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Abstract
Computational chemistry aims to autonomously
design specific molecules with target functional-
ity. Generative frameworks provide useful tools
to learn continuous representations of molecules
in a latent space. While modelers could optimize
chemical properties, many generated molecules
are not synthesizable. To design synthetically ac-
cessible molecules that preserve main structural
motifs of target molecules, we propose a reaction-
embedded and structure-conditioned variational
autoencoder. As the latent space jointly encodes
molecular structures and their reaction routes, our
new sampling method that measures the path-
informed structural similarity allows us to effec-
tively generate structurally analogous synthesiz-
able molecules. When targeting out-of-domain
as well as in-domain seed structures, our model
generates structurally and property-wisely simi-
lar molecules equipped with well-defined reac-
tion paths. By focusing on the important region
in chemical space, we also demonstrate that our
model can design new molecules with even higher
activity than the seed molecules.

1. Introduction
Discovering new molecules with desired properties is the
ultimate task in a wide range of industrial applications in-
cluding pharmaceutical as well as chemical industry, but
the conventional trial-and-error type of processes are gen-
erally slow and resource-demanding. The main challenge
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here is the nearly infinite chemical space to explore, making
it practically infeasible to exhaustively search through the
all relevant molecular space. While expert intuitions have
been successful to guide the search traditionally, automating
and further accelerating these processes is critical to meet
different industrial needs in a timely manner.

Data-driven approaches can dramatically facilitate the
molecular discovery by utilizing available chemical knowl-
edge extracted from data, enabling automated and fast explo-
ration of the chemical space (Pollice et al., 2021). Indeed,
there have been a significant surge in using machine learn-
ing for molecular design in recent years, and there are many
excellent reviews that offer extensive summaries and per-
spectives on the subject (Zunger, 2018; Sanchez-Lengeling
& Aspuru-Guzik, 2018; Elton et al., 2019). Among dif-
ferent such approaches, generative model is particularly
promising strategy of molecular design which can gener-
ate new molecules with desired properties leveraging the
learned chemical distribution (Putin et al., 2018; Gómez-
Bombarelli et al., 2018; Hong et al., 2019; Méndez-Lucio
et al., 2020; Maziarka et al., 2020). Many successful proof-
of-concept demonstrations have been reported for molecular
property optimizations, however, as discussed in Gottipati
et al. (2020), many of the newly generated molecules have
practical challenges in actual lab synthesis, posing a large
gap between the theoretical predictions and experimental
validations.

To overcome this synthesizability bottleneck, several meth-
ods have been proposed mainly in two different directions:
synthesizability metric-based heuristics or retrosynthesis
reaction planning. The first approach utilizes synthesizabil-
ity metrics either designed by analyzing the occurrence of
molecular fragments (Ertl & Schuffenhauer, 2009; Voršilák
et al., 2020) or learned from reactions (Boda et al., 2007;
Huang et al., 2011; Gao & Coley, 2020; Thakkar et al.,
2021). But, these metric-based approaches suggest the
synthesizability based on the correlation analyses without
considering the actual routes to synthesis or are inherently
limited by the underlying dataset or models used for learn-
ing metrics. Thus, high synthesizability scores could not
directly transfer to practical use. The second retrosynthetic
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approach is based on learning chemical reactions in an in-
verse manner and attempts to predict reactant molecules
from the product information, and thus actual synthetic
pathways and easiness can be evaluated (Segler & Waller,
2017; Coley et al., 2017; Liu et al., 2017; Segler et al., 2018;
Schwaller et al., 2019; Dai et al., 2019; Karpov et al., 2019;
Shi et al., 2020; Liu et al., 2020; Schwaller et al., 2020; Duan
et al., 2020; Tetko et al., 2020; Sacha et al., 2021; Somnath
et al., 2021; Chen & Jung, 2021; Mann & Venkatasubrama-
nian, 2021; Ucak et al., 2022). These methods of predicting
synthesizability or retrosynthetic reaction predictions can
then be used in conjunction with aforementioned generative
models to sequentially design synthesizable molecules with
target properties. However, since the property-optimized
molecules obtained from conventional generative models
have not learned the reaction information, many of those
generated target molecules do not have feasible reaction
pathways, requiring repeated application of post-hoc ret-
rosynthesis planning tasks until one finds synthesizable ac-
tive molecules. Thus, those post-hoc processes can be slow
and ineffective. One possible solution to this sequential task
is to generate synthetically accessible molecules on the fly
during the generation step (Section 2).

Figure 1. Illustration of the scope of this work for generating struc-
turally conditioned molecules with synthesis pathways. Our model
includes two embedding domains: reaction embedding to en-
sure synthesizability and seed molecule embedding for structure-
preserving generation. Seed molecules could be either known prior
compounds or virtual molecules whose properties were indepen-
dently optimized but their synthesizability undetermined.

In this work, we proposed a reaction-embedded structure-
conditioned generative model (Kingma & Welling, 2013;
Sohn et al., 2015) to seamlessly design synthetically accessi-
ble molecules preserving the main structural motifs of seed
molecules. To define the scope of the present work as shown
in Figure 1, seed molecules here are the molecules that
are property-optimized already from a separated molecular
design pipeline such as generative models with its synthe-
sizability unknown, and our goal is to generate “seed-like”
molecules with their synthesis pathways attached. The seed
molecules can also be existing molecules in the market with
high activity, and in this case our model would be focus-

ing on the important region of chemical space close to the
known active molecules to discover synthetically accessible
version with even higher activity. The proposed approach
is motivated partly by and consistent with the chemist’s
usual intuitions on the structure-property relationships, i.e.,
structures largely determine the properties (Bender & Glen,
2004; Eckert & Bajorath, 2007; Nigam et al., 2021). To this
end, the key contributions of this work are:

• We propose a latent variable-driven conditional genera-
tive model with variational autoencoder (VAE) that
seamlessly incorporate the synthesizability of gen-
erated molecules using commercially available com-
pounds into the design pipeline that preserve the struc-
tural similarity to the seed compound.

