
Universal and data-adaptive algorithms
for model selection in linear contextual bandits

Vidya Muthukumar 1 2 Akshay Krishnamurthy 3

Abstract
Model selection in contextual bandits is an impor-
tant complementary problem to regret minimiza-
tion with respect to a fixed model class. We con-
sider the simplest non-trivial instance of model-
selection: distinguishing a simple multi-armed
bandit problem from a linear contextual bandit
problem. Even in this instance, current state-
of-the-art methods explore in a suboptimal man-
ner and require strong “feature-diversity” condi-
tions. In this paper, we introduce new algorithms
that a) explore in a data-adaptive manner, and b)
provide model selection guarantees of the form
O(dαT 1−α) with no feature diversity conditions
whatsoever, where d denotes the dimension of the
linear model and T denotes the total number of
rounds. The first algorithm enjoys a “best-of-both-
worlds” property, recovering two prior results that
hold under distinct distributional assumptions, si-
multaneously. The second removes distributional
assumptions altogether, expanding the scope for
tractable model selection. Our approach extends
to model selection among nested linear contextual
bandits under some additional assumptions.

1. Introduction
The contextual bandit (CB) problem (Woodroofe, 1979;
Langford & Zhang, 2008; Li et al., 2010) is a foundational
paradigm for online decision-making. In this problem, the
decision-maker takes one out of K actions as a function of
available contextual information, where this function is cho-
sen from a fixed policy class and is typically learned from
past outcomes. Most work on CB has centered around de-
signing algorithms that minimize regret with respect to the
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best policy in hindsight; a particular non-triviality involves
doing this in a computationally efficient manner (Agarwal
et al., 2014; Syrgkanis et al., 2016; Foster & Krishnamurthy,
2018). When the rewards are realizable under the chosen
policy class, this is now an essentially solved problem (Fos-
ter & Rakhlin, 2020; Simchi-Levi & Xu, 2020).

A complementary problem to regret minimization with re-
spect to a fixed policy class is choosing the policy class that
is best for the problem at hand. This constitutes a model
selection problem, and its importance is paramount in CB,
as selecting a class that either underfits or overfits can lead
to highly suboptimal performance. To see why, consider the
simplest model selection instance, which involves deciding
whether to use the contexts (with, say, a policy class of d-
dimensional linear functions) or simply run a multi-armed
bandit (MAB) algorithm. Making this choice a priori is
suboptimal one way or another: if we choose a MAB algo-
rithm, we obtain the optimal O(

√
KT ) regret to the best

fixed action, but the latter may be highly suboptimal if the
rewards depend on the context. On the other hand, if we
choose a linear CB algorithm, we incurO((

√
K+
√
d)
√
T )

regret even when the rewards do not depend on the contexts
due to overfitting, which is highly suboptimal1. To avoid
these two failure modes, we seek an algorithm that achieves
the best-of-both-worlds, by retaining the linear CB guaran-
tee while adapting to hidden structure if it exists. Focusing
on the MAB-vs-linear setting, the strongest variant of the
model selection objective asks:

Objective 1. Can we design a single algorithm that
simultaneously achieves the respective minimax-optimal
rates of O(

√
KT ) under simple MAB structure (when it

exists) and O((
√
K +

√
d)
√
T ) under d-dimensional

linear CB structure?
1Throughout the paper, we consider K to be a small constant

and allow the feature dimension d to be quite large. This is in con-
trast to the typical case of a linear non-contextual bandit problem
where the number of arms K can be quite large, and the features
model structure across arms to ensure a much smaller regret (see,
e.g., Chapter 19 of Lattimore & Szepesvári (2019)). There, a rather
different model selection problem arises, where the linear bandit
class is actually the simpler one. For the CB model selection prob-
lem, the K ≥ d regime renders the problem uninteresting: it is
always better to use a linear CB algorithm as it will better model
structure and incur negligible regret overhead.
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A related but weaker objective is also proposed in a COLT
2020 open problem (Foster et al., 2020), restated here for
the special case of linear CB:

Objective 2. Can we design a single algorithm that
simultaneously achieves the rate O(KβT 1−α) under

simple MAB structure and O(KβdαT 1−α) under linear
CB structure, for some α ∈ (0, 1/2] and some β ∈ (0, 1)?

Foster et al. (2020) highlighted the importance of the
Õ(dαT 1−α)-rate as verifying that model selection is possi-
ble whenever the model class is learnable. This is the case if
and only if d = o(T ), assuming, as we do, that K is a small
constant (we omit dependence on K in the main paper).

Even in the simplest instance of model selection between a
multi-armed bandit and a linear contextual bandit, achiev-
ing either Objective 1 or Objective 2 under minimal as-
sumptions remains open. Existing approaches to address
either the stronger Objective 1 (Chatterji et al., 2020) or
the weaker Objective 2 (Foster et al., 2019) make restric-
tive assumptions regarding the conditioning (what we will
call diversity) of the contexts. Other, more data-agnostic
approaches (Agarwal et al., 2017; Pacchiano et al., 2020b;a;
Lee et al., 2021) achieve neither of the above objectives.
This leads us to ask whether we can design a universal
model selection approach that is data-agnostic (other than
requiring a probability model on the contexts) and achieves
either Objective 1 or 2.

Another important question is the adaptivity of approaches
to situations in which model selection is especially tractable.
At the heart of effective data-driven model selection is a
meta-exploration-vs-exploitation tradeoff: while we need to
exploit the currently believed simpler model structure, we
also need to explore sufficiently to discover potential com-
plex model structure. Most approaches to model selection
incorporate forced exploration of an ε-greedy type to navi-
gate this tradeoff; however, such exploration may not always
be needed. Indeed, (Chatterji et al., 2020) use no forced
exploration in their approach and thereby achieve the opti-
mal guarantee of Objective 1, but their approach only works
under restrictive diversity assumptions. It is natural to ask
whether we can design data-adaptive exploration schedules
that employ forced exploration only when it is absolutely
needed, thus recovering the strongest possible guarantee
(Objective 1) under favorable situations and a weaker-but-
still-desirable guarantee (Objective 2) otherwise.

1.1. Our contributions

From the above discussion, it is clear that algorithm design
for model selection that satisfies the criteria posed in (Foster
et al., 2020) involves two non-trivial components: a) de-
signing an efficient statistical test to distinguish between
simple and complex model structure that works under mini-

mal assumptions, and b) designing an exploration schedule
to ensure that sufficiently expressive data is collected for a)
to succeed. In this paper, we advance the state-of-the-art for
both of these components in the following ways:

• We design a new test based on eigenvalue thresholding
that works for all stochastic sub-Gaussian contexts; in
contrast to (Chatterji et al., 2020) and (Foster et al.,
2019), it does not require any type of context diver-
sity. We utilize the fact that “low-energy” directions
can be thresholded and ignored to estimate the gap in
error between model classes. See Theorem 3.2 for our
new model selection guarantee, which only requires
stochasticity on the contexts to meet Objective 2.

• We also design a data-adaptive exploration schedule
that performs forced exploration only when necessary.
This approach meets Objective 2 under the action-
averaged feature diversity assumption that is made
in (Foster et al., 2019), but also the stronger Objective
1 under the stronger assumption that the feature of each
action is diverse (made in (Chatterji et al., 2020)). In
fact, our approach not only meets Objective 1 under
action-specific feature diversity, but even the instance-
optimal rate (in line with the results of (Chatterji et al.,
2020)). See Theorem 3.3 for a precise statement of our
new adaptive guarantee on model selection.

Taken together, our results advance our understanding of
model selection for contextual bandits, by demonstrating
how statistical approaches can yield universal (i.e., nearly
assumption-free) and adaptive guarantees.

1.2. Related work

While model selection is a central and classical topic in
machine learning and statistics, most results primarily apply
to supervised offline and full-information online learning.
Only recently has attention turned to model selection in
online partial information settings including contextual ban-
dits. Here, we focus on this growing body of work, which
we organize based on overarching algorithmic principles.

Corralling approaches. The first line of work consti-
tutes a hierarchical learning scheme where a meta-algorithm
uses bandit techniques to compete with many (contextual)
bandit algorithms running as base learners. One of the
first such approaches is the CORRAL algorithm of Agar-
wal et al. (2017), which uses online mirror descent with
the log-barrier regularizer as the meta-algorithm. Subse-
quent work focuses on adapting CORRAL to the stochastic
setting (Pacchiano et al., 2020a; Lee et al., 2021) and devel-
oping UCB-style meta-algorithms (Cutkosky et al., 2020;
Arora et al., 2021). These approaches are quite general and
can often be used with abstract non-linear function classes.
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However, they do not meet either of Objectives 1 or 2 in
general. In our setting, these approaches yield the tuple
of rates (Õ(

√
T ), Õ(d

√
T )), which clearly cannot be ex-

pressed in the form (Õ(T 1−α), Õ(dαT 1−α) for any value
of α ∈ (0, 1). Consequently, the problem of model selec-
tion as described in (Foster et al., 2020) is left open even for
linear classes.

Statistical approaches. The second line of algorithmic
approaches involves constructing statistical tests for model
misspecification. This approach was initially used in the con-
text of model selection concurrently by Foster et al. (2019)
and Chatterji et al. (2020), who focus on the linear setting.
At a high level, these papers develop efficient misspecifica-
tion tests under certain covariate assumptions and use these
tests to obtain dαT 1−α-style model selection guarantees. In
particular, Foster et al. (2019) use a “sublinear” square loss
estimator under somewhat mild covariate assumptions to
obtain d1/3T 2/3 regret, while Chatterji et al. (2020) obtain√
dT regret under stronger covariate assumptions. As these

two works are the foundation for our results, we discuss
these papers in detail in the sequel.

Several recent papers extend statistical testing approaches in
several ways. Ghosh et al. (2021a) estimate the support of
the parameter vector, which fundamentally incurs a depen-
dence on the magnitude of the smallest non-zero coefficient.
Beyond the linear setting, Cutkosky et al. (2021) use the
“putative” regret bound for each model class directly to test
for misspecification, while Ghosh et al. (2021b); Krishna-
murthy & Athey (2021) consider general function classes
with realizability. While these latter approaches are more
general than ours, they cannot be directly used to obtain our
results. Indeed, central to our results (and those of Foster
et al. (2019)) is the fact that our statistical test provides a
fast rate for detecting misspecification; this guarantee is
quantitatively better than what is provided by the putative
regret bound, requires carefully adjusting the exploration
schedule, and is not available for general function classes.

We also briefly mention two peripherally related lines of
work. The first is on representation selection in bandits and
reinforcement learning (Papini et al., 2021; Zhang et al.,
2021), which involves identifying a feature mapping with fa-
vorable properties from a small class of candidate mappings.
While this is reminiscent of the model selection problem,
the main differences are that in representation selection all
mappings are of the same dimensionality and realizable, and
the goal is to achieve much faster regret rates by leveraging
additional structural properties of the “good” representation.

The second line of work is on Pareto optimality in non-
contextual bandits and related problems. Beginning with
the result of Lattimore (2015), these results show that certain
non-uniform regret guarantees are not achievable in various

bandit settings. For example, (Lattimore, 2015) shows that,
in K-armed bandit problems, one cannot simultaneously
achieve O(

√
T ) regret to one specific arm, while guaran-

teeing O(
√
KT ) regret to the rest. Such results have been

extended to both linear and Lipschitz non-contextual ban-
dits (Zhu & Nowak, 2021; Locatelli & Carpentier, 2018;
Krishnamurthy et al., 2020) as well as Lipschitz contextual
bandits under margin assumptions (Gur et al., 2021), and
they establish that model selection is not possible in these
settings. However, these ideas have not been extended to
standard contextual bandit settings, which is our focus.

