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Abstract
The hierarchical variational autoencoder (HVAE)
is a popular generative model used for many rep-
resentation learning tasks. However, its applica-
tion to image synthesis often yields models with
poor sample quality. In this work, we treat image
synthesis itself as a hierarchical representation
learning problem and regularize an HVAE toward
representations that improve the model’s image
synthesis performance. We do so by leveraging
the progressive coding hypothesis, which claims
hierarchical latent variable models that are good
at progressive lossy compression will generate
high-quality samples. To test this hypothesis, we
first show empirically that conventionally-trained
HVAEs are not good progressive coders. We then
propose a simple method that constrains the hier-
archical representations to prioritize the encoding
of information beneficial for lossy compression,
and show that this modification leads to improved
sample quality. Our work lends further support
to the progressive coding hypothesis and demon-
strates that this hypothesis should be exploited
when designing variational autoencoders.

1. Introduction
The task of generating of high-dimensional image data has
inspired the development of many successful deep gener-
ative models such as autoregressive models (Uria et al.,
2016; Oord et al., 2016b), flow-based models (Dinh et al.,
2014; 2016), generative adversarial networks (Goodfellow
et al., 2014), variational autoencoders (Kingma & Welling,
2013; Rezende et al., 2014), and diffusion models (Ho et al.,
2020; Song & Ermon, 2019). These models have since
been applied to many other modeling tasks such as speech
synthesis (Oord et al., 2016a; Donahue et al., 2018), rein-
forcement learning (Zhang et al., 2019; Levine et al., 2019),
and scene-understanding (Eslami et al., 2018). In this work,
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we focus on the application of hierarchical variational au-
toencoders (VAEs) to image synthesis. Despite the success
of VAEs in numerous fields (Akuzawa et al., 2018; Hsu et al.,
2017; Gómez-Bombarelli et al., 2018; Sultan et al., 2018;
Van Hoof et al., 2016), the application of VAEs to image syn-
thesis has been challenging (Theis et al., 2015), and many
existing works sought to improve VAEs’ image synthesis
capabilities by addressing the optimization challenges asso-
ciated with VAE training (Rezende & Viola, 2018; Child,
2020; Vahdat & Kautz, 2020; Sønderby et al., 2016). Given
the success of VAEs as a representation learning algorithm,
we take the complementary position that VAEs should also
be regularized toward representations bespoke to the task of
interest (Levine et al., 2019). We apply this perspective to
HVAE image synthesis and seek representations that will
improve the model’s image synthesis performance.

In order to find representations suitable for image synthesis,
we critically examine diffusion models, a special class of hi-
erarchical latent variable models that has demonstrated supe-
rior image synthesis performance in recent years (Ho et al.,
2020; Song & Ermon, 2019). Ho et al. (2020) suggested that
the diffusion model’s strong performance on image synthe-
sis may be attributable to such models having a bit ordering
that is good for progressive lossy compression—which we
shall refer to as the Progressive Coding Hypothesis. Our
main contributions are thus as follows,

1. We formalize the principle of progressive coding and
show that the diffusion model objective can be derived
as a special application of this principle.

2. We show that conventionally-trained HVAEs are subop-
timal progressive coders. We then develop an alterna-
tive training procedure that prioritizes the information-
theoretic bits beneficial for progressive coding, and
show that the resulting model has improved sample
quality as measured by FID—thus lending support to
the progressive coding hypothesis.

3. Finally, we take initial steps toward understanding why
the progressive coding hypothesis works in practice.

Our work supports the use of progressive coding as an ef-
fective principle for designing hierarchical variational au-
toencoders and encourages further research into the theory
and practice of progressive coding.
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2. Background
2.1. Hierarchical Latent Variable Models

A hierarchical latent variable model (HLVM) p(x, z1:T )
models an observed variable x as well as T levels of hi-
erarchical latent variables {zi}Ti=1, where each zi is a mul-
tivariate random variable. The hierarchical latent variables
are sampled in sequential order during generation, and the
full sampling process can be represented by the factorization

p(x, z1:T ) = p(x | z1:T )
T∏

i=1

p(zi | z<i).

Given a data distribution pdata(x), the goal of distribution
modeling is to optimize the HLVM p such that the marginal
distribution p(x) is close to the data distribution.

2.1.1. HIERARCHICAL VARIATIONAL AUTOENCODERS

A hierarchical variational autoencoder (HVAE) is an appli-
cation of the variational autoencoding framework (Kingma
& Welling, 2013; Rezende et al., 2014) to the hierarchical
generator p. This framework introduces a variational infer-
ence model q(z1:T | x) and then optimizes (p, q) jointly via
the Evidence Lower Bound (ELBO),

max
p,q

Epdata(x)Eq(z1:T )

[
ln

p(x, z1:T )

q(z1:T | x)

]
≡ Epdata(x)

[
Eq(z1:T |x) ln p(x | z1:T ) +DKL(q(z1:T | x) ∥ p(z1:T ))

]
,

which admits a decomposition (shown RHS) where the first
term minimizes reconstruction error and the second term
regularizes q toward the prior distribution p(z1:T ).