• We demonstrate that a conventional sampling scheme
relying on the structural distance of reactants alone is
insufficient to generate products after the reaction, and
the whole reaction information is required to properly
measure the similarity to the seed compound during
the generation.

• We show using the out-of-domain dataset that the
present model can effectively generate molecules with
the proper synthesis pathways and even higher activity
by focusing on the important region in chemical space
starting from the given seed molecules.

2. Related Work
We here briefly summarize the related previous work to
generate molecules with desired property while ensuring
synthesizability built into the model. Bradshaw et al. (2019)
incorporated the synthesizability into the molecular design
by generating a bag of reactants, rather than the target
molecules themselves (i.e. MOLECULE CHEF), that are
then combined to yield the target product by applying the
pretrained template-free forward synthesis model. It suc-
cessfully demonstrated to generate valid molecules and its
reaction path simultaneously, and also shown its applica-
bility for property optimization task, though limited to the
use of single step reactions in the generation. The same
authors (Bradshaw et al., 2020) subsequently proposed the
directed acyclic graph (DAG) representation to generate
multi-step molecular synthesis routes with the autoencoder
(i.e. DoG-AE/DoG-Gen) and demonstrated the effective-
ness of the model for property optimization tasks with multi-
step reactions. A similar template-based multi-step reaction
generative model was also proposed by Nguyen and Tsuda
(2021) where the authors used the reaction tree representa-
tion to encode the synthesizability into the model based on
junction tree VAE (i.e. JT-VAE, (Jin et al., 2018)). The rein-
forcement learning (RL)-based forward synthesis planning
framework, PGFS (Policy Gradient for Forward Synthesis),
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was proposed by Gottipati et al. (2020) to design synthe-
sizable molecules by generating multi-step pathways using
the Markov decision process and maximizing the properties
based on the reinforcement learning.

Synthesizable molecular designs focusing on the analogs of
known active compounds (or seed molecules), the present
scope, have also been suggested. Button et al. (2019) pro-
posed the model called DINGOS to generate synthetically
accessible and structurally similar molecules to the seed
compound by selecting the structurally most similar reac-
tants to the seed molecule in the pool and repeatedly apply-
ing the known reaction templates. The structural similarity
of the reacting molecules, however, does not always mean
that the resulting products after applying the reaction tem-
plates to them would still be structurally similar to the target
seed compound. Indeed, we show below that to find struc-
turally similar synthesizable molecules the synthesis path-
way information should be learned simultaneously along
with the structural similarity to the target seed molecules.

Our work is most similar to some models in Bradshaw et
al. (2019; 2020) and Gao et al. (2021) in terms of the
model and scopes. Specifically, the retrosynthesis version of
MOLECULE CHEF (Bradshaw et al., 2019) and RetroDoG
(Bradshaw et al., 2020) were used to generate the synthe-
sizable molecules similar to the target products. However,
since the main scopes of Bradshaw et al. (2019; 2020)
were the reaction (rather than molecule) embedding into
the latent space to ensure the synthesizability of generated
compounds, a separate retrosynthetic regressor mapping
from the target products to the latent representation of the
corresponding reactants were needed to generate desired
products or structurally similar products with synthetic path-
ways. In addition, the earlier model proposed by Bradshaw
et al. (2019) was limited to the product searches obtainable
from single-step reactions, while the later model, RetroDoG
by Bradshaw et al. (2020), showed a few examples of
structurally similar synthesizable molecules with multi-step
pathways but without demonstrating the full reconstruction
results. In contrast, our model explicitly learns the joint
distribution for the structure of seed molecules and their
multi-step reaction pathways to seamlessly incorporate the
similarity and synthesizability into the latent space and gen-
eration. Very recently, concurrent to the present work, a
conditional generative approach (i.e. SynNet) was proposed
for the purpose of generating synthesizable molecules sim-
ilar to the target compound by using the Markov decision
process to encode synthetic pathways (Gao et al., 2021).
The model showed an encouraging reconstruction accuracy
on the test molecules. While Gao et al. (2021) and our work
aim to produce structurally similar synthesizable molecules
and were carried out in parallel, the two models differ by
how the conditional generation is performed, either directly
using Markov decision process or driven by latent variables.

Figure 2. (a) Representation of reaction sequence for two-step re-
action (i.e. n = 2) as an example. (b) Encoding and decoding
scheme of the proposed C-RSVAE with multi-step linear reactions.

3. Methods
3.1. Conditional Reaction Sequence Variational

Autoencoder (C-RSVAE)

Reaction Sequence Representation. For notations, let m,
p and t be main reactant, partner reactant, and reaction tem-
plate, respectively, and r be a single-step reaction including
m, p and t. The x is used to denote the embedding vec-
tors. We use superscripts in parenthesis to denote the state
of the reaction sequence, R, and subscripts to denote the
component of R (i.e. m, p, t and r). For example, r(i)

represents ith single-step reaction, and m(i) represents the
main reactant in the ith single-step reaction. Similarly, x(i)

m

denotes the embedding vector of the main reactant in the ith

single-step reaction. Furthermore, we used binary MACCS
(Molecular ACCess System) key for x(i)

m and x
(i)
p , and used

one-hot vector for x(i)
t . Also, x(i)

r , the embedding vector
for the ith single step reaction is defined by concatenating
x
(i)
m , x(i)

p and x
(i)
t . (i.e. x

(i)
r = x

(i)
m ⊕ x

(i)
p ⊕ x

(i)
t ). The

embedding vector of the seed molecule is denoted as xseed

(Figure 2a).