2. Setup
Notation. We use boldface to denote vectors and matrices
(e.g. x to denote a vector, and x to denote a scalar). For any
value of M < ∞, [M ] denotes the finite set {1, . . . ,M}.
We use ‖·‖2 to denote the `2-norm of a vector, and ‖·‖op
to denote the operator norm of a matrix. We use 〈x,y〉 to
denote the Euclidean inner product between vectors x and
y. We use big-Oh notation in the main text; Õ(·) hides de-
pendences on the number of actions K, andOδ(·) denotes a
bound that hides a log

(
1
δ

)
factor and holds with probability

at least 1− δ.

2.1. The bandit-vs-contextual bandit problem

The simplest instance of model selection involves a d-
dimensional linear contextual bandit problem with possibly
hidden multi-armed bandit structure. This model was pro-
posed as an initial point of study in (Chatterji et al., 2020).
Concretely, K actions (which we henceforth call arms) are
available to the decision-maker at every round, and T de-
notes the total number of rounds. At round t, the reward
of each arm is given by Gi,t = µi + 〈xi,t,θ∗〉 + Wi,t,
where µi denotes the bias of arm i, xi,t ∈ Rd denotes the
d-dimensional context corresponding to arm i at round t,
and Wi,t denotes random noise. Finally, θ∗ ∈ Rd denotes
an unknown parameter. We make the following standard
assumptions on the problem parameters.

• The biases {µi}Ki=1 are assumed to be bounded be-
tween −1 and 1.

• The unknown parameter is assumed to be bounded, i.e.
‖θ∗‖2 ≤ 1.

• The contexts corresponding to each arm i are assumed
to be iid across rounds t ≥ 1, and 1-sub-Gaussian. We
denote by Σi the covariance matrix of the context xi,t,
and additionally note that Σi � Id as a consequence
of the 1-sub-Gaussian assumption. Without loss of
generality (since bias can be incorporated into µi), we
assume that for each arm i ∈ [K] the mean of the
context xi,t is equal to the zero vector.



Universal and data-adaptive model selection

• The noise Wi,t is iid across arms i ∈ [K] and rounds
t ∈ [T ], centered, and 1-sub-Gaussian.

We denote the achieved pseudo-regret with respect to the
best fixed arm (the standard metric for a MAB problem) by
RST , and the achieved pseudo-regret with respect to the best
policy under a d-dimensional model (the standard metric for
a linear CB problem) by RCT . Notice that in the special case
when θ∗ = 0, this reduces to a standard multi-armed bandit
(MAB) instance. The best possible regret rate is then given
by RST = O(

√
KT ) in the worst case, and we also have

the instance-dependent rateRST = O
(∑

i 6=i∗
log T
∆i

)
, where

∆i := µ∗ − µi. Both of these are known to be information-
theoretically optimal (Lai & Robbins, 1985; Audibert et al.,
2009). On the other hand, the minimax-optimal rate for
the linear contextual bandit (linear CB) problem is given
by RCT = O((

√
d +
√
K)
√
T ) (Chu et al., 2011; Abbasi-

Yadkori et al., 2011). The following natural dichotomy in
algorithm choice presents itself:

1. While the state-of-the-art for the linear CB problem
achieves the minimax-optimal rate RCT = O((

√
d +√

K)
√
T ), it does not adapt automatically to the sim-

pler MAB case. In particular, the regret RST will still
scale with the dimension d of the contexts owing both
to unnecessary exploration built into linear CB algo-
rithms and overfitting effects. This precludes achieving
the minimax-optimal rate of RST = O(

√
KT ) in the

MAB setting, let alone the instance-dependent rate.

2. On the other hand, any state-of-the-art algorithm that
is tailored to the MAB problem would not achieve
any meaningful regret rate for the linear CB problem,
simply because it does not incorporate contextual in-
formation into its decisions.

The simulations in (Chatterji et al., 2020) empirically
illustrate this dichotomy and clearly motivate the model
selection problem in its most ambitious form, i.e. Objective
1 as stated in Section 1. Objective 2 constitutes a weaker
variant of the model selection problem that was proposed
in (Foster et al., 2019; 2020) and justified by the fact that it
yields non-trivial model selection guarantees whenever the
underlying class is learnable. While Objective 2 is in itself
a desirable and non-trivial model selection guarantee, we
note that it is strictly weaker than Objective 1. To see this,
note that the objectives coincide for α = 1/2, and since we
require d < T for sublinear regret in the first place, the rate
dαT 1−α is a decreasing function in α.

Algorithm 1 Model selection meta-algorithm through one-
shot sequential testing. Ê denotes an estimator of the square-
loss gap between the MAB and linear CB model, νt ∈
(0, 1) denotes a forced-exploration parameter, and δ ∈ (0, 1)
denotes a failure probability.

for t = 1, . . . ,K do
Play arm t and receive reward gt,t,

end for
Current Algorithm← ‘MAB’
for t = K + 1, . . . , n do

MAB Algorithm: it = arm pulled by UCB
CB Algorithm: jt = arm pulled by LINUCB
if Current Algorithm = ‘MAB’ then

Estimate square loss gap Ê and declare misspecifi-
cation if Ê > αδ (where αδ is a threshold defined
as a function of the filtration Ht−1 and the failure
probability δ, and is specified for various algorithm
choices in Appendices A and B).
If misspecification detected, then set
Current Algorithm← ‘CB’.

end if
if Current Algorithm = ‘MAB’ then

Select Ut = 1 with probability 1 − νt, Ut = 0
otherwise.
Play arm At = it if Ut = 1 and At ∼ Unif[K] if
Ut = 0.
Receive reward gAt,t.

else if Current Algorithm = ‘CB’ then
Play arm jt and receive gjt,t.

end if
end for

2.2. Meta-algorithm and prior instantiations

As mentioned in Section 1.2, the vast toolbox of corralling-
type approaches does not achieve either Objective 1 or 2 for
model selection. (Chatterji et al., 2020) and (Foster et al.,
2019), which are concurrent to each other, are among the
first approaches to tackle the model selection problem and
the only ones that achieve Objectives 1 and 2 respectively—
but under additional strong assumptions. Both approaches
use the same structure of a statistical test to distinguish be-
tween a simple (MAB) and complex (CB) instance. This
meta-approach is described in Algorithm 1. Here, At de-
notes the arm that is pulled at round t, and as is standard
in bandit literature, Ht := {As, GAs,s}ts=1 is the relevant
filtration at round t.

As our results also involve instantiating this meta-algorithm,
we now discuss its main elements. The meta-algorithm
begins by assuming that the problem is a simple (MAB)
instance and primarily uses an optimal MAB algorithm
for arm selection: this default choice is denoted by it in
Algorithm 1. To address model selection, it uses both an
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exploration schedule and a misspecification test, both of
which admit different instantiations. The exploration sched-
ule governs a rate at which the algorithm should choose
arms uniformly at random, which can be helpful for detect-
ing misspecification. The misspecification test is simply a
surrogate statistical test to check if the instance is, in fact, a
complex (CB) instance (i.e. θ∗ 6= 0). If the test detects mis-
specification, we immediately switch to an optimal linear
CB algorithm for the remaining time steps.

While (Chatterji et al., 2020) and (Foster et al., 2019) both
use the meta-algorithmic structure in Algorithm 1, they
instantiate it with difference choices of misspecification test
and exploration schedule. The high-level details of where
the approaches diverge are summarized in Table 1, and the
results that they obtain are summarized in Table 2. We
provide a brief description of the salient differences below.

1. Chatterji et al. (2020) do not incorporate any forced
exploration in their procedure, as evidenced by the
choice of parameter νt = 0 above for all values of
t. They also use the plug-in estimator of the linear
model parameter θ∗ to obtain an estimate of the gap in
performance between the two model classes. The error
rate of this plug-in estimator scales as O(d/n) as a
function of the number of samples n, and matches the
putative regret bound for linear CB. Consequently, they
achieve the optimal model selection rate of Objective 1,
as well as the stronger instance-optimal rate in the case
of MAB, but require a strong assumption of feature
diversity for each arm; that is, they require Σi � γId
for all i ∈ [K]. Intuitively, feature diversity eliminates
the need for forced exploration to successfully test for
potential complex model structure.

2. Foster et al. (2019) incorporate forced exploration of
an ε-greedy-style by setting the forced exploration pa-
rameter νt = t−1/3. This automatically precludes
achieving the stronger Objective 1, but leaves the door
open to achieving Objective 2 for some smaller choice
of α. To do this, they leverage fast estimators (Verzelen
et al., 2018; Dicker, 2014; Kong & Valiant, 2018) of the
gap between the two model classes, whose error rate
can be verified to scale as O(

√
d/n) as a function of

the number of samples n. This is significantly better in
its dependence on d than the standard plug-in estimator.
Moreover, forced exploration removes the requirement
of restrictive feature diversity assumptions on each
arm; nevertheless, an arm-averaged feature diversity
assumption is still required. Specifically, they assume
that Σ � γId where Σ := 1

K

∑
i∈[K] Σi, which is

strictly weaker than the arm-specific condition of Chat-
terji et al. (2020). Above, Σ is the covariance matrix of
the mixed context obtained from uniform exploration,
which we denote by x := xI where I ∼ Unif[K].

This discussion tells us that the initial attempts at model
selection (Chatterji et al., 2020; Foster et al., 2019) fall
short both in their breadth of applicability and their ability
to adapt to structure in the model selection problem. This
naturally motivates the question of whether we can design
new algorithms with two key properties:

• Universality: Can we meet Objective 2 for some value
of α ∈ (0, 1) under stochastic contexts but with no
additional diversity assumptions?

• Adaptivity: Can we meet Objective 1 under maximally
favorable conditions (feature diversity for all arms),
and Objective 2 otherwise?

3. Main results
We now introduce and analyze two new algorithms that
provide a nearly complete answer to the problems of univer-
sality and adaptivity for the MAB-vs-linear CB problem.

3.1. Universal model selection under stochasticity

In this section, we present MODCB.U, a simple variant
of MODCB (Foster et al., 2019) that achieves Objective 2
of model selection without requiring any feature diversity
assumptions, arm-averaged or otherwise. Therefore, this
constitutes a universal model selection algorithm between
an MAB instance and a linear CB instance.

Our starting point is the approach to model selection in (Fos-
ter et al., 2019) described above in Section 2.2. Here, we
recap the details of the fast estimator Ê(·) of the square-loss-
gap, which is given by E := E

[
(x>θ∗)2

]
= (θ∗)>Σθ∗.

The square-loss-gap can be verified to be an upper bound
on the expected gap of the best-in-class performance be-
tween the CB and MAB models (see (Foster et al., 2019)
for details on this upper bound), but is also equal to 0 iff
θ∗ = 0 (and Σ is full rank). Therefore, it is a suitable sur-
rogate statistic to test for misspecification, as detailed in the
meta-algorithmic structure of Algorithm 1. The estimator
is denoted by Ê , and is described as a black-box procedure
in Algorithm 2 with access to an estimator of the covari-
ance matrix Σ̂t that is constructed from t unlabeled samples.
The estimator that is used byMODCB (Foster et al., 2019) is
simply the sample covariance matrix at round t, defined by

Σ̂t :=
1

Kt

t∑
s=1

K∑
i=1

xi,sx
>
i,s. (1)

Note that such an estimator can be easily constructed as
we have access to all past contexts {xi,s}i∈[K],s∈[t] at any
round t. This effective full-information access to contexts,
in fact, forms the crux of both of our algorithmic ideas.