An important design choice when building an HVAE is
the conditioning structure for the inference model q. Al-
though earlier works on HVAEs (Burda et al., 2015) chose
to factorize the q in reverse generation order (also known as
bottom-up inference), Sønderby et al. (2016) proposed the
top-down inference process,

q(z1:T | x) =
T∏

i=1

q(zi | x, z<i),

which has become the predominant inference method of
choice in the current literature (Vahdat & Kautz, 2020; Child,
2020). In addition to its empirical efficacy, the top-down
factorization is also beneficial in that it decomposes the
regularization term into the following,

Epdata(x)DKL(q(z1:T | x) ∥ p(z1:T )) =

T∑
i=1

Epdata(x)

[
Eq(z<i|x)DKL(q(zi | x, z<i) ∥ p(zi | z<i))

]
,

which can be seen as a summation of conditional mutual
information bounds (Alemi et al., 2018; Poole et al., 2019)
since

I(Zi ;X | Z<i) ≤
Epdata(x)Eq(z<i|x)DKL(q(zi | x, z<i) ∥ p(zi | z<i)),

where the mutual information I(Zi;X | Z<i) is with respect
to the distribution pdata(x)q(z1:T | x). This relation moti-
vates the interpretation of the regularizer as an information-
theoretic rate which we shall discuss and take advantage of
in our examination of progressive coding in Section 3.

2.1.2. DENOISING DIFFUSION PROBABILISTIC MODELS

A denoising diffusion probabilistic model (DDPM), pro-
posed by Ho et al. (2020), is a special case of the HLVM
where each zi has the same dimensionality as x and p is
Markovian,

p(x, z1:T ) = p(x | zT )
T∏

i=1

p(zi | zi−1).

Similar to the HVAE, the DDPM also introduces an infer-
ence model q(z1:T | x). Crucially, however, q(z1:T | x) is
fixed to a prescribed diffusion process,

q(z1:T | x) = q(zT | x)
T−1∏
i=1

q(zi | zi+1),

where each zi is simply a Gaussian perturbation with pre-
scribed variance σ2

i of its conditioning parent variable. Be-
cause of the special restrictions imposed by the DDPM, the
generator p can be trained to maximize the likelihood

max
p

Epdata(x)Eq(z1:T |x) ln p(x, z1:T ),

which thus gives p the interpretation of reversing the diffu-
sion process defined by q. In practice, the DDPM introduces
a series of denoising functions di : X → X and parameter-
izes p as

p(zi | zi−1) = q(zi | zi−1, x = di−1(zi−1)) ∀i > 1

p(x | zT ) = N (x | dT (zT ), σ2
T+1I).

Recall that each q(zi | ·) is also a Gaussian distribution with
a prescribed σi. By substituting this parameterization into
the likelihood objective and omitting all of the weighting
terms introduced by σ2:T+1, the likelihood objective thus
reduces to the DDPM objective,

min
d1:T

T∑
i=1

Epdata(x)Eq(zi|x)∥x− di(zi)∥2.

Despite its simplicity, the DDPM has strong image synthesis
performance, inspiring many subsequent works (Song et al.,
2020; Kingma et al., 2021; Dockhorn et al., 2021; Jalal et al.,
2021).
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2.2. Lossy Compression

We consider lossy compressors consisting of a decoder d :
Z → X , a prior p(z), and a stochastic encoder q(z | x).
Such a model can perform lossy compression of a data point
x by lossily mapping x to a point z in latent space via the
encoder, performing compression/decompression of z in the
latent space using the prior1, and then decoding back into
the space of X using the decoder.

The model incurs a communication cost (i.e., rate) of

R = Epdata(x)DKL(q(z | x) ∥ p(z))

to lossily reconstruct the sample x̂ = d(z) for z ∼ q(z | x).
The reconstructed sample x̂’s fidelity to the original sample
x can then be measured via a distortion function f . On
average, the model will incur a distortion of

D = Epdata(x)Eq(z|x)f(x, d(z)).

