baseline for comparison.

Metrics. For all methods, we report the DockQ score (Basu
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HDOCKAntigen Ground truth HSRN

HDOCK=0.238, HSRN=0.342HDOCK=0.206, HSRN=0.674HDOCK=0.046, HSRN=0.433

PDB: 5NUZ PDB: 3HI6PDB: 4G6M

Figure 4. Comparison between the paratope structures predicted by HDOCK, HSRN, and their ground truth. Their DockQ scores are
reported at the top of the figure. Best viewed in color.

Table 3. Ablation study of the docking module with m = 20.
“Rand” means random initialization and “dist” means distance-
based initialization.

Init Refine Hierarchical DockQ Success
rand ✓ ✓ 0.438 100%
rand ✓ × 0.357 89.7%
dist ✓ ✓ 0.377 87.9%
dist ✓ × 0.375 86.2%
dist × ✓ 0.303 65.5%

& Wallner, 2016), a standard evaluation metric for dock-
ing. DockQ is a weighted average of three terms: contact
accuracy, interface RMSD, and ligand RMSD. A docked
structure is considered acceptable if its DockQ score is
above 0.23. We define the success rate of a model as the
percentage of acceptable docked structures.

Hyperparameters. Each MPN in our hierarchical encoder
contains four message passing layers with a hidden dimen-
sion of 256. The docking module performs eight iterations
of structure refinement. All models are trained by an Adam
optimizer for 20 epochs with 10% dropout.

Results. We first compare all methods with epitope size
m = 20. As shown in Table 1, HSRN significantly outper-
forms HDOCK baseline in terms of average DockQ (0.237
vs 0.438) and success rate (48.3% vs 100%). In terms of
speed, the average runtime for HSRN is less than 1 sec-
ond per instance, while HDOCK takes more than a minute.
The reason is that HDOCK enumerates and ranks all possi-
ble docking poses (over 1000 candidates) in a brute-force
manner. HSRN instead treats docking as an optimization
problem that requires only few iterations. As illustrated in
Figure 4, our predicted paratope structure mostly agrees
with the ground truth, while HDOCK sometimes place the
paratope far from the correct location.

4.1.1. ABLATION STUDY

Now we perform a series of ablation studies to investigate
the importance of different model components.

Epitope size. First, we evaluate our method with increasing
epitope sizes m ∈ {20, 40, 80}. Our results are summarized
in Table 2. Indeed, the average DockQ gradually decreases
as the docking task becomes increasingly difficult, but the
overall success rate remains high.

Hierarchical encoder. Second, we find that removing the
atom-level interface encoder hurts the performance in both
initialization schemes (Table 3), with substantial perfor-
mance decrease under the random coordinate initialization
(DockQ: 0.438 vs 0.357). These results demonstrate the
necessity of utilizing all-atom information for docking.

Structure refinement. Third, we remove the iterative struc-
ture refinement procedure and run the model under distance-
based initialization.As shown in Table 3, the model perfor-
mance degrades significantly without structure refinement
(DockQ: 0.377 vs 0.303), validating our hypothesis that
initial distance prediction is often inaccurate.

Initialization schemes. Lastly, we report our model per-
formance under two coordinate initialization schemes (Ta-
ble 3). Interestingly, HSRN performs much better with
random initialization rather than distance-based initializa-
tion. However, as we will show in the next section, random
initialization performs quite poorly in paratope design. This
mixed result shows we need different initialization schemes
for paratope docking and generation.

4.2. Paratope Generation

In this task, our model input contains only an antigen 3D
structure with a specified epitope b. The goal is to generate
a CDR-H3 paratope that binds to a given epitope. There
are two notable differences between our setup and previous
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work on paratope design (Jin et al., 2021). First, our model
does not assume the framework region is given since our
ultimate goal is de novo antibody design. Second, prior
work does not consider the antigen structure.

Baselines. In this task, we consider the following state-of-
the-art baselines for comparison.

• RosettaAntibodyDesign (RAbD) (Adolf-Bryfogle et al.,
2018): We apply their de novo design protocol to design
CDR-H3 paratopes. Starting from a random sequence,
it performs 250 iterations of sequence design, docking,
and energy minimization to find the best paratope with
minimal interface energy. We cannot afford to run more
iterations because it takes over 10 hours per instance.

• Sequence decoder: This model consists of an encoder and
a decoder. The encoder is the same as our antigen MPN,
whose input is a 3D antigen structure with a specified
epitope. Its decoder is a RNN (Lei, 2021) that generates a
paratope sequence autoregressively. The decoder employs
an attention layer to extract information from encoded
epitope representations so that the generation process is
condition on the 3D epitope.

• RefineGNN (Jin et al., 2021) is a state-of-the-art genera-
tive model for antibody paratopes. Similar to HSRN, its
decoder operates on a 3D paratope structure. Since the
original RefineGNN is conditioned on the framework re-
gion rather than the antigen, we replace its encoder by our
antigen MPN encoder and use the attention layer to extract
information from the epitope representation. We call this
modified model CondRefineGNN to make a distinction
from its original architecture.

Metrics. Following Adolf-Bryfogle et al. (2018), we use
amino acid recovery (AAR) as our metric. For a generated
paratope ã, we define its AAR as

∑
i
1
n I[ai = ãi], the

percentage of residues matching the corresponding residue
in the ground truth a. Specifically, for each epitope, we
generate 1000 paratope sequences and choose the one with
the best log-likelihood to calculate AAR score.