Based on these notations, R with n single-step reactions is
represented by R = [r(0), r(1), ..., r(n), r(n+1=L)]. In this
reaction sequence, m(i+1) is same as the product of r(i).
The i = 0 describes the initial state (i.e. start of reaction),
and i = n + 1 = L describes the final state (i.e. end of
reaction) of the given reaction sequence. Thus, for the initial
state, we set x(0)

m as zero, x(0)
p as x(1)

m and x
(0)
t as the start

of the reaction token. For the final state, we set x(L)
p as zero

and x
(L)
t as the end of the reaction token.

Model Architecture. Our model is built on conditional
VAE as illustrated in Figure 2b where GRU (Cho et al.,
2014) is used to handle sequential data. For notations, let
useed and z be the encoded feature vector of seed molecule
and the latent vector of R conditioned with useed. Also, the
predicted output obtained from the decoder is denoted as
x̂. For notations of model, let fφ(xseed) be seed molecule
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encoder, qϕ(z|R, useed) be reaction sequence encoder and
pθ(R|z, useed) be decoder. Here, φ, ϕ and θ are learnable
model parameters. Also, we denote F (·) as a multilayer
perceptron (MLP). The proposed model was implemented
with Pytorch (Paszke et al., 2019) (see Appendix A for all
the other implementation details).

Prior to encoding of the R, xseed is encoded to useed through
the fφ which is an MLP (i.e. useed = fφ(xseed)). Next,
z is sampled from Gaussian distribution whose mean (µ)
and standard deviation (σ) used for reparametrization trick
(Kingma & Welling, 2013) are defined as:

[µ, σ] = Fh(BiGRU([x(1)
r , x(2)

r , ..., x(L)
r ]|useed)) (1)

where BiGRU is bi-directional GRU (Cho et al., 2014;
Schuster & Paliwal, 1997).

Decoding of z with the given condition of useed through
pθ(R|z, useed) consists of two sub-modules motivated from
(Gottipati et al., 2020): reaction template predictor (pθt ) and
reactant predictor (pθr ) with learnable parameters θt and
θr. pθt predicts x(i)

t corresponding to x
(i)
m , and pθr predicts

x
(1)
m = x

(0)
p and x

(i>0)
p corresponding to x

(i>0)
m and x

(i>0)
t .

Thus, the predicted output of each model is defined as:

x̂
(j)
t ∼ pθt(m

(j)|z, useed)

= Softmax[Ft(GRU(x(j)
m |z, useed))] (2)

x̂(k)
p ∼ pθr (m

(k), t(k)|z, useed)

= Softmax[Ft(GRU([x(k)
m ⊕ x

(k)
t ]|z, useed))] (3)

where j ∈ [1, L] and k ∈ [0, L − 1]. We only utilize the
trained decoder for sampling new molecules with the target
seed molecules (see section 3.2).

Objective Function. We define the loss function
L(R, useed) using the variational lower bound of the log-
probability of a reaction sequence and seed molecule
(R, useed) as follows:

log p(R, useed) ≥ Ez[log(
pθ(R|useed, z)p(useed)p(z)

qϕ(z|R, useed)
)]

= Ez[log pθ(R|useed, z)] + log p(useed)

− LKL(qϕ(z|R, useed) ∥ p(z))

= −L(R, useed) (4)

where z ∼ qϕ(z|R, useed). qϕ(z|R, useed) is a variational
posterior, and regularized with the prior of z, p(z) (i.e.
Gaussian with zero-mean and unit-variance) through the
KL-divergence term (i.e. LKL). p(useed)is the prior of fea-
ture vector encoding the seed molecule, but it is constant
in terms of optimizing the model parameters (i.e. it is not
parameterized with any learnable parameters). For recon-
struction loss term, Ez[− log pθ(R|z, useed)] is modeled by

the summation of loss function predicting the reaction tem-
plates (i.e. cross entropy loss, CE) and reactant molecules
(i.e. binary cross entropy loss, BCE) since we indepen-
dently predict the reaction templates and reactants through
pθt and pθr . Thus, L(R, useed) with N reaction sequence
data existing in mini-batch is defined as:

L(R, useed) =
1

N

N∑
i=1

[
1

L

L∑
j=1

αCE(x
(j)
t,i , x̂

(j)
t,i )

+
1

L

L−1∑
k=0

BCE(x
(k)
p,i , x̂

(k)
p,i ) + βLKL,i] (5)

where i is index of data-point existing in mini-batch. α and
β are hyperparameters for balancing between reconstruction
and KL-divergence term. Since our model considers two
independent trainable parameters for decoder, we empiri-
cally introduced α (see also Appendix B). We considered
mask vector for reaction templates available for the given
main reactant. Binary cross entropy loss for partner reactant
prediction is computed only for the bi-molecular reaction
templates.

3.2. Sampling Reactions with Seed Molecules

Figure 3. Scheme of molecule generation via the reaction sequence
from the trained decoders with seed molecule embedding vector
and reaction-embedding latent vector. The generation process is
iteratively repeated until the end of reaction token is obtained.

Generating new synthetically accessible molecules from
useed and z sampled from the normal distribution consists
of two main steps (Figure 3a): (1) sampling the starting
molecules (Figure 3b) and (2) updating reaction sequence
(Figure 3c). Since we use the discrete space consisting
of a pre-defined set of molecules, sampling of the starting
molecule m(1) is expressed as:

[m
(1)
1 , ...,m

(1)
k ] ∼ kNNm∈M[H(x̂(1)

m , xm)] (6)

where x̂
(1)
m ∼ pθr (m

(0), t(0)|z, useed). kNNM is the k-
nearest-neighbor-based sampling from the pre-defeind set
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M consisting of starting molecules. For this, we used
the Hamming distance, H , between x̂

(1)
m and xm for all

m in M. Thus, k similar molecules in M are selected
(i.e. m

(1)
1 , ...,m

(1)
k ). For an explicit inclusion of the seed

molecule information, we further implemented the hybrid
sampling approach which additionally measure the similar-
ity between xseed and xm for all m in M. That is,

[m
(1)
1 , ...,m

(1)
k ] ∼ kNNm∈M[(1− λ)H(x̂(1)

m , xm)]

+ λH(xseed, xm)] (7)

where λ is a tunable hyperparameter, and we used λ = 0.5
for all experiments if not explicitly mentioned otherwise
(see Appendix F for the effects of changing λ).