We adopt a rate-distortion trade-off perspective to describe
the optimal rate for a given distortion and vice versa (Alemi
et al., 2018; Blau et al., 2018). We say that a lossy com-
pressor is γ-optimal if the compressor has rate R ≤ γ and
achieves the optimal distortion D = λ∗ under f , where λ∗

is the optimal value to the optimization problem

λ∗ =min
d,p,q

Epdata(x)Eq(z|x)f(x, d(z))

s. t. Epdata(x)DKL(q(z | x) ∥ p(z)) ≤ γ.
(1)

Conversely, the lossy compressor is λ-optimal if the com-
pressor has distortion D ≤ λ and achieves the optimal rate
R = γ∗, where

γ∗ =min
d,p,q

Epdata(x)DKL(q(z | x) ∥ p(z))

s. t. Epdata(x)Eq(z|x)f(x, d(z)) ≤ λ.
(2)

Both (γ, λ∗) and (λ, γ∗) optimally trade off rate for a given
distortion (and vice versa) and are thus considered pareto-
optimal points.

3. The Progressive Coding Hypothesis
In this section, we formalize the progressive coding hy-
pothesis presented in Ho et al. (2020). We shall begin by
showing how any HLVM paired with a top-down inference
model can be naturally converted into a progressive coder.
Next, we discuss why conventional ELBO-based training
of HLVMs may not necessarily lead to good progressive
coders. We then demonstrate how the special restrictions
imposed by DDPMs explain its progressive coding capabili-
ties. Finally, we present the progressive coding hypothesis,
based on the empirical observation that DDPMs are both
good progressive coders and strong image synthesizers.

1Continuous z’s must be discretized for source coding.

3.1. HLVM as Progressively Lossier Compressors

Given a hierarchical latent variable model (HLVM)

p(x, z1:T ) = p(x | z1:T )
T∏

i=1

p(zi | z<i)

equipped with inference model

q(z1:T | x) =
T∏

i=1

q(zi | z<i, x),

we make the observation that an HLVM defines, not just
one, but a sequence of T lossy compressors. Using the first
k latent variables in the hierarchy, we can define a lossy
compressor by considering the prior p(z1:k), the encoder
q(z1:k | x), and then learning a decoder via the optimization
problem

min
d

Epdata(x)Eq(z1:k|x)f(x, d(z1:k)).

The tuple (d, p, q) thus defines a compressor that employs
the first k latent variables of the HLVM and has an associ-
ated rate and distortion of (Rk, Dk). By decreasing k from
T to 1, we can build a series of progressively lossier com-
pressors that trades off rate against distortion according to
the points {(Rk, Dk)}Tk=1. Note that Rk+1 ≥ Rk because
of the data processing inequality. We shall refer to this se-
ries of progressively lossier compressors collectively as a
progressive coder.

3.2. HLVMs are Not Always Good Progressive Coders

A key observation of the progressive coding hypothesis is
that the points {(Rk, Dk)}Tk=1 are not necessarily pareto-
optimal. It is worth noting that for k = T , the point
(RT , DT ) will be pareto-optimal if the HLVM was trained
via an ELBO objective that employs f as the reconstruc-
tion term. Even then, however, there is no guarantee that
(Rk, Dk) is pareto-optimal for k < T , since strict subsets of
the HLVM’s latent variables were never directly optimized
to lower distortion.

3.3. DDPMs are Good Progressive Coders

If our goal were to encourage the HLVM to be a good pro-
gressive coder for all values k ∈ {1, . . . , T}, one approach
then is to define a sequence of rate targets {γ1, . . . , γT }
and simultaneously optimize all T constrained optimization
objectives described by Equation (1).2 Using scalarization,

2We treat the rate target sequence as a hyperparameter.
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this reduces to the following progressive coding objective

min
d1:T ,p,q

T∑
k=1

Epdata(x)Eq(z|x)f(x, dk(z1:k)) (3)

s. t. Epdata(x)DKL(q(z1:k | x) ∥ p(z1:k)) ≤ γk

∀k ∈ {1, . . . , T}.

Suppose, for the moment, that we restrict our HLVM to the
Gaussian variational family where each latent code zi has
the same dimensionality as x (i.e., q is a diffusion process).
The optimal q∗ to the objective Equation (3) will then simply
be a Gaussian Markov chain adhering to a specific noise
schedule, where each zi is simply a linear transformation
of x followed by the addition of some amount of noise.
Conversely, this also means that fixing q to a prescribed
noise schedule and then optimizing

d∗k = argmin
dk

Epdata(x)Eq(z1:k|x)f(x, dk(z1:k)) (4)

p∗ = argmin
p

Epdata(x)DKL(q(z1:T | x) ∥ p(z1:T )) (5)

will result in a compressor (d∗k, p
∗, q) that is γ-optimal for

some choice of rate target γk implied by q’s prescribed noise
schedule. In particular, the implicit rate target will be

γk = Epdata(x)DKL(q(z1:k | x) ∥ p∗(z1:k)).