This approach is summarized in the sub-routine Algorithm 2,
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Algorithm Estimator Ê(·) Forced exploration parameter νt
OSOM (Chatterji et al., 2020) Plug-in estimator νt = 0 (no extra exploration)
MODCB (Foster et al., 2019) Fast estimator defined in (Foster et al., 2019) νt � t−1/3

MODCB.U Fast estimator defined in Algorithm 2 νt � t−2/9

MODCB.A Fast estimator defined in (Foster et al., 2019) Algorithm 3

Table 1. Comparison of model selection algorithms in terms of their estimator for the square loss gap Ê(·) and exploration schedule.

which is instantiated in MODCB for any time step t with

{xi, yi}ni=1 := {xAs,s, gAs,s − µ̂As,s}1≤s≤t:Us=0.

That is, the set of training examples used is the set of
context-reward pairs on all designated exploration rounds.
Above, µ̂i,s constitutes the estimate of the sample means
constructed only from past exploration rounds2. As a
consequence of this choice, we note that for this instan-
tiation of the sub-routine Algorithm 1, we have n :=
# of exploration rounds before time step t and m := t at
any given time step t.

A key bottleneck lies in the obtainable estimation error
rate of E : while the leading dependence is given by√

d
# of exploration rounds (which is at the heart of the Õ(d1/3T 2/3)
rate that MODCB achieves), there is also an inverse de-
pendence on the minimum eigenvalue of the arm-averaged
covariance matrix Σ, which we denote here by γmin. This
dependence arises as a consequence of needing to estimate
the inverse covariance matrix Ω := Σ−1 from unlabeled
samples. In essence, this requires Σ to be well-conditioned,
in the sense that we need γmin to be a positive constant to
ensure the model selection rate of Õ(d1/3T 2/3). This pre-
cludes non-trivial model selection rates from MODCB for
cases where γmin could itself decay with d, the dimension
of the contexts, or T , the number of rounds. It also does not
allow for cases in which Σ may be singular.

Our first main contribution is to adjust MODCB to success-
fully achieve Objective 2 in model selection with arbitrary
stochastic, sub-Gaussian contexts. Because our algorithm
achieves a universal model selection guarantee over all
stochastic context distributions, we name it MODCB.U.
The algorithmic procedure is identical to that of MODCB
except for the choice of estimator for the inverse covari-
ance matrix, Ω̂, that is plugged into Algorithm 2. Our key
observation is as follows: if certain directions are small in
magnitude for the contexts corresponding to all arms (as
will be the case when Σ has vanishingly small eigenvalues),
then we may not actually want try to estimate the square
loss gap along them: ignoring them might be a better option.
Our approach to ignoring low-value directions simply uses
eigenvalue thresholding3 to construct an improved biased

2This ensures the estimates are unbiased, i.e. E [xy] = Σθ∗.
3Note that eigenvalue thresholding is a type of hard-

estimate of the inverse covariance matrix Ω̂. We formally
define the eigenvalue thresholding operator below.

Definition 3.1. Define the clipping operator [x]v :=
max{x, v}. Then, for any matrix M � 0 with diagonal-
ization M := UMΛMUM

> and any value of γ > 0, we
define the thresholding operator

Tγ (M) := UMTγ (ΛM )UM
> where

Tγ (Λ) := diag([λ1]γ , . . . , [λd]γ).

We use Definition 3.1 to specify our (biased) estimators of
the covariance and inverse-covariance matrices Σ,Ω :=
Σ−1. In particular, we let Σ̂t denote the sample covariance
matrix of Σ from t unlabeled samples, given in Eq. (1).
Then, our estimators are given by

Σ̂ := Tγ

(
Σ̂t

)
and Ω̂ := Σ̂

−1
, (2)

and we simply plug the estimate Ω̂ into Algorithm 2. Note
that Σ̂ is always invertible for any γ > 0. In essence, this
lets us set γ as a tunable parameter to tradeoff the estimation
error of a surrogate approximation to the square-loss gap E
(which will decrease in γ) and the approximation error that
arises from ignoring all directions with value less than γ
(which will increase in γ). As our first main result shows, we
can set a value of γ that scales with d and T and successfully
achieve Objective 2 of model selection for any stochastic
sub-Gaussian context distribution.

Theorem 3.2. MODCB.U with γ := (d/T )1/3 achieves,
with probability at least 1− δ, model selection rates

RST = Õδ(T 5/6) and RCT = Õδ(d1/6T 5/6). (3)

Equation (3) clearly demonstrates model selection rates of
the form required from Objective 2, and shows that Ob-
jective 2 can be met for some value of α with the sole
requirement of stochasticity on the contexts. Table 2 allows

thresholding approach commonly employed in high-dimensional
statistics (Bhatia et al., 2015). A plausible alternative approach
would be to undertake a soft-thresholding approach, by simply
adding a non-zero quantity γ to each of the eigenvalues of the
sample covariance matrix. This is the approach taken, for example,
in ridge regression, and we expect similar results to hold with
soft-thresholding.
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Algorithm Obj. 1 (optimal rates) Obj. 2 (dαT 1−α rates) context assumption
OSOM (Chatterji et al., 2020) Yes Yes (α = 1/2) ∀i ∈ [K] : Σi � γId
MODCB (Foster et al., 2019) No Yes (α = 1/3) Σ � γId
MODCB.U No Yes (α = 1/6) iid contexts only
CORRAL-STYLE No No iid contexts only

Table 2. Comparison of model selection algorithms in terms of the regret guarantee and assumptions, i.e., “universality.” Dependence on
the number of arms K is omitted.

Algorithm 2 EstimateResidual
Input: Examples {(xi, yi)}ni=1 and second moment ma-
trix estimate Σ̂ ∈ Rd×d (which can be constructed from
m� n unlabeled sample).
Return estimator

Ê :=
1(
n
2

) ∑
i<j

〈
Ω̂

1/2
xiyi, Ω̂

1/2
xjyj

〉
of the square-loss gap E := (θ∗)>Σθ∗.

us to compare the achievable rate to both OSOM (Chatterji
et al., 2020) and MODCB (Foster et al., 2019); corralling
approaches, which are assumption-free but meet neither
Objectives 1 nor 2, are also included as a benchmark. In
particular, it is clear from a quick read of the table that as
we go from OSOM to MODCB to our approach, the as-
sumptions required on the context distributions weaken, as
do the obtainable rates (recall that because the rate dαT 1−α

decreases in α, a guarantee with a larger value of α implies
one with a smaller value of α).

The proof of Theorem 3.2 is provided in Appendix A. In
Appendix C, we describe how this procedure and result
extends to the more complex case of linear CB under an
additional assumption of block-diagonal structure on the
covariance.

3.2. Data-adaptive algorithms for model selection

In this section, we introduce a new data-adaptive explo-
ration schedule and show that it provably achieves Objec-
tive 1 under the strongest assumption of feature diversity for
each arm (as in (Chatterji et al., 2020)), but also achieves
Objective 2 under the weaker assumption of arm-averaged
feature diversity (as in (Foster et al., 2019)). Our key in-
sight is that the arm-specific feature diversity condition used
by (Chatterji et al., 2020) is itself testable from past contex-
tual information; therefore, it can be tested for before we
decide on an arm and receive a reward.

To describe this idea formally, we introduce some more
notation. At time step t, we denote the exploration set that
we have built up thus far by W(t − 1) ⊂ [t − 1]. Now,
we use an inductive principle. Suppose that the contexts
that are present in the exploration setW(t− 1) are already

Algorithm 3 Data-adaptive exploration schedule

Input: Labeled examples {xAs,s, gAs,s}t−1
s=1, current ex-

ploration setW(t− 1), hyperparameter γ > 0.
Construct matrices M t−1 :=

∑
s∈W(t−1) xAs,sx

>
As,s

andM t(it) := M t−1 + xit,tx
>
it,t

.
Define Zt ∼ Bernoulli(1 − t−1/3) and Yt =

I
[

1
|W(t)|+1 ·M t(it) � γId

]
.

Add t to “exploration set”W(t) if (Yt = 1 and Zt = 1)
or (Yt = 0 and Zt = 0).
Output: Return At = it if Yt = 1 or Zt = 1; At ∼
Unif[K] otherwise.

sufficiently “diverse” in a certain quantitative sense (that we
will specify shortly). Then, we can easily check whether
the arm that we would ideally pull when the true model is
simple, i.e. it (the “greedy” arm), continues to preserve
this property of diversity. Importantly, because we are able
to observe the contexts before making a decision, we can
check this condition before deciding on the value of At.

This new sub-routine for data-adaptive exploration, which
we call MODCB.A, is described in Algorithm 3. We elab-
orate on the algorithm description along three critical ver-
ticals: a) the decision to forcibly explore, b) the choice of
estimator, and c) the designated “exploration rounds” that
are used for the estimator.

When to forcibly explore: At time step t, MODCB.A
uses the random variables Yt and Zt to decide whether to
stick with the “greedy” arm At = it, or to forcibly explore,
i.e. At ∼ Unif[K]. For time step t, the random variable Yt
denotes the indicator that the diversity condition continues
to be met by context xit,t. This means that if Yt = 1,
we will pick At = it. On the other hand, if the diversity
condition is not met (i.e. Yt = 0), we revert to the forced
exploration schedule used by MODCB. This schedule sets a
variable Zt ∼ Bernoulli(1− t−1/3), and selects At = it if
Zt = 1 and At ∼ Unif[K] otherwise. In summary, we end
up picking At = it if Zt = 1 or Yt = 1, while MODCB
would have picked At = it only if Zt = 1. As a result, our
procedure, called MODCB.A, allows us to adapt on-the-fly
to friendly feature diversity structure (and explore much
less) while preserving more general guarantees.
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The choice of estimator Ê: First, we specify the choice
of estimator of the square loss gap, Ê from samples in the
designated exploration setW(t). (We will specify the pro-
cedure for construction of this exploration set shortly.) For
convenience, we index the elements of the exploration set
W(t) in ascending order by s1, . . . , s|W(t)|. We also recall
that Σ̂t denotes the sample covariance matrix as defined in
Equation (1). Armed with this exploration set, we define our
estimator of Ê(W(t)) in accordance with the sub-routine
in Algorithm 2 with the examples from the exploration set,
i.e. {xAsj ,sj , yAsj ,sj}

|W(t)|
j=1 . In particular, we estimate an

adjusted square loss gap, given by

E :=
∥∥∥(Σ̂t)

−1/2Σ|W(t)|θ
∗
∥∥∥2

2
, where

Σt :=
1

|W(t)|
· E

|W(t)|∑
j=1

xAsjx
>
Asj

 (4)

Note that because Σt is random, the adjusted square loss
gap is also random; nevertheless, it turns out that it is almost
surely a good proxy for the true square loss gap E . We
estimate this adjusted squared loss gap with the estimator
that is given by

Ê :=
1(|W(t)|
2

) ∑
j′<j

〈
(Σ̂t)

−1/2xsj′ ysj′ , (Σ̂t)
−1/2xsjysj

〉
.