Updating of the reaction sequence involves two sub-steps
which could be expressed as:

x̂
(i)
t ∼ pθt(m

(i)|z, useed) (8)

[p
(i)
1 , ..., p

(i)
k ] ∼ kNNp∈P[t(i)][H(x̂(i)

p , xp)] (9)

where x̂
(i)
p ∼ pθr (m

(i), t(i)|z, useed). The first part is pre-
dicting the reaction template t(i) applicable to the current
main reactant m(i) with pθt . We select t(i) from x̂

(i)
t in

a greedy manner among the reaction templates matched
with m(i). The second part is sampling the partner reac-
tant p(i) using the k-nearest-neighbor-based sampling (i.e.
p
(i)
1 , ..., p

(i)
k ) from the pre-defined set P[t(i)] consisting of

partner molecules matched with the reaction template t(i).
Thus, the reaction sequence is updated by applying the reac-
tion template with the sampled molecules (i.e. main reactant
and partner reactant). The latter process is applied iteratively
until the end of reaction token is predicted through pθt or i
reaches the pre-defined maximum number of reaction steps,
nmax (see Appendix D for additional details).

3.3. Data and Representations

Reaction Database. To construct the reaction database
used for training, we used a set of commercially available
∼150,000 molecules obtained from Gottipati et al. (2020)
with 58 reaction templates collected from Hartenfeller et
al. (2011) relevant to drug discovery. By combinatorically
considering the latter set of reactants and reaction templates
iteratively, we randomly enumerated total 3 million (M)
multi-step chemical reactions (up to three steps). Appli-
cation of the reaction templates was done with RunReact
function implemented in RDKit (Landrum, 2013). Of the
3 M multi-step reactions, 100,000 reactions were then se-
lected randomly to be used as a test set (see Appendix B for
additional details).

Representation. All molecules are embedded with a pub-
lic MACCS key, a binary feature vector with dimension of
166 identifying the existence of the pre-defined molecular

fragments as implemented in RDKit (Landrum, 2013). For
reaction templates, we distinguished the main reactant posi-
tion and the partner reactant position for the bi-molecular
reaction template, and also included tokens for the start
and end of reaction sequence. Thus, the final dimension of
reaction template is 116 represented by one-hot encoding.

4. Experiments
4.1. In-Domain Target Seed Recovery

Figure 4. (a) Schematic diagram of DINGOS-k, DINGOS-Prior,
and C-RSVAE. (b) The seed molecule recovery ratio with Ham-
ming distance of zero (green) or the identical structure (blue). (c)
Distribution of Hamming distance for the top 1 similar molecules
where orange circle means the average value of the distribution.

We first consider a toy benchmark in which to investigate
the seed molecule recovery for the test set molecules. For
that, of the 100,000 multi-step reactions in the test set, we
randomly chose 1,000 reactions and used the final product
of each multi-step reaction as the seed molecule to be used
for benchmarking. The recovery ratio of 1.00 would mean
that the generated similar molecules are identical to the seed
molecules for all 1,000 products.

We considered five models for comparison as shown in
Figure 4a: DINGOS-1, DINGOS-5, DINGOS-20, DINGOS-
Prior and C-RSVAE. DINGOS-k (k=1,5,20) selects k most
similar main reactants based on H measured in reference to
the seed molecule (Button et al., 2019). DINGOS-Prior uses
the ground-truth reactant molecules in the test set that lead
to the correct seed molecule as the initial main reactants. C-
RSVAE is our proposed model which uses the latent vector
z randomly sampled from the Normal distribution, with
the target seed molecule used as a condition. The overall
sampling setup can be found in Appendix D.
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The model performance (recovery ratio) and the distribution
of the Hamming distance for the most similar generated
molecules are summarized in Figure 4b and 4c, respectively.
To measure the recovery ratio, we considered a Hamming
distance of zero (i.e. the newly generated molecules have
the identical type of substructures as found in the target seed
molecule). In addition, since it is possible that different
molecules can also have the same substructures, we fur-
ther analyzed whether the generated molecules are indeed
identical to the target seed molecule. We note that the reac-
tion sequence reconstruction accuracy of C-RSVAE over all
test set data is 98 % by applying the encoder-decoder full
pipeline as shown in Figure 2b.

Within the DINGOS-k-based approaches, it is observed that
the seed molecule recovery ratio increases as more initial
molecules (increasing k) are sampled to start the reaction
sequence, but DINGOS-Prior, which uses the ground-truth
main reactant information, significantly outperforms the
other DINGOS-k models by 2-7 times. It clearly demon-
strates that the use of molecules structurally similar to the
target seed molecule as initial main reactant is insufficient
to generate the most similar final products after applying the
reaction templates. The same trend is observed from the dis-
tribution of Hamming distance of the generated molecules
relative to the target seed molecule, where choosing the
initial main reactants to be structurally most similar to the
target seed molecule yields poorer results compared to us-
ing structurally less similar molecules but involving correct
reaction information.

These results can be compared with C-RSVAE where both
structural similarity and reaction sequence information are
simultaneously encoded in the latent space. Indeed, C-
RSVAE consistently outperforms DINGOS-k for all k by 2-7
times, comparable to DINGOS-Prior even if our model does
not use any additional information on the ground truth reac-
tant as input when generating new molecules as in DINGOS-
Prior. Instead, the latter ground truth reactant information is
rather embedded in the latent representation of our model
via learning the reaction sequence during the training.