From here, we can further simplify the objectives in Equa-
tions (4) and (5) as follows. First, since z<k is indepen-
dent of x when conditioned on zk due to the Markov chain
structure of q, it suffices to let zk be the only input to the
decoder dk (i.e., x̂ = dk(zk)). Next, since q is a Markov
chain, it suffices for p to also be a Markov chain where
p(z1:T ) =

∏T
k=1 p(zk | zk−1). We can then perform

parameter-sharing between p and dk by implicitly defin-
ing the prior as

p(zk | zk−1) = q(zk | x = dk−1(zk−1)). (6)

These simplifications thus reduce the progressive coding
objective to simply being

min
d1:T

T∑
k=1

Epdata(x)Eq(zk|x)f(x, dk(zk)) (7)

for a fixed choice of diffusion process q. When the distor-
tion function is taken to be mean-squared error f = ∥ · ∥2,
Equation (7) recovers the DDPM objective. This shows that
the DDPM objective is a special case of the progressing cod-
ing objective, and explains why DDPMs have an inductive
bias to be good progressive coders (Ho et al., 2020).

3.4. Progressive Coding and Sampling Quality

In the previous section, we observed that the DDPM ob-
jective is a special case of the progressive coding objective.
This observation is significant because Ho et al. (2020) sug-
gested that DDPM’s superior image synthesis capabilities
may be attributable to it being a good progressive coder
with respect to mean-squared error (MSE) distortion. The
progressive coding hypothesis, thusly stated, is that training
an HLVM to be a good progressive coder with respect to
mean-squared error will improve its sampling quality.3 For
notational simplicity, all subsequent mentions of progressive
coding will be with respect to mean-squared error distortion
unless otherwise specified.

For the remainder of this paper, we shall test this hypothesis
in the context of another class of HLVMs—namely, the
hierarchical variational autoencoder (HVAE). Since we can
analyze and train HVAEs via the more generalized concept
of progressive coding presented in Equations (1) to (3), we
shall examine the extent to which conventionally-trained
HVAEs are good at progressive coding, and test whether
training HVAEs explicitly via a progressive coding objective
will improve its sampling quality.

4. HVAEs are Not Good Progressive Coders
Our paper will consider the simplest case of progressive
coding, where we partition an HVAE’s hierarchical latent
variables z1:T into two groups (z1:K , zK+1:T ), where the
choice of K is prescribed. Our decision to tackle the most
basic case of progressive coding stems from the simplicity
of the experimental design as well as the observation that
diffusion-based models appear to work well even with very
few diffusion steps (Anonymous, 2022; Xiao et al., 2021).
Of particular interest to us is the pareto-optimality of the
information encoded by z1:K , since conventionally-trained
HVAE do not directly subject the strict subset z1:K to direct
decoding and distortion minimization. Our goal in this sec-
tion is to analyze the rate-distortion (RK , DK) associated
with the representation z1:K learned by a conventionally-
trained HVAE and assess its pareto-optimality.

4.1. Method

Our experimental procedure begins by training an HVAE
conventionally via ELBO maximization. We then measure
the rate,

RK = Epdata(x)DKL(q(z1:K | x) ∥ p(z1:K)),

3It may come as a surprise to see mean-squared error as the
distortion function of choice for improving image sample quality.
We shall examine the connection between pixel-space MSE and
the perceptual similarity metric LPIPS in Section 6.



Bit Prioritization in Variational Autoencoders via Progressive Coding

associated with the first K latent variables learned by the
HVAE for some choice of K. To decode directly from z1:K ,
we fix our learned q and measure the associated distortion
DK via the following optimization problem

DK = min
d

Epdata(x)Eq(z1:K |x)∥x− d(z1:K)∥2.

To determine the pareto-optimality of (RK , DK), we set
the target rate to γ = RK and determine the γ-optimal
distortion via

λ∗ =min
d,p,q

Epdata(x)Eq(z1:K |x)∥x− d(z1:K)∥2

s. t. Epdata(x)DKL(q(z1:K | x) ∥ p(z1:K)) ≤ RK .

We optimize this objective using a Lagrange multiplier
(Zhao et al. (2018); Appendix A.5). Our solution to the
optimization problem gives us an (upper bound) estimate of
λ∗. This then allows us to compare DK against λ∗ to assess
the pareto-optimality of (RK , DK).

Here, we note that training HVAEs with a rate-constraint
bears similarity to the Generalized ELBO with Constrained
Optimization (GECO) described by Rezende & Viola
(2018). However, GECO gradually anneals the constraint
as a tool for improving optimization stability; in contrast,
we adopt a fixed constraint and apply rate-constrained opti-
mization simply as a means of investigating the progressive
coding hypothesis.