(5)

How to build the exploration set W(t): To complete
our description of MODCB.A, we specify the data-adaptive
exploration set W(t) ⊂ [t] at round t that is used for the
estimation subroutine. Notice from Algorithm 3 that we did
not include the rounds for which Yt 6= Zt in the exploration
set. Interestingly, the two cases for which this happens are
undesirable for two distinct reasons, as detailed below.

• Rounds on which Yt = 0 and Zt = 1 constitute
rounds on which there was no forced exploration and
the context corresponding to arm it need not be well-
conditioned: therefore, we do not want to include these
samples for estimation.

• Rounds on which Yt = 1 and Zt = 0 are picked as a
sole consequence of well-conditioning on the context
xt,it . When this condition holds, xt,it induces good
conditioning, however its distribution is affected by
the filtering process, inducing bias that complicates
estimating the square loss gap. To avoid these com-
plexities, we filter out these rounds. Note that there
is no bias when both Yt = Zt = 1, because the
choice At = it can be attributed to Zt = 1 and not
because the context feature induces adequate condi-
tioning. (The proof of Theorem 3.3 highlights that

Algorithm Arm-specific diversity Arm-averaged diversity

OSOM log(T )/gap and
√
dT None

MODCB T 2/3 and d1/3T 2/3 T 2/3 and d1/3T 2/3

MODCB.A log(T )/gap and
√
dT T 2/3 and d1/3T 2/3

Table 3. Adaptivity properties of model selection algorithms. We
list the regret bounds for simple and complex model under context
diversity conditions. By carefully adjusting the exploration sched-
ule, MODCB.A adapts to the favorable “arm-specific diversity”
setting. Dependence on the number of arms K is omitted.

these rounds would make a minimal difference to the
ensuing model selection rates.)

This completes our description of our adaptive algorithm,
MODCB.A. We show below that MODCB.A achieves the
following data-adaptive model selection guarantee.
Theorem 3.3. MODCB.A with parameter choice γ > 0
achieves the following model selection rates, each with
probability at least 1− δ:

1. If feature-diversity holds for every arm with parameter
γ′ ≥ γ, then

RST = Õδ

∑
i 6=i∗

log T

∆i

 and RCT = Õδ

(√
dT

γ′

)
.

(6)

2. If arm-averaged feature diversity is satisfied with pa-
rameter γ′ ≥ γ, then

RST = Õδ(T 2/3) and RCT = Õδ
(

1

(γ′)2
d1/3T 2/3

)
.

(7)

The proof of Theorem 3.3 is provided in Appendix B. Ob-
serve that Equation (6) is identical to the OSOM rate, and
Equation (7) is identical to the MODCB rate. Consequently,
our data-adaptive exploration subroutine results in a single
algorithm that achieves both rates under the requisite con-
ditions. As summarized in Table 3, OSOM will not work
even under arm-averaged feature diversity if arm-specific
diversity does not hold. On the other hand, MODCB can be
verified not to improve under the stronger condition of arm-
specific feature diversity. In conclusion, we can think of
MODCB.A as achieving the “best-of-both-worlds” model
selection guarantee between the two approaches, by meet-
ing Objective 1 under arm-specific feature diversity and
Objective 2 otherwise.

4. Discussion and future work
In this paper, we introduced improved statistical estima-
tion routines and exploration schedules to plug-and-play
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with model selection algorithms. The result of these im-
provements is that we advance the state-of-the-art for model
selection along the axes of universality and adaptivity (as
defined at the end of Section 2). Our results are most com-
plete for the model selection problem of MAB-vs-linear CB,
but Appendix C presents some extensions to the problem
of model selection among linear contextual bandits. Given
the recent interest and sharp results for model selection in
the linear setting, it is natural to ask whether these ideas
extend to any nonlinear setting. Recent work (Marinov &
Zimmert, 2021) constructed nonlinear function classes for
which Objective 2 cannot be achieved even when the con-
texts are stochastic. However, identifying nonlinear function
classes for which Objective 1 or Objective 2 of model selec-
tion is possible remains open and is an important direction
for future work. We believe that achieving Objective 2
requires exploiting specific properties of function classes
such as the ability to test for misspecification at a fast rate.
However, the ideas in OSOM (Chatterji et al., 2020) and
our data-adaptive exploration routine MODCB.A are more
model-agnostic and instead exploit quantities that depend
only on the data distribution. Consequently, we believe they
can be generalized to achieve Objective 1 for general func-
tion classes when it is possible. To this end, Appendix E
presents a generalization of the arm-specific diversity con-
dition that is motivated by statistical concepts in transfer
learning/covariate-shift (Quiñonero-Candela et al., 2008),
and a consequent possible extension of the principles in
OSOM and MODCB.A. Some parts of this extension are
relatively straightforward, and we sketch how to do them in
Appendix E; however, obtaining strong end-to-end guaran-
tees requires more effort and is an interesting direction for
future work.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A.,
and Lawrence, N. D. Dataset shift in machine learning.
MIT Press, 2008.



Universal and data-adaptive model selection

Simchi-Levi, D. and Xu, Y. Bypassing the monster: A faster
and simpler optimal algorithm for contextual bandits un-
der realizability. Mathematics of Operations Research,
2020.

Syrgkanis, V., Krishnamurthy, A., and Schapire, R. Effi-
cient algorithms for adversarial contextual learning. In
International Conference on Machine Learning, 2016.

Verzelen, N., Gassiat, E., et al. Adaptive estimation of
high-dimensional signal-to-noise ratios. Bernoulli, 2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint. Cambridge University Press, 2019.

Woodroofe, M. A one-armed bandit problem with a con-
comitant variable. Journal of the American Statistical
Association, 1979.

Yu, L., Jin, Y., and Ermon, S. A unified framework for multi-
distribution density ratio estimation. arXiv:2112.03440,
2021.

Zhang, W., He, J., Zhou, D., Zhang, A., and Gu, Q. Prov-
ably efficient representation learning in low-rank markov
decision processes. arXiv:2106.11935, 2021.

Zhu, Y. and Nowak, R. Pareto optimal model selection in
linear bandits. arXiv:2102.06593, 2021.



Universal and data-adaptive model selection

A. Proof of Theorem 3.2
The following lemma (intended to replace Theorem 2 in Foster et al. (2019)) characterizes how the estimation error of our
thresholded estimator |Ê − E| will depend on the choice of γ.

Lemma A.1. Suppose that we have n labeled samples and m unlabeled samples. Provided that m ≥ C(d+ log(2/δ))/γ,
the estimator provided in Algorithm 2 guarantees that

|Ê − E| ≤ 1

2
E + αδ(n,m) where (8)

αδ(n,m) := O
(

1

γ
· d

1/2 log2(2d/δ)

n
+

1

γ4
· ‖E [xy]‖22 ·

d+ log(2/δ)

m
+ γ

)
with probability at least 1− δ.

This is similar to the bound in Foster et al. (2019) (with slightly improved inverse dependences on the threshold γ due to the
relative simplicity of the MAB-vs-linear CB setting), except that we are not assuming any spectral conditions on Σ and we
incur an extra additive term of O(γ) in the estimation error arising from the bias induced by the thresholding operator. For
comparison, the bound provided in Foster et al. (2019) is for the choice

αδ(n,m) := O
(

1

γ2
· d

1/2 log2(2d/δ)

n
+

1

γ4
· ‖E [xy]‖22 ·

d+ log(2/δ)

m

)
, (9)

but only holds if we have Σ � γId.

Before proving Lemma A.1, we sketch how it leads to the statement provided in Theorem 3.2. We follow the outline that is
given in Appendix C.2.4 of Foster et al. (2019). An examination of that proof, specialized to the case of 2 model classes (in
our case, MAB and linear CB), demonstrates that the dominant terms in the overall regret under the complex model (see, e.g.
Eqs. (19), (20), (21) and (22) in Appendix C.2.4 of (Foster et al., 2019)) are given by

T
√
K · αδ(|W(T )|, T ) + |W(T )|,

whereW(T ) denotes the set of designated exploration rounds. We set νt = t−κ to be the forced exploration parameter
(as defined in Algorithm 1), and specify a choice of κ subsequently. Just as in (Foster et al., 2019), we then have
|W(T )| ≤

√
log(2/δ)KκT 1−κ with probability at least 1− δ. Plugging n := |W(T )| and m := T into Lemma A.1 then

gives us

RT = O

T
√
K ·

(
1

γ
· d

1/2 log2(2d/δ)

KκT 1−κ +
1

γ4
· ‖E [xy]‖22 ·

d+ log(2/δ)

T
+ γ

)
+
√

log(2/δ)KκT 1−κ


= Oδ

(
KκT 1−κ +

1
√
γ
·K 1

2 (1−κ) · d1/4 · T
1+κ
2 +

1

γ2
·
√
KdT + γT

√
K

)
with probability at least 1− δ. Note that the extra γT

√
K term comes from the estimation error due to misspecification

(bias) that we now incur. We now need to select the truncation amount γ and the exploration factor κ to minimize the above
expression. One way of doing this is given by equating the third and fourth terms (ignoring universal constants and log

factors). This gives us γ3 =
√

d
T . Substituting this into the above gives us

RT = Oδ

(
KκT 1−κ +

(
T

d

)1/12

K
1
2 (1−κ)T

1
2 (1+κ) · d1/4 +

√
Kd1/6T 5/6

)
,

and further substituting κ = 2/9 gives us

RT = Oδ
(
K2/9T 7/9 +K7/18 · d1/6 · T 7/9 +

√
Kd1/6T 5/6

)
= Õ(d1/6T 5/6),

which clearly satisfies the form RT = Õ(dαT 1−α) for the case α = 1/6.

Now that we understand how Lemma A.1 leads to Theorem A.1, let us prove it.
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Proof. Before beginning the proof, we define a term called the truncated square-loss gap as below:

Ẽ := (Σθ∗)>Tγ (Σ)
−1

Σθ∗. (10)

We also recall that we defined Ω := Σ−1 and Ω̂ := Σ̂
−1

, where recall that Σ̂ is the truncated second moment estimate.
The proof is carried out in three distinct steps:

1. Upper-bounding
∣∣∣Ê − E

[
Ê
]∣∣∣, the “variance” estimation error arising from n samples.

2. Upper-bounding
∣∣∣E [Ê]− Ẽ∣∣∣, the bias-term with respect to the truncated squared loss gap.

3. Upper-bounding
∣∣∣Ẽ − E∣∣∣, the bias arising from truncation.

1. Upper-bounding
∣∣∣Ê − E

[
Ê
]∣∣∣. We note that E

[
Ê
]

=

∥∥∥∥Σ̂1/2
Ω̂E [xy]

∥∥∥∥2

2

. We consider the random vector

Σ̂
1/2

Ω̂xy − Σ̂
1/2

Ω̂E [xy] ,

and show that it is sub-exponential with parameter O(2/γ). This follows because
∥∥∥∥Σ̂1/2

Ω̂

∥∥∥∥
op

≤
∥∥∥∥Ω̂1/2

∥∥∥∥
op

≤ 1√
γ , where

the second-last inequality follows by the definition of the truncation operator.

Thus, using the sub-exponential tail bound just as in Lemma 17, (Foster et al., 2019), we get

∣∣∣Ê − E
[
Ê
]∣∣∣ = O

 1

γ
· d

1/2 log2(2d/δ)

n
+

1
√
γ
·

∥∥∥∥Σ̂1/2
Ω̂E [xy]

∥∥∥∥
2

log(2/δ)

√
n

 .