Given the critical role of contact residues in binding, we
report another metric called contact AAR (CAAR). It is
defined as

∑
i∈C

1
C I[ai = ãi], where C is a set of residues

making contact with the epitope. A residue ai makes contact
with the epitope if minj,k,l ∥x(ai,k)− x(bj,l)∥ < 4.0.

Hyperparameters. Each MPN in our hierarchical encoder
contains three message passing layers with a hidden dimen-
sion of 256. For the docking module, we use distance-based
initialization as default and explore random initialization
in ablation studies. All models are trained by an Adam
optimizer for 10 epochs with 10% dropout.

Results. As shown in Table 4, HSRN achieves the best
AAR and CAAR score on this benchmark. Indeed, Cond-

Table 4. Paratope generation results with m = 20.

Method AAR CAAR
RAbD 28.6% 14.9%
Sequence decoder 32.2% 17.6%
CondRefineGNN 33.2% 19.7%
HSRN (Ours) 34.1% 20.8%
HSRN (random init) 31.0% 15.6%
HSRN (w/o atom MPN) 30.4% 19.0%

PDB: 
3hi6

PDB: 
2dd8

Figure 5. Sequence profile of generated paratopes for two differ-
ent antigens: integrin LFA-1 (PDB: 3hi6) and SARS-CoV Spike
receptor-binding domain (PDB: 2dd8).

RefineGNN yields sub-optimal performance because it does
not model the 3D paratope-epitope complex. The paratope
3D structure alone is not sufficient for reconstructing the
true paratope. The sequence model yields even lower AAR
because it does not model the paratope 3D structure at all.
The output distribution of generated paratopes is illustrated
in Figure 5.

4.2.1. ABLATION STUDY

We further perform two ablation studies to study the impor-
tance of initialization and hierarchical encoder in the context
of paratope generation.

Hierarchical encoder. When removing the atom-level in-
terface encoder, the generation performance degrades sub-
stantially in both initialization schemes (Table 4), with AAR
decreasing from 34.1% to 30.4% under distance-based ini-
tialization. Indeed, both docking and generation experi-
ments support the importance of hierarchical encoding.

Initialization. In contrast to the docking experiment, HSRN
performs very poorly under the random initialization scheme
(34.1% vs 31.0%, Table 4). This result is expected because
the paratope structure looks almost random in the beginning
and does not provide any useful information for predicting
the first few amino acids.

5. Conclusion
In this paper, we have developed a hierarchical, equivariant
architecture for paratope docking and design. Our model
significantly outperforms existing docking methods with
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a wide margin while running orders of magnitudes faster.
Indeed, there are various directions to improve our model.
First, our model does not predict the binding energy of a
docked/generated paratope. An interesting direction is to
replace our autoregressive decoder with an energy-based
model and use the learned energy function to quantify bind-
ing affinity. Second, our model assumes the epitope is given
as input. We envision that HSRN can be combined with
epitope prediction approaches (Del Vecchio et al., 2021)
for end-to-end antibody engineering. Lastly, the atomic
force learned by HSRN is estimated based on training data
alone. We believe that incorporating domain knowledge
from physics (e.g., Lennard-Jones potential) can further
improve the generalization of our approach.
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A. Model Architecture Details
Amino acid features. Each amino acid is represented by six features: polarity fp ∈ {0, 1}, hydropathy fh ∈ [−4.5, 4.5],
volume fv ∈ [60.1, 227.8], charge fc ∈ {−1, 0, 1}, and whether it is a hydrogen bond donor fd ∈ {0, 1} or acceptor
fa ∈ {0, 1}. For hydropathy and volume features, we expand it into radial basis with interval size 0.1 and 10, respectively.
As a result, the amino acid feature dimension is 112.

Residue-level edge features. For each residue ai, we define its local coordinate frame Oi = [ci,ni, ci × ni] as

ui =
xi − xi−1

∥xi − xi−1∥
, ci =

ui − ui+1

∥ui − ui+1∥
, ni =

ui × ui+1

∥ui × ui+1∥
(15)

Based on the local frame, we compute the following edge features

f(ai,aj) =

(
Epos(i− j), RBF(∥xi,1 − xj,1∥), O⊤

i

xj,1 − xi,1

∥xi,1 − xj,1∥
, q(O⊤

i Oj)

)
. (16)

The edge feature fij contains four parts. The positional encoding Epos(i− j) encodes the relative distance between two
residues in an antibody sequence. The second term RBF(·) is a distance encoding lifted into radial basis. The third term
in fij is a direction encoding that corresponds to the relative direction of xj in the local frame of residue i. The last term
q(O⊤

i Oj) is the orientation encoding of the quaternion representation q(·) of the spatial rotation matrix O⊤
i Oj .

MPN architecture. Our MPN contains L message passing layers. Let Ni be the set of neighbor nodes for residue ai. Each
MPN layer consists of a standard message passing step followed by an aggregation step with residual connection, where
h0(ai) = z(ai).

hl+1(ai) = hl(ai) +
∑
j∈Ni

FFN
(
hl(ai),hl(aj),f(aj),f(ai,aj)

)
(0 ≤ l < L) (17)