We conduct the experiment on SVHN, CelebA, and LSUN-
Bedrooms by first training a VDVAE (Child, 2020). Since
VDVAE has a convolutional architecture with spatial latent
variables, we set K to be such that zK’s spatial resolution
is eight times smaller than the original height and width
dimensions of the image dataset. In particular, for SVHN,
we chose K so that z1:K is the set of all latent variables with
spatial resolution 4×4 or smaller; for CelebA-64 and LSUN-
Bedrooms-64, we chose K so that z1:K has resolution 8× 8
or smaller.

4.2. Results

Table 1 compares the rate-distortion trade-off in the first
K latent variables achieved by conventional training ver-
sus γ-optimal training. Since we set the rate-target to
γ = RK , both conventional training and γ-optimal training
achieve roughing similar rates. However, γ-optimal training
achieves significantly better mean-squared error—roughly
halving the mean-squared error DK achieved by conven-
tional training across all three datasets. This indicates that
the point (RK , DK) achieved by conventional training is
not pareto-optimal.

We compare the reconstructed images achieved by conven-
tional versus γ-optimal training in Figure 1. We see that γ-
optimal training results in sharper and higher-fidelity recon-
structions, demonstrating that the improved mean-squared

Table 1. Comparison of DK associated with a conventionally-
trained HVAE against our estimate of the γ-optimal distortion
λ∗ achieved by rate-targeted training where γ = RK . We report
our estimate as an upper bound on λ∗. We also report the realized
rate R′

K that is actually achieved by the rate-targeted model. All
values are per-dimension (i.e., normalized by the data dimension-
ality).

Conventional Training γ-Optimal Training

Dataset RK DK R′
K ≥ λ∗

SVHN 0.0168 0.0200 0.0162 0.0063
CelebA 0.0142 0.0274 0.0135 0.0128
LSUN 0.0187 0.0611 0.0181 0.0339

Figure 1. For each dataset (in order: SVHN, CelebA, LSUN), we
compare the original image (top row), the reconstructions from
conventional training (middle row), and the reconstructions from
γ-optimal training (bottom row). Using γ-optimal training results
in sharper and higher-fidelity reconstructions.

error has a perceptually-noticeable impact on the reconstruc-
tions. Overall, we conclude that the representations z1:K
learned by conventional training are not good for lossy com-
pression, and thus that conventionally-trained HVAEs are
not good progressive coders.
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5. Progressive Coding Improves Sample
Quality in HVAEs

Previously, we partitioned the hierarchical latent vari-
ables of a conventionally-trained HVAE into two groups
(z1:K , zK+1:T ) and showed that the associated rate-
distortion point (RK , DK) is not pareto-optimal, indicating
that conventionally-trained HVAEs are not good progres-
sive coders. In this section, we shall encourage the HVAE
to be better at progressive coding by proposing an alterna-
tive training procedure—one which forces (RK , DK) to
be pareto-optimal. We shall then test whether doing so
improves the HVAE’s sampling quality.

Here, we note that the exact choice of pareto-optimal point
may be critical; choosing the pareto-optimal point where
RK = 0 will in fact harm the model’s performance since it
will prevent the HVAE from making statistical use of its first
K latent variables. This would be analogous to injecting an
arbitrarily large amount of noise in the middle of a DDPM’s
diffusion process. Similar to how the choice of noise sched-
ule is important for diffusion models with a discrete number
of diffusion steps (Kingma et al., 2021), we treat the selec-
tion of the pareto-optimal point as a hyperparameter.

Our procedure for enforcing (RK , DK) to be pareto-optimal
is simple; Equations (1) and (2) offer two such methods for
selecting a pareto-optimal point: either fix a rate target γ
and directly optimize z1:K to minimize distortion, or fix
a distortion target λ and directly optimize z1:K to mini-
mize rate. These procedures, respectively, will require us to
prescribe a choice of rate target or distortion target as a hy-
perparameter. We choose to work with distortion-targeting
because we find the Euclidean distance more intuitive than
an information-theoretic quantity; in particular, it is useful
that a mean-squared error of zero corresponds to perfect re-
construction, whereas it is unclear how large the rate should
be to achieve near-perfect reconstructions. We shall thus
proceed by describing the our distortion-targeting procedure,
and how we trained the remaining zK+1:T latent variables
in the full HVAE.

5.1. Method

To enforce pareto-optimality of (RK , DK), we optimized
the following objective function,

min
d,p,q

Epdata(x)DKL(q(z1:K | x) ∥ p(z1:K))

s. t. Epdata(x)Eq(z1:K |x)f(x, d(z1:K)) ≤ λ,

for various choices of distortion target λ. Optimizing this
objective allows us to learn the subcomponents p(z1:K)
and q(z1:K | x) of the HVAE, and ensures that the la-
tent variables z1:K are trained so that (RK , DK) is pareto-
optimal. To complete the full HVAE, we must still learn
p(x, zK+1:T | z1:K) and q(zK+1:T | x, z1:K). To do

so, we simply freeze our learned choices for p(z1:K) and
q(z1:K | x) and optimize the remaining subcomponents of
the HVAE via the ELBO objective

min
p′,q′

Epdata(x)

[
Eq(z1:T ) ln p(x | z1:T )

+DKL(q(z1:T | x) ∥ p(z1:T ))

]
,

where p′ and q′ denote optimization over the specific sub-
components p(x, zK+1:T | z1:K) and q(zK+1:T | x, z1:K).