Now, we note that
∥∥∥∥Σ̂1/2

Ω̂E [xy]

∥∥∥∥
2

=

√
E
[
Ê
]
. Therefore, we apply the AM-GM inequality to deduce that

∣∣∣Ê − E
[
Ê
]∣∣∣ ≤ 1

8
E
[
Ê
]

+O
(

1

γ
· d

1/2 log2(2d/δ)

n

)
(11)

2. Upper-bounding
∣∣∣E [Ê]− Ẽ∣∣∣. We denote µ := E [xy] as shorthand. It is then easy to verify that E

[
Ê
]

= 〈Ω̂µ,µ〉 and

Ẽ = 〈Tγ (Σ)
−1
µ,µ〉. Then, following an identical sequence of steps to (Foster et al., 2019), we get∣∣∣E [Ê]− Ẽ∣∣∣ ≤ 1

8
Ẽ +O

(∥∥∥(Ω̂− Tγ (Σ)
−1

)µ
∥∥∥2

2

)
We now state and prove the following lemma on operator norm control.

Lemma A.2. We have ∥∥∥Ω̂− Tγ (Σ)
−1
∥∥∥
op
≤ O

(
ε

γ2

)
, (12)

where we denote ε :=
√

d+log(2/δ)
m as shorthand.

Note that substituting Lemma A.2 above directly gives us∣∣∣E [Ê]− Ẽ∣∣∣ ≤ 1

8
Ẽ +O

(
‖µ‖22 · (d+ log(2/δ))

γ4m

)
. (13)
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We will prove Lemma A.2 at the end of this proof.

3. Upper-bounding
∣∣∣Ẽ − E∣∣∣. Observe that

Ẽ = (θ∗)>ΣTγ (Σ)
−1

Σθ∗ and E = (θ∗)>Σθ∗.

This directly implies that

|Ẽ − E| = |(θ∗)>(ΣTγ (Σ)
−1

Σ−Σ)θ∗| ≤
∥∥∥(ΣTγ (Σ)

−1
Σ−Σ)

∥∥∥
op
,

where the second inequality follows because we have assumed bounded signal, i.e. ‖θ∗‖2 ≤ 1. It remains to control the
operator norm terms above. We denote Σ := UΛU>, and note that Tγ (Σ)

−1
:= UTγ (Λ)

−1
U>. Thus, we get∥∥∥(ΣTγ (Σ)

−1
Σ−Σ)

∥∥∥
op

=
∥∥∥(ΛTγ (Λ)

−1
Λ−Λ)

∥∥∥
op
≤ γ.

Putting these together gives us ∣∣∣Ẽ − E∣∣∣ ≤ γ. (14)

Thus, putting together Equations (11), (13) and (14) completes the proof. It only remains to prove Lemma A.2, which we
now do.

Proof of Lemma A.2. First, recall that Σ̂ := Tγ

(
Σ̂m

)
, and so we really want to upper bound the quantity∥∥∥Tγ (Σ̂m

)
− Tγ (Σ)

∥∥∥
op

. It is well known (see, e.g. (Boyd et al., 2004)) that for any positive semidefinite matrixM , the

operator Tγ (M)− γId is a proximal operator with respect to the convex nuclear norm functional. The non-expansiveness
of proximal operators then gives us∥∥∥Tγ (Σ̂m

)
− Tγ (Σ)

∥∥∥
op

=
∥∥∥Tγ (Σ̂m

)
− γId − (Tγ (Σ)− γId)

∥∥∥
op
≤
∥∥∥Σ̂m −Σ

∥∥∥
op

= O(ε)

with probability at least 1 − δ. Here, the last step follows by standard arguments on the concentration of the empirical

covariance matrix. Recall that we defined ε :=
√

d+log(2/δ)
m as shorthand.

We will now use this to show that Equation (12) holds. We have Tγ (Σ)
−1 − Ω̂ = Tγ (Σ)

−1 − Σ̂
−1

= (Tγ (Σ))−1(Σ̂−
Tγ (Σ))Σ̂

−1
. By the sub-multiplicative property of the operator norm, we then get∥∥∥(Tγ (Σ))−1 − Σ̂

−1
∥∥∥
op
≤
∥∥(Tγ (Σ))−1

∥∥
op

∥∥∥Σ̂− Tγ (Σ)
∥∥∥
op

∥∥∥Σ̂−1
∥∥∥
op
≤ 1

γ2

∥∥∥Σ̂− Tγ (Σ)
∥∥∥
op

= O
(
ε

γ2

)
where the second-to-last inequality is a consequence of the definition of the truncation operation. This shows Equation (12),
and completes the proof.

B. Proof of Theorem 3.3
Proof. Our proof constitutes a deterministic proof working on various events used in Chatterji et al. (2020) and Foster et al.
(2019) as well as additional high-probability events that we will define. Recall that for each value of t = 1, . . . , T , we
defined the filtrationHt := {As, GAs,s}ts=1.

Meta-analysis: We begin the analysis by providing a common lemma for both cases that will characterize a high-
probability regret bound as a functional of two random quantities: a) |W(t)|, the number of designated exploration rounds
that we use for fast estimation, and |T (t)|, the total number of forced-exploration rounds. Here, we define

T (t) := {s ∈ [t] : Zs = 0 and Ys = 0}.



Universal and data-adaptive model selection

It is easy to verify that by definition, we have T (t) ⊂ W(t). Indeed, recall from the pseudocode in Algorithm 3 that we
defined

W(t) := {s ∈ [t] : (Zs = 0 and Ys = 0) or (Zs = 1 and Ys = 1)}.

We first state our guarantee on estimation error. For any 1 ≤ s ≤ t, we define

αδ(s, t) := O
(

1

γ
· d

1/2 log2(2d/δ)

s
+

1

γ4
· d+ log(2/δ)

t

)
. (15)

Lemma B.1. For every t ≥ 1, we have

|Ê(W(t))− Ẽ| ≤ 1

2
Ẽ + αδ(|W(t)|, t) (16)

with probability at least 1− δ, and Ẽ is the adjusted square loss gap given by

Ẽ :=
∥∥∥Σ−1/2Σtθ

∗
∥∥∥2

2
,

and Σt was defined in Equation (4).

Proof. This proof essentially constitutes a martingale adaptation of the proof of fast estimation in (Foster et al., 2019). Let
τ(n) denote the random stopping time at which n exploration samples have been collected. Moreover, let s1, . . . , sn denote
the (again random) times at which exploration samples were collected, and As1 , . . . , Asn denote the corresponding actions
that were taken. Then, we define a time-averaged covariance matrix as

Σn :=
1

n
· E

 n∑
j=1

xAsjx
>
Asj


for every value of n ≥ 1. We state the following technical lemma, which is proved in Appendix D and critically uses the fact
that the rounds on which At = it is picked as a sole consequence of well-conditioning of the context xit,t (i.e. if Yt = 1
and Zt = 0) are filtered out of the considered exploration setW(t).

Lemma B.2. Assume that Σi � Id for all i ∈ [K]. Then, we have γId � Σn � Id for all values of n ≥ 1.

We will use Lemma B.2 to prove Lemma B.1. First, we recall the definition of the adjusted square loss gap,

E(W(t)) :=

∥∥∥∥Σ̂−1/2

t Σtθ
∗
∥∥∥∥2

2

where we overload notation and define Σt := Σ|W(t)| as shorthand. Note that Σt is a random quantity because |W(t)| is
random. By Lemma B.2, we have that γId � Σt � Id almost surely.

Similar to the proof of Lemma A.1, the analysis proceeds in two parts:

1. Upper-bounding
∣∣∣Ê(W(t))− E(W(t))

∣∣∣: For a given index 1 ≤ j ≤ |W(t)|, we consider the random vector

ξt,j := Σ̂
−1/2

t

(
xsj ,Asj yAsj − E

[
xsj ,Asj yAsj |Hsj−1

])
.

Now, by an identical argument to that provided in (Foster et al., 2019), we have that for each j ∈ [|W(t)|], the random
vector ξt,j is conditionally sub-exponential with parameter O(2/γ). Consequently, using a martingale version of the
sub-exponential tail bound (see, e.g., Chapter 2, (Wainwright, 2019)), we get

∣∣∣Ê(W(t))− E(W(t))
∣∣∣ = O

 1

γ
· d

1/2 log2(2d/δ)

|W(t)|
+

1
√
γ
·

∥∥∥∥Σ̂−1/2

t Σtθ
∗
∥∥∥∥

2

log(2/δ)√
|W(t)|

 .
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with probability at least 1− δ for all t ≥ 1. Therefore, we apply the AM-GM inequality to deduce that∣∣∣Ê(W(t))− E(W(t))
∣∣∣ ≤ 1

8
E(W(t)) +O

(
1

γ
· d

1/2 log2(2d/δ)

|W(t)|

)
. (17)

2. Upper-bounding
∣∣∣E(W(t))− Ẽ

∣∣∣. We note that Ẽ =
∥∥∥Σ−1/2Σtθ

∗
∥∥∥2

2
, and E(W(t)) :=

∥∥∥∥Σ̂−1/2

t Σtθ
∗
∥∥∥∥2

2

, where recall

that Σ denotes the action-averaged covariance matrix. Further, recall that Σ̂t is the sample covariance matrix constructed
from t unlabeled samples. Thus, applying Lemma A.2, following an identical sequence of steps to Foster et al. (2019), and
using that Σt � Id almost surely and ‖θ∗‖2 ≤ 1, we get∣∣∣E(W(t))− Ẽ

∣∣∣ ≤ 1

8
Ẽ +O

(
1

γ4
· d+ log(2/δ)

t

)
. (18)

Now, putting Equations (17) and (18) together, we get

|Ê(W(t))− Ẽ| ≤ 1

2
Ẽ +O

(
1

γ
· d

1/2 log2(2d/δ)

|W(t)|
+

1

γ4
· d+ log(2/δ)

t

)
.

This completes the proof.

Next, we prove the following meta-lemma that characterizes the simple model (SM) and complex model (CM) regret purely
in terms of the size of the designated exploration setW(T ) and the forced exploration set T (T ) with high probability.

Lemma B.3. Let τswitch denote the last round before which the algorithm switches to the complex model, if any (otherwise,
we define τswitch := T ). Then, for any γ > 0 and δ > 0, the following result holds with probability at least 1− δ for model
selection between MAB and CB:

RST = O

∑
i 6=i∗

1

∆i
log

(
2KT

∆iδ

)
+ |T (T )|

 and

RCT = O

(
|T (T )|+

√
dT

(
1 +

1

γ2

)
+
d1/4

γ2
· τswitch√
|W(τswitch)|

)

Proof. For this proof, we work on the event

A0 :=

{∣∣∣Ẽ − Ê(W(t))
∣∣∣ ≤ 1

2
Ẽ + αδ(|W(t)|, t) for all t = 1, . . . , T

}
,

where αδ(·, ·) was defined in Equation (15). Lemma B.1 showed that this happens with probability at least 1− δ. Further,
we denote gmax = E

[
maxi∈[K] x

>
i θ
∗ + µi

]
where the expectation is over the contexts {xi}i∈[K] drawn identically to the

contexts {xi,t}i∈[K] for any round t ≥ 1. We now have two cases to analyze:

1. The case where the true model is SM. In this case, note that Ẽ = 0 by definition and the event A0 directly gives us, for
all t ≥ 1,

Ê(W(t)) ≤ 0 + 0 + αδ(|W(t)|, t)

with probability at least 1− δ, and so the condition for elimination is never met. Since under this event, we stay in the
simple model, we get pseudo-regret

RST ≤
∑

t/∈T (T )

(µ∗ − µAt) + |T (T )| =
∑

t/∈T (T )

(µ∗ − µit) + |T (T )|

= O

∑
i 6=i∗

1

∆i
log

(
2KT

∆iδ

)
+ |T (T )|

 .
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Above, the first step uses that rewards are bounded. The second step uses that by the definition of T (T ) and the fact
that we never switch, we will have At = it for all t /∈ T (T ). The third step uses the fact that SM updates are only
made using the rounds that are not “forced-exploration”, i.e. not in T (T ). This completes the proof of the lemma for
the case of SM.