4.2. Design of Structure-Preserving Synthesizable
Molecules

The main practical application of the proposed C-RSVAE
and previous DINGOS is generating new molecules
structurally similar to the predefined (usually property-
optimized) seed compound, so in this section we demon-
strate the model performance by comparing the structural
similarity of the generated molecules to the seed target. For
this experiment, we randomly sampled 1,000 seed molecules
from the test set as in-domain benchmark (not same as seed
molecules used in Figure 4) and USPTO registered in year
2016 (USPTO 2016) as out-of-domain benchmark obtained

Figure 5. Comparison of Hamming distance for the generated
molecules to the seed molecules for C-RSVAE vs. DINGOS-
20+. Seed molecules are randomly chosen from (a) test set or (b)
USPTO 2016. The Hamming distance for generated molecules is
an averaged value over the top K (=1,5,20) similarity-predicted
molecules for each seed compound.

from Schwaller et al. (2019). As a baseline, DINGOS-20+
scheme is used which augments DINGOS-20 for more m(1)

when the number of reactions sampled is lower than 300
(i.e. 9 % of test set and 44 % of USPTO 2016).

To compare the model performance, we computed the
average Hamming distances between the seed and top
K (=1, 5, 20) similar structures generated by DINGOS-
20+ (HDINGOS-20+) and C-RSVAE (HC-RSVAE). We then
counted the number of seed molecules in three categories,
HC-RSVAE < HDINGOS-20+ (blue), HDINGOS-20+ =
HC-RSVAE (dashed pattern) or HDINGOS-20+ < HC-RSVAE

(green). As observed in Figure 5, for both test and USPTO
2016 datasets, C-RSVAE generates molecules more similar
to the target seed molecules than DINGOS-20+ for all K’s.
This result indicates that the generative approach jointly
learned with the seed structure and reaction sequence is a
more effective way to design structurally-related molecules
to the seed compound after the reaction.

Figure 6. Correlation between the molecular properties (logP, SAS
and QED) of the seed molecules and those generated from C-
RSVAE. Seed molecules are randomly chosen from (a) test set or
(b) USPTO 2016. Top 20 averaged property values are used to
compute the coefficient of correlation.
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Figure 7. (a-b) Distribution of molecular properties, (a) plogP and
(b) QED, for the seed molecules, as well as the comparison be-
tween C-RSVAE and DINGOS-20+. We truncate the x-axis near
the plateau of the distribution for clarity. The maximum target
property within the top 20 similarity predictions are used for gen-
erated cases. Seed molecules are randomly chosen from the out-
of-domain USPTO 2016. (c) Examples of conditional molecule
generation based on the property-optimized seed molecules ob-
tained from (Jin et al., 2018; Kang & Cho, 2018). The listed
designed molecules are those with the maximum target property
within the top 20 similarity predictions based on the Hamming
distance value, with the rank shown in parenthesis: (i and ii) plogP
and (iii and iv) QED.

We next considered the molecular properties of the gener-
ated molecules. We considered both the simple properties
that can be computed from the RDKit (Landrum, 2013),
namely, logP (property related to solubility of molecule),
SAS (synthetic accessibility score, (Ertl & Schuffenhauer,
2009)) and QED (drug-likeness), as well as docking scores
with Quick Vina 2 (Alhossary et al., 2015) as drug candi-
dates.

The logP, SAS and QED for the generated molecules and
their correlations with the target seed molecules are sum-
marized in Figure 6. As desired, a large correlation is seen
between the properties of the seed and generated molecules,
consistent with the usual structure-property relationship
where structurally similar molecules would have similar
properties.

As shown in Figure 7a and 7b, there are a significant frac-
tion of seed molecules where the generated structures have
even higher properties than the seed molecules. This is
due to the fact that the seed molecules used here are not

Figure 8. (a-b) Distribution of the docking scores (lower value is
better) against (a) DRD3 and (b) Mpro of SARS-Cov-2 of seed
molecules compared with the generated molecules from C-RSVAE
and DINGOS-20+. The minimum target property within the top 20
similarity predictions are used for generated cases. Seed molecules
are randomly chosen from the ZINC database. (c-d) Structure of
compounds with their reaction paths generated from our model
with the top 3 highest docking scores against (c) DRD3 and (d)
Mpro of SARS-Cov-2.

property-optimized toward either of plogP (defined as logP
penalized with the synthethic accessibility score and the
number of long cycles in (Jin et al., 2018)) or QED but
merely taken from the molecule and reaction databases,
and so the random sampling of synthesizable molecules
around the arbitrary seed compound can give molecules
with higher or lower properties. In Figure 7a and 7b, we fur-
ther analyzed the properties of the generated molecules (the
maximum property among the top 20 generated molecules)
by C-RSVAE and DINGOS-20+. Molecules with more en-
hanced properties could be obtained from our approach than
DINGOS-20+ due to the utilization of randomly sampled
reaction-embedded latent vector that enables the sampling
of molecules with relatively diverse property ranges com-
pared to the previous structure-only-constrained design.

Since the main purpose of generating structurally-
conditioned synthesizable molecules is to design synthesiz-
able version of property-optimized seed molecule by sam-
pling around the important region, we further considered the
synthesizability-unknown seed molecules whose property
is already optimized from the previous JT-VAE (Jin et al.,
2018) and conditional generative model, SSVAE, (Kang
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& Cho, 2018) for plogP and QED trained with a subset of
ZINC database (Figure 7c). Our objective in this experi-
ment is to improve further on plogP and QED by sampling
around the previously generated optimal (or near-optimal)
compounds. As observed, for plogP, our approach could
highly improve the property of the seed molecule from 5.30
to 7.37 and from 4.93 to 5.29 (i and ii in Figure 7c) while
ensuring synthesizability based on multi-step reaction se-
quence. For QED, our model did not improve the property
much but still suggested the molecules with plausible syn-
thesis pathways (iii and iv Figure 7c).