Stated as such, our method for encouraging progressive cod-
ing is simply a two-stage training procedure that first learns
the representations z1:K in the first stage which directly ex-
poses them to distortion minimization, followed by learning
the remaining representations zK+1:T in the second stage
in accordance to the ELBO objective. This procedure can
easily be extended to a multi-stage training when enforc-
ing progressive coding over more than two groups of latent
variables.

In practice, however, the typical architectural choices for
HVAEs (and for us in particular, the VDVAE) often have
parameter-sharing within and across p and q that make sub-
component freezing a challenge. We break the parameter-
sharing by instead training two fully-fledged VDVAEs and
considering the composition of the two VDVAEs to be our
full HVAE. In the first stage, we train an unconditional
VDVAE to minimize rate while targeting a particular mean-
squared error distortion.4 In the second stage, we then train
a conditional VDVAE that learns to conditionally generate
the original image based on the reconstructed image from
the first-stage VDVAE.5 The sampling procedure for the
full HVAE thus involves first unconditional sampling from
the first-stage VDVAE, followed by conditional sampling
second-stage VDVAE conditioned on the first-stage sample.
For fair comparison against a conventionally-trained HVAE,
we made sure that the conventionally-trained HVAE has
the exact same functional parameterization and number of
trainable parameters as our full model—differing only in
the choice of parameter values due to different training pro-
cedures. Similar to Section 4, we conduct our experiments
on SVHN, CelebA, and LSUN-Bedrooms. To test whether
progressive coding improves sampling quality, we compare
the FID scores (Heusel et al., 2017) for the conventionally-
trained HVAE versus our progressively-coded HVAE.

4To do so, we replaced the discretized mixture of logistics head
with a linear head.

5We condition on the reconstructed image rather than directly
on the first-stage VDVAE’s representations in part because of archi-
tectural convenience, and in part because the reconstructed image
can be seen as a summarization of the first-stage representations.
This gives our second-stage VDVAE the interpretation as a proba-
bilistic deblurring autoencoder, since it conditions on the blurry
images constructed by the first-stage VDVAE.
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5.2. Results
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Figure 2. Rate versus distortion curves for the first-stage VDVAE
models trained with six different distortion targets. All values are
per-dimension. We also show representative reconstructions from
all six VDVAEs (in order from highest to lowest distortion target),
where the first column is the original image.

Table 2. Quantitative evaluation of conventionally-trained versus
our progressively-coded HVAEs. ELBOs are per-dimension (i.e.,
normalized by the data dimensionality).

Conventional Training Progressive Coding

Dataset ELBO FID ELBO FID

SVHN −1.31 18.92 −1.46 10.07
CelebA −1.44 13.33 −1.58 8.54
LSUN −1.72 40.71 −1.78 36.87

We show the results of our first-stage VDVAE training
(with a series of exponentially smaller distortion-targets
{0.0512, . . . , 0.0032, 0.0016, 0.0008}) in Figure 2. Our vi-
sualization of how the reconstructions change across models
further show that below a distortion-target of ∼0.0032, the
any further improvements in mean-squared error become
nearly-imperceptible despite incurring a large rate. To build
the second-stage VDVAE, we used the first-stage VDVAE

Figure 3. For each dataset (in order: SVHN, CelebA, LSUN), we
compare non-cherry picked samples from conventional training
(top row), versus the samples progressive training. We do not use
reduced-temperature sampling (Kingma & Dhariwal, 2018). In
SVHN and CelebA, we see greater global structural consistency
of the samples from the progressively-coded HVAE.

with distortion-target 0.0032 for SVHN and CelebA. Due
to LSUN’s generally higher rate, we instead used the VD-
VAE with distortion-target 0.0064. We compare the full
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HVAE using conventional training versus our two-stage
progressive-coding-based training procedure. Table 2 shows
our quantitative evaluation of these two models on ELBO
and FID. Our progressively-coded HVAE achieves better
FID scores with slightly worse ELBO (to be expected since
conventional training is unconstrained optimization of the
ELBO). Visual inspection of the samples in Figure 3 further
supports the hypothesis that progressive coding yields better
sampling quality. This is especially evident in CelebA and
SVHN, where we see the greatest percent FID improvement.