2. The case where the true model is CM. Let τswitch denote the last round before which the algorithm switches to CM, if
any (otherwise, we define τswitch := T ). It suffices to bound the regret until time τswitch (when we will be playing the
SM). First, we note that because because we have not yet switched, we have Ê(W(τswitch)) ≤ αδ(|W(τswitch)|, τswitch).
Therefore, we get

Ẽ ≤ 2Ê(W(τswitch)) + αδ(|W(τswitch)|, τswitch) ≤ 3αδ(|W(τswitch)|, τswitch).

Furthermore, we note that Ẽ ≥ ‖θ∗‖22 · γ2 (because we have Στswitch � γId almost surely, and Σ−1/2 � I). This gives
us

‖θ∗‖22 ≤
3

γ2
· αδ(|W(τswitch)|, τswitch). (19)

Next, we get

RCT =

τswitch∑
t=1

(x>κt,tθ
∗ + µκt − x>At,tθ

∗ − µAt)

≤
∑

t/∈T (τswitch)

(x>κt,tθ
∗ + µκt − x>it,tθ

∗ − µit) + |T (τswitch)|

≤ τswitch · ‖θ∗‖2 +
∑

t/∈T (τswitch)

µ∗ − µit + |T (τswitch)|

≤ T

γ
·
√
αδ(W(τswitch), τswitch) +

∑
i 6=i∗

1

∆i
log

(
2KT

∆iδ

)
+ |T (τswitch)|

= O

(
|T (τswitch)|+

√
dτswitch ·

1

γ3
+
d1/4

γ2
· τswitch√
|W(τswitch)|

)

= O

(
|T (T )|+

√
dT · 1

γ3
+
d1/4

γ2
· τswitch√
|W(τswitch)|

)
This completes the proof for the case of CM. The first step is the definition of regret. The second step uses the
definition of T (T ) and the fact that we have not switched yet. The third step uses a sub-Gaussian tail bound (and
might incur logK factors). The fourth step uses Equation (19). The fifth step substitutes the definition of αδ(·, ·) from
Equation (15).

Armed with this meta-lemma, we now complete the proof of Theorem 3.3 for the cases under which feature holds for all
actions, and action-averaged feature diversity holds respectively.

Case 1: Universal feature diversity holds We need to show that Yt = 1 for all t ≥ 1 with high probability; if this is
the case, the proof is a direct consequence of the techniques that are provided in Chatterji et al. (2020). We consider the
following anytime statistical event.

A1 := {Yt = 1 for all t ∈ {τmin(δ, T ), . . . , T}} , where τmin(δ, T ) :=

(
16

γ2
+

8

3γ

)
log

(
2dT

δ

)
We now show that the event A1 occurs with probability at least 1− δ. Since it is a deterministic functional of the history
Ht−1, we can directly apply Lemma 7, (Chatterji et al., 2020) (which is itself an application of the matrix Freedman
inequality) to get

γmin(M t(it)) ≥ 1 +
γt

2
for all t ≥ τmin(δ, T )



Universal and data-adaptive model selection

with probability at least 1− δ. This clearly ensures that 1
t · γmin(M t(it)) ≥ γ

2 for all t ∈ {τmin(δ, T ), . . . , T}, which is the
required condition.

Connecting this to the meta-analysis above, event A1 ensures that |T (T )| = 0 by the definition of T (t). This completes the
proof for the case where the true model is SM.

For the case of CM, we also need to lower bound |W(τswitch)|. We denote τmin := τmin(δ, T ) as shorthand for this portion
of the proof. It suffices to consider the case where τswitch ≥ 2τmin (as otherwise, we can simply bound RCT ≤ 2τmin).
Note that |W(τswitch)| is lower bounded by the number of rounds 1 ≤ t ≤ τswitch for which Yt = 1 and Zt = 1. Since
Zt ∼ Bernoulli(1− νt) and independent of {Yt}, on the event A1 we have

|W(τswitch)| ≥
τswitch∑
t=τmin

Zt.

Because τmin ≥ 8, it is easy to verify that 1 − νt ≥ 0.5 for all t ≥ τmin. Then, we note that E
[∑τswitch

t=τmin
Zt
]
≥

0.5(τswitch − τmin) since νt ≤ 1/2 for all t ≥ τmin. Applying Hoeffding’s inequality then gives us
∑τswitch
t=τmin

Zt ≥

0.5(τswitch − τmin)−O
(√

(τswitch − τmin) log
(

1
δ

))
with probability at least 1− δ. Putting all of this together gives us

|W(τswitch)| ≥ 0.5(τswitch − τmin)−O

(√
(τswitch − τmin) log

(
1

δ

))
= Ω(τswitch).

Plugging this into Lemma B.3 completes the proof of the theorem.

Case 2: Action-averaged feature diversity holds In the case where action-averaged feature diversity holds, it suffices to
provide an upper bound on |T (T )| and a lower bound on |W(τswitch)|. We will not define any extra statistical events for this
case. First, we note that because Zt ∈ {0, 1}, we can apply Hoeffding’s inequality to get

|T (T )| ≤
T∑
t=1

(1− Zt) ≤ 2

T∑
t=1

νt ≤ 4T 2/3

with probability at least 1 − e−T 1/3

. This gives us SM regret that scales as O(T 2/3). (We completely sacrifice on the
instance-dependent guarantees in this case.)

Next, we characterize |W(τswitch)|. We have

|W(τswitch)| =
τswitch∑
t=1

YtZt + (1− Yt)(1− Zt),

and since {Zt}t≥1 is an iid sequence completely independent of {Y1, . . . , Yτswitch}, we have

E [W(τswitch)|{Y1, . . . , Yτswitch}] = E

[
τswitch∑
t=1

(1− Zt) + Yt(2Zt − 1)|{Y1, . . . , Yτswitch}

]

=

τswitch∑
t=1

τswitch∑
t=1

t−1/3 + Yt(1− 2t−1/3) ≥
τswitch∑
t=1

t−1/3 = Ω(τswitch
2/3).

Applying the tower property of conditional expectations then gives us E [|W(τswitch)|] = Ω((τswitch)
2/3). The last inequality

uses the fact that Yt ≥ 0 and 1− 2t−1/3 > 0, therefore that term can be lower bounded by 0.

This tells us that it suffices to show thatW(τswitch) concentrates around its expectation. For this, we note that YtZt + (1−
Yt)(1− Zt) is bounded between 0 and 2 and use the Azuma-Hoeffding inequality to get |W(τswitch)| ≥ 1

2E [|W(τswitch)|]
with probability at least 1 − e−(τswitch)

1/3/2. It suffices to consider τswitch ≥ (log T )3 (as otherwise, we would just have
RCT ≤ (log T )3). Then, we get 1− e−(τswitch)

1/3/2 ≥ 1− 1√
T

, and so we have |W(τswitch)| ≥ 1
2E [|W(τswitch)|] with high

probability as desired.
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Plugging these bounds into Lemma B.3 gives us

RCT = O
(
T 2/3 +

√
dT +

1

γ2
·
√
dT +

d1/4(τswitch)
2/3

γ2

)
≤ O

(
T 2/3 +

√
dT +

1

γ2
·
√
dT +

d1/4T 2/3

γ2

)
,

which completes the proof for this case.

C. Partial results for model selection in nested linear contextual bandits
In this section, we provide a simple extension of our approach to universal model selection to the case of multiple linear
contextual bandits (linear CB). We use the setup that is provided in (Foster et al., 2019), i.e. the reward associated with
action i at round t is given by

gi,t = 〈xi,t,θ∗〉+Wi,t, (20)

where θ∗ ∈ RdM , and dM denotes the maximal possible dimension of the model (which is also the dimension of the
provided contexts xi,t). While this assumes that the rewards are realizable under this maximal dimensional model, there
may be hidden simpler structure that is unknown a-priori. To model this simpler structure, we consider 0 < d1 < . . . < dM ,
and stipulate that the rewards are realizable under model order j∗ ∈ [M ] if only the first dj∗ coordinates of θ∗ are non-zero.
This means that we can represent the rewards as

gi,t = 〈xi,t,dj∗ ,θ
∗
(dj∗ )〉+Wi,t (21)

where θ∗(dj∗ ) denotes the first j∗ coordinates of θ∗ and xi,t,dj∗ denotes the first dj∗ coordinates of the context xi,t.

In this setup, Objective 1 of the model selection problem corresponds to achieving a rate of the form Rj
∗

T = Õ(
√
dj∗T ),

and Objective 2 corresponds to achieving a rate of the form Rj
∗

T = Õ(dαj∗T
1−α). Here, j∗ is the true model order and

Rj
∗

T denotes the regret with respect to the best parameter Like in the simpler bandit-vs-CB problem, (Foster et al., 2019)
achieves Objective 2 for the case α = 1/3, but only under the condition that the action-averaged covariance matrix Σ is
well-conditioned, i.e. we have Σ � γminId for a constant γmin that does not depend on d or T . The hidden factors in the
model selection rates Õ(dαj∗T

1−α) scale inversely with γmin.

Algorithm 4 EstimateResidualMultipleModels

Input: Examples {(xs, ys)}ns=1 and second moment matrix estimates Σ̂ ∈ Rd×d and Σ̂1 ∈ Rd1×d1 .
Return estimator

Ê :=
1(
n
2

) ∑
s<t

〈
Σ̂

1/2
R̂xsys, Σ̂

1/2
R̂xtyt)

〉

of the square-loss gap E := E
[
(x>θ∗ − x>1 θ

∗
1)2
]
, where R̂ :=

[
Ω̂1 0
0 0

]
− Ω̂.

For this extension, we directly use the framework of MODCB (Foster et al., 2019) and do not reproduce the details here,
except for the square loss gap estimator provided above in Algorithm 4 for two candidate dimensions d1 < d. Here,
d1 := di−1 and d := di for some value of i ∈ [M ], and so this routine will be used at the ith stage of model selection, i.e
deciding between model orders i and i+ 1. Note that here, we can write the square loss gap in the form

E = (RΣθ∗)>Σ(RΣθ∗), (22)

where we defineR :=

[
Ω1 0
0 0

]
−Ω.



Universal and data-adaptive model selection

Our extension is simple to describe in this context: we simply use the estimators Σ̂ := Tγ

(
Σ̂t

)
and Σ̂1 := Tγ

(
Σ̂

(t)

1

)
with the subroutine provided in Algorithm 4. We require an extra assumption of block-diagonal structure on the covariance
matrix, which we provide below.

Definition C.1. We use the notation d1 := di−1 and d := di as above. Then, for each value of i ∈ [M ] the action-averaged
covariance matrix Σ is assumed to possess block-diagonal structure of the form

Σ :=

[
Σ1 0
0 Σ−1

]
. (23)

Note that under this block-diagonal assumption, we simply getR =

[
0 0
0 Σ−1

]
.