The docking scores of generated compounds as drug can-
didates against two proteins (i.e. DRD3 (PDB ID: 3PBL)
and Mpro of SARS-Cov-2 (PDB ID: 7L11)) were also con-
sidered for further application of our approach. As seed
molecules, we chose the top-scored 200 molecules after cal-
culating docking scores with Quick Vina 2 (Alhossary et al.,
2015) among the randomly sampled 5,000 molecules from
the ZINC database enumerated from Therapeutic Data Com-
mon (TDC) interface (consisting of ∼250,000 molecules)
(Huang et al., 2021). We iterated those processes three times
independently with different random seed, and we plotted
the results obtained from the latter three trials in Figure 8.
As shown in Figure 8a and 8b, while both DINGOS-20+
and C-RSVAE generated molecules with higher docking
properties than the seed molecules, C-RSVAE performs bet-
ter than DINGOS-20+ in producing the enhanced docking
scores, consistent with other properties shown in Figure 7.
Some of the examples (compounds with its synthesis routes)
with higher docking scores for each target protein are shown
in Figure 8c and 8d.

4.3. Ablation Study

To investigate the effects of conditions on the structure-
preserving generations and the method of imposing such
conditions, we implemented a few variants of C-RSVAE
(see also Appendix E for additional details on implemen-
tation) for comparison. The performance was, again, mea-
sured by the ratio of data with the Hamming distance of
zero in Figure 9. RSVAE is an autoencoder-based approach
without conditional embedding (similar to the DoG-AE in
Bradshaw et al. (2020)). While we also considered the
direct generation of reaction from the seed molecule embed-
ding, useed, as similarly done in Gao et al. (2021), it was
not effectively trained within our model framework. Thus,
we considered Zm-RSAE (Z-matched-RSAE) where the
encoded latent vector is aligned with the feature vector of
the seed molecule (i.e. regression of useed to z), intending
to replace the latent space of autoencoder with the seed
molecule-embedding vector (similar to RetroDoG in Brad-
shaw et al. (2020)). For RSVAE, we randomly generated
unique 50,000 reactions (RSVAE) and selected the most sim-
ilar molecule. To further aid the sampling, we also selected

Figure 9. (a-c) Variants of the proposed model used in the ablation
study. Green, orange and blue arrows mean the regularization of
latent space, alignment of latent vector using target conditions
and conditional imposing, respectively. (d) Ratio of generated
data with Hamming distance of zero for the structural seed from
the test set and USPTO 2016 dataset. (e) Comparison of the top
K (=1,5,20) averaged Hamming distance between C-RSVAE and
Zm-RSAE.

the starting molecule m(1) using the same hybrid sampling
scheme used in C-RSVAE, which we denote as RSVAE+S.
In case of Zm-RSAE, we added random Gaussian noise to
useed to generate diverse molecules.

As expected, RSVAE and RSVAE+S could not effectively
generate molecules structurally related to the seed molecules
due to the lack of proper structural conditioning. Zm-RSAE
shows a slightly better generation performance of struc-
turally similar molecules than C-RSVAE for the test set,
but for the USPTO 2016 out-of-domain seed molecules,
C-RSVAE performs better. The same trend is shown when
we take the top K (=1,5,20) averaged Hamming distance
values (i.e. HC-RSVAE and HZm-RSAE). This differing
model performance of Zm-RSAE might be due to the lim-
ited generalizability of a neural network for encoding the
seed molecule (i.e. fφ) since fφ is mainly trained to predict
the reaction-embedded latent vector z rather than learning
the distribution of reaction representation itself.

5. Conclusion
In this work, we proposed a conditional generative model
for generating organic molecules that are structurally similar
to the target seed compound while ensuring their synthesiz-
ability by predicting the synthesis recipe for the generated
molecules. Our model produces synthesis-path-attached
“seed-like” molecules by coupling the reaction-embedded
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latent vector and seed molecule-embedded conditional vec-
tor in the VAE framework. A comparison with a few base-
line models demonstrates that utilizing the structural dis-
tance of reactants alone is insufficient to generate molecules
structurally similar to the seed molecules after applying
the chemical reactions, and it is important to incorporate
the reaction information in the molecule generation step
to preserve the target structural motifs. An encouraging
possibility is also shown that our model might be used to
design synthetically accessible molecules with even higher
chemical activity than the seed molecules optimized from
separate molecular design oracles with its synthesizability
unknown.

The main limitation of the proposed work for practical use is
the fact that the synthesizability of molecules in this work is
only defined from the list of pre-defined starting molecules,
partner reactants, the number of reaction-steps up to three,
and 58 reaction templates. Thus, while a relatively small
number of reactions often dominates the overall organic syn-
thesis used in medicinal chemistry (Boström et al., 2018),
expanding our model with more diverse reaction templates
extracted from existing chemical reactions with either ex-
perts’ knowledge or data-driven models (Klucznik et al.,
2018; Plehiers et al., 2018; Coley et al., 2019; Schwaller
et al., 2021; Szymkuć et al., 2021) and reaction data con-
taining longer reaction steps than three as well as the non-
linear type of reactions (Bradshaw et al., 2020; Gao et al.,
2021) would be needed for generating structurally and syn-
thetically more diverse molecules. For this, the recently
proposed local reaction templates (Chen & Jung, 2021)
would be helpful to represent diverse reaction types used
in drug design by focusing on the local reaction sites. In
addition, the current model uses the simple Hamming dis-
tance with MACCS key to measure the whole structural
similarity which might miss important structural informa-
tion with a low structural resolution. Thus, our future work
would involve developments of the more advanced structural
similarity measuring scheme and molecular representation
learning (Liu et al., 2019; Wang et al., 2019; Chithrananda
et al., 2020; Wang et al., 2022), with a possibility to focus
more on the important core skeletons related to the high
functionality rather than imposing conditions on the overall
structures when measuring the similarity.
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A. Model Configurations
Seed Molecule Encoder. Encoding of the target structural template through fφ is consisting of four-hidden-layer MLP with
hidden layer dimension of 200, and ReLU activation function is used. The output of fφ (i.e. useed) is normalized by its
magnitude to ensure that any given condition is on the same hypersphere with radius of 1.