6. Mean-Squared Error and Perceptual
Similarity

We showed in Section 5 that progressive coding can signifi-
cantly improve HVAE’s sampling quality. This phenomenon
naturally raises an important question: why does progres-
sive coding improve sample quality—let alone progressive
coding with respect to mean-squared error distortion? In
this section, we shall shed some additional light on this
phenomenon.

0.00 0.01 0.02 0.03 0.04 0.05
Mean-Squared Error

0.0

0.1

0.2

0.3

0.4

0.5

LP
IP

S
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Figure 4. Comparison of LPIPS versus mean-squared error for our
first-stage VDVAE models. In all three datasets, we see a clear
correlation between LPIPS and mean-squared error.

We begin by remarking on the relation between pixel-space
mean-squared error and perceptual similarity for natural
images. It is well-known that, in general, mean-squared
error is a poor measure of perceptual similarity (Blau et al.,
2018). We can see this by considering two hypothetical
compressors—one which translates the image during recon-
struction, and another which deletes the middle of the image
during reconstruction. It is possible for both compressors to
achieve the same mean-squared error distortion, even though
deletion is a perceptually more aggressive operation. This
means that if we were to plot the set of all possible compres-
sors by comparing each compressor’s average mean-squared

error distortion against its average perceptual similarity dis-
tortion (i.e., using Zhang et al. (2018)’s LPIPS), we will
likely find no meaningful correlation.

Crucially, however, the aforementioned reasoning does not
consider the rate of each compressor. If we restrict our
hypothetical plot solely to the set of compressors (d, p, q)
that are rate-minimal for any choice of mean-squared error
target,

{(d, p, q) | ∃λ, (d, p, q) is λ-optimal},

it is no longer clear what the resulting LPIPS versus mean-
squared error plot will look like. We therefore conduct this
experiment using the first-stage VDVAE models that we
trained in Section 5, by measuring each model’s image re-
constructions based on both mean-squared error and LPIPS.

Figure 4 demonstrates a surprising monotonicity between
LPIPS and pixel-space mean-squared error even in the large-
error regime.6 This suggests that rate-minimization with a
targeted mean-squared error distortion is in fact prioritizing
perceptually relevant information. If so, then we can inter-
pret progressive coding with respect to mean-squared error
as prioritizing the modeling of more perceptually impor-
tant information first. We further speculate that modeling
perceptually-relevant information first may be important
because it makes the perceptually-relevant information less
susceptible to cascading error during sampling—a potential
issue if the information had been modeled further down-
stream in the hierarchical model. While subjecting this con-
jecture to rigorous testing is beyond the scope of this paper,
we hope that this perspective will serve as a promising can-
didate hypothesis for future research on this phenomenon.

7. Conclusion
In this work, we reframed the task of image synthesis as
a representation learning problem and sought to regularize
HVAEs toward representations that will improve its sam-
pling quality. We formalized the progressive coding hypoth-
esis presented in Ho et al. (2020) and proposed a simple
progressing coding-based training procedure that can be ap-
plied to HVAEs. Our experiments show that conventionally-
trained HVAEs are poor progressive coders, and that train-
ing the HVAE to be a better progressive coder improves

6This finding seems to be at odds with existing literature that
stipulates a trade-off between mean-squared error distortion and
perception (Blau & Michaeli, 2018; 2019). We attribute our con-
trary finding to our differing definitions of perceptual quality—we
rely on LPIPS, which measures perceptual similarity between the
reconstructed image and the original reference image, versus the
“no-reference” perceptual quality index used in Blau & Michaeli
(2019), which measures the divergence between the original ver-
sus reconstructed distributions. Understanding why mean-squared
error for λ-optimal models tracks with LPIPS remains an open
research problem.
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its sampling quality. Our work lends further support to
the progressive coding hypothesis and suggests promising
future research directions into the theory of progressive
coding (such as why the mean-squared error distortion for
rate-minimal compressors appears to track with perceptual
similarity) as well as its application to variational autoen-
coders (such as scaling the application of progressive coding
to more levels of hierarchy in HVAEs).
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A. Training Information
A.1. VDVAE Hyperparameters

Across all experiments, we use the default official VDVAE implementation with the following specifications applied to the
hyperparameter file hps.py

svhnx.dec_blocks = "1x1,4m1,4x2,8m4,8x5,16m8,16x10,32m16,32x21"
svhnx.enc_blocks = "32x11,32d2,16x6,16d2,8x6,8d2,4x3,4d4,1x3"
svhnx.n_batch = 12

celeba.dec_blocks = "1x1,4m1,4x2,8m4,8x5,16m8,16x10,32m16,32x21,64m32,64x5"
celeba.enc_blocks = "64x5,64d2,32x11,32d2,16x6,16d2,8x6,8d2,4x3,4d4,1x3"
celeba.n_batch = 6

lsun.dec_blocks = "1x1,4m1,4x2,8m4,8x5,16m8,16x10,32m16,32x21,64m32,64x5"
lsun.enc_blocks = "64x5,64d2,32x11,32d2,16x6,16d2,8x6,8d2,4x3,4d4,1x3"
lsun.n_batch = 6