The assumption in Definition C.1 is utilized to avoid blow-ups in the approximation error arising from thresholding due
to cross-correlation terms. It will not, in general, hold for a linear contextual bandit problem; therefore, it is an important
question for future work to provide universal model selection rates in the absence of this assumption. Nevertheless, under
this assumption we can extend the universal model selection result of Theorem 3.2 to the case of model selection among
nested linear CB models, as stated below.

Theorem C.2. Algorithm 1 with the residual estimator given in Algorithm 4 and the inverse covariance matrix estimate that
uses eigenvalue thresholding with the choice γj := (dj/T )1/3 corresponding to model order j achieves model selection rate

Rj
∗

T = Õδ(d1/6
j∗ T

5/6). (24)

Here, j∗ is the minimal model order under which the rewards are realizable, δ ∈ (0, 1) denotes a failure probability, and the
Õδ(·) hides sublinear dependences in K and polylogarithmic dependences on 1/δ.

We conclude this section with a proof of Theorem C.2. The following lemma (intended to replace Theorem 2 in Foster et al.
(2019)) characterizes the estimation error |Ê − E| will depend on the choice of γ for d1 < d.

Lemma C.3. We use the notation d1 and d from Definition C.1 to denote the currently estimated model dimension and
the next model dimension respectively. Suppose that we have n labeled samples and m unlabeled samples, and m > n.
Provided that m ≥ C(d+ log(2/δ))/γ, the estimator provided in Algorithm 2 guarantees that

|Ê − E| ≤ 1

2
E +O

(
1

γ2
· d

1/2 log2(2d/δ)

n
+

1

γ4
· ‖E [xy]‖22 ·

d+ log(2/δ)

m
+ γ

)
(25)

with probability at least 1− δ.

Thus, we can utilize Lemma C.3 with different thresholding values γi corresponding to each estimated model class i ∈ [M ].
In particular, it is clear that in a manner similar to the proof of Theorem 3.2, the choice γi := (di/T )1/3 will yield the
desired model selection rate. Therefore, we only provide the proof of Lemma C.3 here.

Proof. The proof follows along similar lines to the proof of Lemma A.1, but with several extra terms. Before beginning the
proof, we define a term called the truncated square-loss gap as below:

Ẽ := ([R]γΣθ
∗)>Tγ (Σ) ([R]γΣθ

∗). (26)

where we define [R]γ :=

[
Tγ (Σ1)

−1
0

0 0

]
− Tγ (Σ)

−1 as shorthand. It is easy to see that [R]γ =

[
0 0

0 Tγ (Σ−1)
−1

]
. We

also recall that we defined Ω := Σ−1 and Ω̂ := Σ̂
−1

. Finally, we define µ := E [xy] = Σθ∗ as shorthand.

The proof is carried out in three distinct steps:

1. Upper-bounding
∣∣∣Ê − E

[
Ê
]∣∣∣, the “variance” estimation error arising from n samples.

2. Upper-bounding
∣∣∣E [Ê]− Ẽ∣∣∣, the bias-term with respect to the truncated squared loss gap.
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3. Upper-bounding
∣∣∣Ẽ − E∣∣∣, the bias arising from truncation.

1. Upper-bounding
∣∣∣Ê − E

[
Ê
]∣∣∣. We note that E

[
Ê
]

=

∥∥∥∥Σ̂1/2
R̂µ

∥∥∥∥2

2

. We consider the random vector

Σ̂
1/2
R̂xy − Σ̂

1/2
R̂E [xy] ,

and show that it is sub-exponential with parameter O(2/γ). This follows because
∥∥∥∥Σ̂1/2

R̂

∥∥∥∥
op

≤
∥∥∥∥Ω̂1/2

∥∥∥∥
op

+

∥∥∥∥Ω̂1/2

1

∥∥∥∥
op

≤
2√
γ , where the last inequality follows by the definition of the truncation operator.

Thus, using the sub-exponential tail bound just as in Lemma 17, (Foster et al., 2019), we get

∣∣∣Ê − E
[
Ê
]∣∣∣ = O

 1

γ
· d

1/2 log2(2d/δ)

n
+

1
√
γ
·

∥∥∥∥Σ̂1/2
R̂E [xy])

∥∥∥∥
2

log(2/δ)

√
n

 .

Now, we note that
∥∥∥∥Σ̂1/2

R̂E [xy]

∥∥∥∥
2

=

√
E
[
Ê
]
. Therefore, we apply the AM-GM inequality to deduce that

∣∣∣Ê − E
[
Ê
]∣∣∣ ≤ 1

8
E
[
Ê
]

+O
(

1

γ
· d

1/2 log2(2d/δ)

n

)
(27)

2. Upper-bounding
∣∣∣E [Ê]− Ẽ∣∣∣. We know that E

[
Ê
]

= 〈R̂Σ̂R̂µ,µ〉 and

Ẽ = 〈[R]γTγ (Σ) [R]γµ,µ〉. Following an identical sequence of steps to Foster et al. (2019) (in particular, the steps leading
up to Eq. (16) in Appendix C.1), we get∣∣∣E [Ê]− Ẽ∣∣∣ ≤ 1

8
Ẽ +O

(∥∥∥Tγ (Σ)
−1/2

Σ̂([R]γ − R̂)µ
∥∥∥2

2

+
∥∥∥Tγ (Σ)

−1/2
(Σ̂− Tγ (Σ))R̂µ

∥∥∥2

2
+

∥∥∥∥Σ̂1/2
([R]γ − R̂)µ

∥∥∥∥2

2

)
Furthermore, note that

R̂− [R]γ = (Ω̂− Tγ (Σ)
−1

)−
[
Ω̂1 − Tγ (Σ1)

−1
0

0 0

]
.

We now state and prove the following lemma, which will help us characterize the sum above.

Lemma C.4. We have∥∥∥Tγ (Σ)
−1/2

Σ̂Tγ (Σ)
−1/2 − Id

∥∥∥
op

=
∥∥∥Tγ (Σ1)

−1/2
Σ̂1Tγ (Σ1)

−1/2 − Id
∥∥∥
op

= O
(
ε

γ

)
where (28)

ε =

√
d+ log(2/δ)

m
.

with probability at least 1− δ. From the above, we get the following inequalities:∥∥∥Tγ (Σ)
−1/2

Σ̂
∥∥∥
op
≤ O(1) (29a)∥∥∥R̂µ∥∥∥

2
≤ O(1/γ) (29b)∥∥∥[R]γ − R̂

∥∥∥
op
≤ O(ε/γ2) (29c)
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We will prove Lemma C.4 at the end of this proof. Before that, we use it to complete the proof of Lemma A.1. Using
Equation (29) and the sub-multiplicative property of the operator norm, we get∥∥∥Tγ (Σ)

−1/2
Σ̂([R]γ − R̂)µ

∥∥∥2

2
≤
∥∥∥Tγ (Σ)

−1/2
Σ̂
∥∥∥2

op
‖µ‖22 ·

∥∥∥[R]γ − R̂
∥∥∥2

op
≤ O

(
‖µ‖22 · ε2

γ4

)
∥∥∥Tγ (Σ)

−1/2
(Σ̂− Tγ (Σ))R̂µ

∥∥∥2

2
≤ ‖Tγ (Σ)‖op

∥∥∥R̂µ∥∥∥2

2
·
∥∥∥Tγ (Σ)

−1/2
Σ̂Tγ (Σ)

−1/2 − Id
∥∥∥2

op

≤ O

(
‖µ‖22 · ε2

γ4

)
∥∥∥∥Σ̂1/2

([R]γ − R̂)µ

∥∥∥∥2

2

≤
∥∥∥Σ̂∥∥∥

op
‖µ‖22 ·

∥∥∥[R]γ − R̂
∥∥∥2

op
≤ O

(
‖µ‖22 · ε2

γ4

)
This directly gives us ∣∣∣E [Ê]− Ẽ∣∣∣ ≤ 1

8
Ẽ +O

(
‖µ‖22 · ε2

γ4

)
. (30)

3. Upper-bounding
∣∣∣Ẽ − E∣∣∣. Observe that

Ẽ = (θ∗)>Σ[R]γTγ (Σ) [R]γΣθ
∗ and

E = (θ∗)>ΣRΣRθ∗.

This directly implies that

|Ẽ − E| = |(θ∗)>Σ([R]γTγ (Σ) [R]γ −RΣR)Σθ∗|
≤ ‖Σ([R]γTγ (Σ) [R]γ −RΣR)Σ‖op ,

where the second inequality follows because we have assumed bounded signal, i.e. ‖θ∗‖2 ≤ 1.

It remains to control the operator norm terms above. We denote Σ := UΛU>, and write Λ :=

[
Λ1 0
0 Λ−1

]
. First, we note

that because of the block-diagonal structure considered in Definition C.1, we can also write
[
Σ1 0
0 0

]
:= U

[
Λ1 0
0 0

]
U>.

This directly gives usRΣR = U

[
0 0

0 Λ−1
−1

]
U>.

Second, we note that Tγ (Σ)
−1

:= UTγ (Λ)
−1
U>. Recalling the definition of [R]γ and using again the block-diagonal

structure in Definition C.1, simple algebra gives us

[R]γ = U

[
0 0

0 Tγ (Λ−1)
−1

]
U>

and [R]γTγ (Σ) [R]γ = U

[
0 0

0 Tγ (Λ−1)
−1

]
U>. Putting all of this together directly gives us

‖Σ([R]γTγ (Σ) [R]γ −RΣR)Σ‖op =
∥∥∥Λ−1Tγ (Λ−1)

−1
Λ−1 −Λ−1

∥∥∥
op
≤ γ

and so, we get ∣∣∣Ẽ − E∣∣∣ ≤ γ. (31)

Thus, putting together Equations (27), (30) and (31) completes the proof.

It only remains to prove Lemma C.4, which we now do.
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Proof. First, we note that Equation (28) directly implies Equations (29a) and (29b). To see this, we note the following in
order:

1. We have
∥∥∥Tγ (Σ)

−1/2
Σ̂
∥∥∥
op
≤
∥∥∥Tγ (Σ)

−1/2
Σ̂Tγ (Σ)

−1/2
∥∥∥
op
‖Tγ (Σ)‖op ≤

(
1 + ε

γ

)
= O(1). This shows that

Equation (29a) holds.

2. We have
∥∥∥R̂∥∥∥

op
≤
∥∥∥Σ̂−1

∥∥∥
op

= O(1/γ). This shows that Equation (29b) holds.

Moreover, Equation (29c) follows directly from Lemma A.2. Therefore, it suffices to prove Equation (28) here. We only
provide the argument for Σ̂ with respect to Tγ (Σ) here: an identical argument holds to bound Σ̂1 with respect to Tγ (Σ).