Reaction Sequence Encoder. Reaction sequence encoder qϕ is consisting of two-stacked bi-directional GRU (Schuster &
Paliwal, 1997; Cho et al., 2014) with the hidden state dimension of 512, and the initial state is set to zero. x(i)

m and x
(i)
p are

embedded using a linear layer with dimension of 256. Fh, an MLP for computing µ and σ, is consisting of two-hidden-layer
MLP with ReLU activation function, and the dimension of hidden layer is 512. The dimension of latent vector z is 200.

Decoder. Both pθt and pθr are consisting of two-stacked uni-directional GRU, and the dimension of hidden state is 512.
Initial state of each GRU is obtained from the linear layer which takes z and useed as input. x(i)

m is embedded through a
linear layer with dimension of 256. Ft and Fr are consisting of two-hidden-layer MLP with the hidden layer dimension of
512, and ReLU activation function is used.

B. Model Training and Molecule Database

Figure 10. Scheduling of cyclic annealing of β for regularization of the latent space using KL-divergence.

Training of C-RSVAE. For the model training, we empirically set the hyperparameters. In detail, we used α = 0.3, and
applied cyclic annealing (Fu et al., 2019) for KL-divergence term by changing the value of β from 0 to 0.1. All of the
parameters used in cyclic annealing are default values of the original work (Fu et al., 2019). In detail, we set the number of
cycles as 4 (i.e. repeating four times of annealing) during training epoch of 500. For each cycle, the value of β is increased
linearly during the initial 50 % of a cycle, and fixed it to be a maximum value of 0.1 during the remain 50 % of a cycle
(Figure 10). For optimization of model parameters, we randomly sampled 2 M of reaction sequences for model training 95
%) and validation (5 %) among the total 3 M reaction sequences. All the parameters in encoder and decoder are jointly
optimized using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.00005.

Molecule Database. For molecule database, we used 150,560 commercially available molecules obtained from Gottipati
et al. (2020) and additionally filtered the molecules using the molecular weight (in g/mol) condition (i.e. range of [100,
300]) yielding a total 137,687 molecules (∼ 91 % of total available molecules). Here, we randomly sampled 5,000 from the
previously constructed 137,687 molecules set, and defined it as a library of the starting molecules M. Also, all the 137,687
molecules are used as the library of the partner reactants P .
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C. Partner Reactant Prediction in DINGOS

Figure 11. (a) Schematic diagram of neural network model used in DINGOS. (b) Loss trajectory for ML used in DINGOS.

For sampling with DINGOS, we trained a neural network (NN) predicting the embedding of partner reactant from the
embedding of product and main reactant as shown in Figure 11a (Button et al., 2019). For NN, we used single linear layer
with dimension of 334 followed by sigmoid activation function, and binary cross entropy loss is used for model training
(epoch size = 100, see Figure 11b for loss trajectory). All the molecules are embedded with MACCS key. For dataset, we
decomposed all 3 M reactions into the one-step reactions, and removed the duplicates yielding a total 5,635,419 unique
reactions. We randomly sampled 2 M reactions from the latter obtained unique one-step reactions for model construction
(train/validation = 95/5 %). When utilizing the trained model for sampling new reactions, embedding of the product is
replaced by the embedding of seed molecule (Button et al., 2019).

D. Implementation Details on Reaction Sampling
Sampling with Generative Model. For sampling of reaction sequences with the trained generative model, we sampled 200
latent vectors from the normal distribution with a fixed random seed. For sampling with each latent vector, we set k = 20
for k-nearest-neighbor sampling for the selection of starting molecule (m(1)), and set k = 1 for sampling of the partner
reactant (p(i)). We set the maximum number of reaction step as 3 (i.e. nmax = 3), and rejected the reactions if the Hamming
distance value increases compared to the previous step (i.e. Hmost-recent > Hprevious-step) (Button et al., 2019).

Sampling with DINGOS-k. We sampled k starting molecules m(1) using the Hamming distance between the seed molecule
and molecules in the pre-defined set of starting molecules M. Partner reactant p(i) is sampled through the K-nearest-
neighbor sampling with the Hamming distance between the pre-defined set of partner reactants P and the output of trained
NN as shown in Appendix C. Here, we set k = 20 for sampling p(i). We set the maximum number of reaction step as
3 (i.e. nmax = 3), and also set the cut-off value of molecular weight as 1.5 times of the molecular weight of the target
condition. Furthermore, we rejected reactions if the Hamming distance value increases compared to the previous step
(i.e. nmax = 3), and rejected the reactions if the Hamming distance value increases compared to the previous step (i.e.
Hmost-recent > Hprevious-step) (Button et al., 2019).
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E. Implementation Details of Models used in Ablation Study
RSVAE. We excluded any information related to the target seed molecule. Thus, the latent vector is obtained using
reparameterization trick as following:

[µ, σ] = Fh(BiGRU([x(1)
r , x(2)

r , ..., x(L)
r ])) (10)

(11)

Reaction templates and pair reactants are obtained from z as following, and we used same training scheme as done in
C-RSVAE.

x̂
(j)
t ∼ pθt(m

(j)|z) = Softmax[Ft(GRU(x(j)
m |z))] (12)

x̂(k)
p ∼ pθr (m

(k), t(k)|z) = Softmax[Ft(GRU([x(k)
m ⊕ x

(k)
t ]|z))] (13)

where j ∈ [1, L] and k ∈ [0, L− 1].