# The following is applied to all datasets:
parser.add_argument(’--width’, type=int, default=384)
parser.add_argument(’--zdim’, type=int, default=16)
parser.add_argument(’--lr’, type=float, default=0.0002)
parser.add_argument(’--skip_threshold’, type=float, default=500.0)
parser.add_argument(’--skip_threshold’, type=float, default=500.0)
parser.add_argument(’--ema_rate’, type=float, default=0.9999)
parser.add_argument(’--adam_beta1’, type=float, default=0.9)
parser.add_argument(’--adam_beta2’, type=float, default=0.9)
parser.add_argument(’--warmup_iters’, type=float, default=0)

We shall refer to this setup as the “original” VDVAE setup. We apply experiment-specific minor modifications, which we
shall describe below.

A.2. (RK , DK) Pareto-Optimality Experiment

We first trained the original VDVAE for 800K steps. We then created a masked VDVAE decoder which takes as inputs
only the first z1:K latent variables via the Decoder.forward manual latents functionality. We mask out the latent
variables zK+1:T in the second decoder. We train the second decoder for 400K steps.

To perform γ-optimal training of the VDVAE with only the first z1:K latent variables, we simply paired the original encoder
with our masked VDVAE decoder (where we replaced the discreteized mixture of logistics head (DmolNet) with a 1× 1
convolutional head to do mean prediction) and perform joint training on objective in Equation (1) for 400K steps.

A.3. First-Stage VAE

In order to perform distortion-targeting, we removed the discretized mixture of logistics head and simply replaced it with a
1× 1 convolutional head to do mean prediction. We train all models for 800K steps.

A.4. Second-Stage VAE

Our second-stage VAE conditions on the output of the first-stage model to predict the original data point. We use exactly the
same architecture as the first-stage VDVAE with the following architectural modifications:

1. Our encoder takes as input both the original data point and the first-stage model prediction.

2. Our decoder must also conditional now condition on the first-stage model prediction. To do so, we create a second
encoder (same architecture, except for taking only the first-stage model prediction as input), and supply the hidden
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representations from this encoder to the existing VDVAE decoder, thus achieving a U-Net architecture (Ronneberger
et al., 2015).

3. We preserve the use of the discretized mixture of logistics head from the original VDVAE in order to optimize for
ELBO.

To perform progressive coding, we train the first-stage VDVAE based on the λ-optimal training (i.e. distortion-targted
training) objective, freeze the first-stage VDVAE, and then training the second-stage VDVAE (for 800K steps). To perform
conventional training, we simply jointly trained both the first and second-stage VDVAEs end-to-end via ELBO maximization
for 800K steps. Note that every trainable parameter in both the two-stage training process and the end-to-end conventional
training process is thus updated exactly 800K times.

A.5. Constrained Optimization via Lagrangian Multiplier Optimization

Letting R(p, q) and D(d, q) denote the rate and distortion (as measured by mean-squared error) respectively, we can follow
Zhao et al. (2018) and perform λ-optimal training by jointly optimizing the following two objectives with gradient descent.

minimize
d,p,q

R(p, q) +D(d, q) + η · (D(d, q)− λ) (8)

maximize
η

η · (D(d, q)− λ), (9)

where η denotes the the Lagrange multiplier for our constraint. In practice, we instead perform

minimize
p,q

(1− η) ·R(p, q) + η ·D(d, q) (10)

maximize
η

η · (D(d, q)− λ). (11)

The general intuition still holds: if D > λ, then Equation (11) is maximized by increasing η, which in turn encourages
Equation (10) to reduce D. We restrict η ∈ [0.0001, 0.9999] via projected gradient descent and initialize at η = 0.9999 to
mimic KL annealing Sønderby et al. (2016). We use the same technique described above to also perform γ-optimal training
(simply swap the targeted term from D to R).

We optimize the Lagrange multiplier with Adam as well, using a learning rate of 0.0002 and (β1, β2) = (0, 0.999), as well
as an exponential moving average of 0.99 to slow down and smooth out the adjustment of the Lagrange multiplier in our
weighted rate-distortion objective in Equation (8).
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B. Additional Sample Visualizations

Figure 5. SVHN samples from conventionally-trained HVAE (top) versus progressively-coded HVAE (bottom).
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Figure 6. CelebA samples from conventionally-trained HVAE (top) versus progressively-coded HVAE (bottom).
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Figure 7. LSUN-Bedrooms samples from conventionally-trained HVAE (top) versus progressively-coded HVAE (bottom).