First, recall that Σ̂ := Tγ

(
Σ̂m

)
, and so we really want to upper bound the quantity

∥∥∥Tγ (Σ̂m

)
− Tγ (Σ)

∥∥∥
op

. It is well

known (see, e.g. (Boyd et al., 2004)) that for any positive semidefinite matrixM , the operator Tγ (M)− γId is a proximal
operator with respect to the convex nuclear norm functional. The non-expansiveness of proximal operators then gives us∥∥∥Σ̂− Tγ (Σ)

∥∥∥
op

=
∥∥∥Tγ (Σ̂m

)
− Tγ (Σ)

∥∥∥
op

=
∥∥∥Tγ (Σ̂m

)
− γId − (Tγ (Σ)− γId)

∥∥∥
op

≤
∥∥∥Σ̂m −Σ

∥∥∥
op
≤ ε,

where the last step follows by standard arguments on the concentration of the empirical covariance matrix. Thus, we have∥∥∥Tγ (Σ)
−1/2

Σ̂Tγ (Σ)
−1/2 − Id

∥∥∥
op
≤
∥∥∥Tγ (Σ)

−1
∥∥∥
op
·
∥∥∥Σ̂− Tγ (Σ)

∥∥∥
op

=
1

γ
· ε =

ε

γ
.

This completes the proof.

With the proof of Lemma C.4 complete, we have completed the proof of Lemma A.1.

D. Technical lemmas
D.1. Proof of Lemma B.2

It is equivalent to show that E
[∑n

j=1 xsj ,Asjx
>
sj ,Asj

]
� nId. We will critically use the fact that on all designated

exploration rounds 1 ≤ s1 ≤ . . . ≤ sn := τ(n), the distribution of the action As is independent of the context realizations
at round s, and in particular independent of xsj ,Asj . Thus, we use the tower property of conditional expectations to get

E

 n∑
j=1

xsj ,Asjx
>
sj ,Asj

 = E

 n∑
j=1

E
[
xsj ,Asjx

>
sj ,Asj

∣∣∣Asj]
 � E

 n∑
j=1

Id

 = nId.

Above, the inequality follows because we have Σi � Id for all i ∈ [K]. This completes the proof. On the other hand, we
have ΣAsj

� γId for all j ∈ [n] by the definition of the data-adaptive exploration set (which maintains feature diversity).

E. Data-adaptive exploration for general contextual bandits: A partial roadmap
In this section, we discuss a partial roadmap to extend the data-adaptive exploration sub-routine in MODCB.A to general
contextual bandits by leveraging ideas from function estimation under covariate-shift. Our starting point is the observation
that the optimal model selection algorithm (OSOM) (Chatterji et al., 2020) that achieves Objective 1 does not require a fast
estimation subroutine; only a favorable diversity condition that is purely covariate-dependent. We present a generalization
of this arm-specific diversity condition to general function classes that is motivated by considerations in covariate shift and
transfer learning. Moreover, since the data-adaptive exploration subroutine in MODCB.A tests for the presence of a feature
diversity condition, its principle could be generalized as well. In particular, we could adaptively decide whether to deploy
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the “greedy” action selection used by OSOM or a forced-exploration subroutine that is exclusively used to estimate the
putative regret bound (Pacchiano et al., 2020b; Lee et al., 2021). Of course, such an adaptive procedure would not achieve
even Objective 2 in the worst case — indeed, Objective 2 was shown to not be achievable for general function classes by
any algorithm (Marinov & Zimmert, 2021). However, it opens the door to achieving Objective 1 under favorable diversity
conditions when they exist — a more realistic, and still desirable goal.

E.1. From benign covariate-shift to optimal model selection

We consider the bandit-vs-contextual bandit model selection formulation, and a general function class F such that the
reward model is given by

Gi,t = µi + f∗(xi,t) +Wi,t for every i ∈ [K] (32)

for some (unknown) f∗ ∈ F and bias terms {µi}i∈[K]. To preserve the property of nestedness, we assume that the zero
function (i.e. f0(x) = 0 for all x ∈ Rd) is contained in the function class F . We also assume, without loss of generality,
that all functions in F are centered in the sense that E [f(xi)] = 0 for all f ∈ F and all i ∈ [K]. We consider learnable
function classes, in the sense that it is information-theoretically possible to design a contextual bandit algorithm that achieves
regret O(

√
comp(F) · T ) with respect to the best policy induced by f∗(·), where comp(F) is a standard learning-theoretic

measure of function complexity4. Thus, Objective 1 of model selection would be to simultaneously achieve regret rates
O(
√
KT ) under simple MAB structure and O(

√
K · comp(F) · T more generally (i.e. under Equation (32)).

We first observe that, in the case of linear function classes, arm-specific feature diversity is a sufficient condition for reliable
estimation under covariate-shift across any two arms. This connection is made precise in Example E.2 and allows us to
postulate a more general feature-diversity condition. Suppose that for each arm i ∈ [K], we have xi,t i.i.d. ∼ Di across
t ≥ 1. Then, a favorable situation for transfer learning would allow an estimator constructed from samples under the
distribution Di to generalize only upto a constant factor worse on samples obtained from the shifted distribution Dj ; further,
we would like this property to hold for any j 6= i. The definition below formalizes such a sufficient condition in terms of the
function class F and data distribution tuple (D1, . . . ,DK).

Definition E.1. A function class F is said to be covariate-agnostic with factor C > 1 with respect to data distributions
D1, . . . ,DK if, for every i 6= j ∈ [K] and any two functions f, f ′ ∈ F , we have

E
[
(f(xj)− f ′(xj))2

]
≤ C · E

[
(f(xi)− f ′(xi))2

]
. (33)

Here, C should be a constant that does not directly or indirectly depend on the model complexity measure comp(F), and
only depends on the data distribution tuple (D1, . . . ,DK).

Intuitively, the condition of covariate-agnosticity as defined above should reduce the requirement for forced exploration,
raising the possibility of achieving Objective 1 through “greedy” action selection, i.e. At = it under the MAB hypothesis.
This is because samples collected under the action sequence recommended by a MAB algorithm, i.e. {At = it}Tt=1, could be
used to estimate the putative regret bound that would be obtained through the counterfactual action sequence recommended
by a CB algorithm, i.e. {At = jt}Tt=1, with only a constant factor inflation in estimation error. Indeed, this is the approach
at the heart of the OSOM algorithm (Chatterji et al., 2020), and the reason why a feature diversity condition is required for
it to work. This suggests a plausible extension of this approach to general function classes under data distributions that
satisfy Equation (33). Formally establishing such an extension5 is an interesting direction for future work.

E.2. Adaptive exploration by testing for benign covariate-shift

The property of covariate-agnosticity turns out to be equivalent to the arm-specific feature-diversity condition in the case of
linear models. Moreover, it can be characterized in several examples that go beyond linear function classes. The examples
provided below formally demonstrate this.

4For example, in the case of linear models we have comp(F) = d and in the case of unstructured finite function classes, we have
comp(F) = log |F|.

5While feature-diversity in the sense of Equation (33) is the most essential requirement, we note that there are several other non-trivial
technical pieces required for such a generalization to work, most notably the ability to obtain self-normalized generalization bounds from
adaptively collected samples (well-known for the linear case (Peña et al., 2008; Abbasi-Yadkori et al., 2011)) under general function
classes. While this may constrain the set of function classes we can work with, we still expect such bounds to be establishable well
beyond the linear case.
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Example E.2 (Linear models). Consider the linear function class F := {〈θ, ·〉 for all θ ∈ Θ}, and suppose that Id � Σi �
γId for all i ∈ [K], which is precisely our definition of arm-specific feature diversity. Then, an elementary calculation
shows that Equation (33) holds for the choice C = 1

γ . Specifically, for two linear model parameters θ,θ′, and any pair
i 6= j ∈ [K], we have

E
[
〈xj ,θ − θ′〉2

]
= ‖Σ1/2

j (θ − θ′)‖22
= ‖Σ1/2

j Σ
−1/2
i Σ

1/2
i (θ − θ′)‖22

≤ ‖Σ1/2
j Σ

−1/2
i ‖2op · E

[
〈xi,θ − θ′〉2

]
≤ 1

γ
· E
[
〈xi,θ − θ′〉2

]
,

where the last inequality follows because we have Σi � γId and Σj � Id. Moreover, equality is achieved when Σj = Id
and γmin(Σi) = γ.

Example E.3 (Single-index models and high-dimensional data). The single-index model class can be modeled through
functions of the form f(x) =

∑p
m=1 am〈θ

∗,x〉p, where {am}pm=1 may be known or unknown (Dudeja & Hsu, 2018). We
consider the special case under which p is a constant with respect to d. We assume that, for each i ∈ [K], the distribution Di
on context xi is sub-Gaussian with parameter at most Σi, and further satisfies the small-ball property (Mendelson, 2014),
i.e. that there exists a universal positive constant u > 0 (that does not depend on d or p) such that

Pr
[
|〈∆,xi〉| ≥ u · ‖Σ1/2

i ∆‖2
]
≥ 1

2
(34)

for any vector ∆. Finally, we assume that the arm-specific feature diversity condition holds, i.e. Σi � γId. Then, we can

verify that Equation (33) holds for the choice C =
(

1
uγ

)p
. (It suffices to consider the contribution from the highest-order

terms (i.e. am = 0 for all m < p), and so we have

E
[
(〈xj ,θ〉p − 〈xj ,θ′〉p)2

]
≤ ‖Σ1/2

j (θ − θ′)‖2p2
= ‖Σ1/2

j Σ
−1/2
i Σ

1/2
i (θ − θ′)‖2p2

≤ 1

γp
· ‖Σ1/2

i (θ − θ′)‖2p2

≤
(

1

uγ

)p
· E
[
(〈xi,θ〉p − 〈xi,θ′〉p)2

]
where the first inequality follows from sub-Gaussianity of Dj and the last inequality follows from the small-ball assumption
on Di.)
Example E.4 (Nonparametric classes and bounded density ratios). Finally, we consider F to be a general nonparametric
function class under which consistent estimation is possible, such as the set of all Holder-smooth functions (Nemirovski,
2000; Audibert & Tsybakov, 2007). For all i 6= j ∈ [K], we further assume Di to be absolutely continuous with respect
to Dj , and that supx∈Rd

pj(x)
pi(x) ≤ Cd (where Cd may depend on the data dimension d). Then, a special case of the results

in (Mansour et al., 2012), that express transfer error as a function of the Renyi divergence between distributions Di and Dj ,
shows6 that Equation (33) holds for C := log(Cd). For low-dimensional data (i.e d � comp(F)), the constant log(Cd)
will be independent of the model complexity comp(F).

Examples E.2 and E.3 demonstrate that arm-specific feature diversity can constitute a sufficient test statistic for covariate-
agnosticity (and the possibility of achieving Objective 1) in both linear and nonlinear models. For these function classes, the
data-adaptive exploration subroutine defined in Algorithm 3 could be directly plugged and played with alternative model
selection algorithms designed for general function classes (Lee et al., 2021; Pacchiano et al., 2020b). More generally, the
multiplicative factorC in Equation (33) can be characterized for very general function classes and data distributions (Kpotufe
& Martinet, 2021; Hanneke & Kpotufe, 2020). Moreover, since C is a functional of the data distribution tuple (D1, . . . ,DK),

6It is also possible to obtain transfer exponents for more general distributions, e.g. even when Di is not absolutely continuous with
respect to Dj (Kpotufe & Martinet, 2021), but the resulting characterization of transfer error is significantly worse than Equation (33) and
may therefore preclude optimal model selection.
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it can also be estimated from the unlabeled iid covariates {xi,t}i∈[K],t≥1. In the case of absolutely continuous distributions,
Example E.4 shows that C can be characterized through a uniform upper bound on density ratios; indeed, density ratio
estimation is an extensively studied topic in its own right (Kpotufe, 2017; Lin et al., 2021; Yu et al., 2021). This raises the
possibility of leveraging independent advances in transfer coefficient estimation to create new data-adaptive exploration
schedules for model selection among general function classes.