Zm-RSAE. The latent vector is directly computed from encoder without reparameterization trick used in the conventional
VAE. That is,

z = Fh(BiGRU([x(1)
r , x(2)

r , ..., x(L)
r ])) (14)

For alignment of latent vector, we used mean-squared error term for latent space alignment (i.e. ∥ useed − z ∥22) without
KL-divergence term. We added random Gaussian noise to each encoded feature (i.e. useed and z) during training, and
trained Zm-RSAE during 200 epochs.

Selecting Starting Molecules with RSVAE and Zm-RSAE. For selecting of starting molecules with RSVAE and Zm-RSAE
as used in ablation study, we used following k-nearest-neighbor sampling scheme:

[m
(1)
1 , ...,m

(1)
k ]RSVAE ∼ kNNm∈M[H(x̂(1)

m , xm)], x̂(1)
m ∼ pRSVAE

θr (m(0), t(0)|z) (15)

[m
(1)
1 , ...,m

(1)
k ]RSVAE+S ∼ kNNm∈M[H(x̂(1)

m , xm) +H(xseed, xm)], x̂(1)
m ∼ pRSVAE

θr (m(0), t(0)|z) (16)

[m
(1)
1 , ...,m

(1)
k ]Zm-RSAE ∼ kNNm∈M[H(x̂(1)

m , xm)], x̂(1)
m ∼ pZm-RSAE

θr (m(0), t(0)|useed) (17)
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F. Sampling Reactions by Changing Mixing Parameter, λ

Figure 12. Comparison of the top K (=1,5,20) averaged Hamming distance between C-RSVAE and DINGOS by changing the mixing
parameter λ for the seed molecules sampled from (a) test set and (b) USPTO 2016 data.

We investigated the performance of C-RSVAE for generating molecules with three different λ values (i.e. 0, 0.5 and 1.0).
For this experiment, 100 seed molecules are chosen from the test set and USPTO 2016. We compared the top K averaged
Hamming distance for the molecules generated from each approach (i.e. C-RSVAE and DINGOS-20+). As shown in
Figure 12, we decomposed the seed molecules into three categories as done in Figure 5 in main text. As observed, even
for the case of λ = 0, the proposed C-RSVAE could generate molecules more similar to the desired seed molecules than
DINGOS-20+ (i.e. 67 ∼ 70 % for test set and 56 ∼ 67 % for USPTO 2016). In addition, our model still outperforms
DINGOS-20+ when the same type of starting reactants is used (see results with λ = 1.0), indicating the effectiveness
of utilizing reaction-embedded latent vector for sampling new molecules structurally similar to the target seed molecule.
Notably, sampling with λ = 0.5, corresponding to our proposed approach, shows the best performance compared to the
other cases (i.e. 70 ∼ 77 % for test set and 59 ∼ 68 % for USPTO 2016).
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G. A Preliminary Comparison with SynNet

Figure 13. The comparison of C-RSVAE and SynNet-R for the similarity of the generated molecules. The reconstruction ratio of the
generated data with (a) Hamming distance of 0 (i.e. H = 0) and (d) Jaccard distance of 1 (i.e. J = 1) for the target seed molecules
randomly chosen from the test set and USPTO 2016. The (b-c) average Hamming or (e-f) average Jaccard distances for the top K
(=1,5,20) similar molecules generated using C-RSVAE and SynNet-R.

In addition to the ablation study with the straightforward variants of our model as described in the main text, a brief further
comparative experiment with a direct conditional approach (SynNet) by Gao et al. (2021) is performed. We retrained the
SynNet with the same training data used in this work, denoted in Figure 13 as SynNet-R. We randomly sampled 550,000
reactions from our original training data and applied the QED filters for the final product of each reaction in the dataset,
following Gao et al. (2021). This yielded 348,627 reactions included for the training of SynNet-R. For sampling of reactions
with SynNet-R, 30 most similar starting molecules are selected based on the Hamming distance (i.e. H , Figure 13a-c) or
Jaccard distance (i.e. J , Figure 13d-f), and we ensured that more than 20 unique reactions were obtained from this. We
used 1,000 seed molecules from the test set or USPTO 2016 (same as Figure 4). The results are summarized in Figure 13.
The SynNet’s reconstruction accuracy is higher than that of C-RSVAE for the test set seed molecules on both the similarity
metrics, but for the out-of-domain USPTO-2016, the C-RSVAE’s reconstruction performance is slightly higher than that of
SynNet on the Hamming distance or comparable to it on the Jaccard distance (Figure 13a and d). Very small reconstruction
ratios for both C-RSVAE and SynNet on the Jaccard distance are due to the limited reaction templates and starting molecules
used in this work which cannot treat the out of domain USPTO reactions (Figure 13d). This should be improved using
the larger set of templates and starting molecules. A similar trend is shown when considering the average Hamming or
Jaccard distances of the top-K similar molecules (overall similarity distribution, Figure 13b-c, and 13e-f). On the Hamming
distance, C-RSVAE yields on average more similar molecules for all K on both the test and USPTO molecules, but on the
average Jaccard distances, for all K, the in-domain test set performance is better in SynNet while the out-of-domain USPTO
performance is slightly better in C-RSVAE. Thus, while a more systematic comparison through further optimization and
more advanced schemes for molecular representation learning and similarity evaluation would be required, these results
suggest that the joint learning of the reaction and the target seed molecular space can be a competitive approach to sample
diverse synthesizable molecules imposed to have a structural similarity.


