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Abstract
The acquisition function, a critical component in
Bayesian optimization (BO), can often be written
as the expectation of a utility function under a sur-
rogate model. However, to ensure that acquisition
functions are tractable to optimize, restrictions
must be placed on the surrogate model and utility
function. To extend BO to a broader class of mod-
els and utilities, we propose likelihood-free BO
(LFBO), an approach based on likelihood-free in-
ference. LFBO directly models the acquisition
function without having to separately perform in-
ference with a probabilistic surrogate model. We
show that computing the acquisition function in
LFBO can be reduced to optimizing a weighted
classification problem, where the weights corre-
spond to the utility being chosen. By choosing
the utility function for expected improvement (EI),
LFBO outperforms various state-of-the-art black-
box optimization methods on several real-world
optimization problems. LFBO can also effec-
tively leverage composite structures of the ob-
jective function, which further improves its regret
by several orders of magnitude.

1. Introduction
Bayesian optimization (BO) is a framework for global op-
timization of black-box functions, whose evaluations are
expensive. Originated from applications on engineering de-
sign (Kushner, 1962; 1964; Močkus, 1975), BO has seen
successes in various domains, including automated ma-
chine learning (Bergstra et al., 2011; Snoek et al., 2012;
Swersky et al., 2013), simulation optimization (Pearce &
Branke, 2017; Wang et al., 2020), drug discovery (Griffiths
& Hernández-Lobato, 2020), graphics (Brochu et al., 2007;
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Koyama et al., 2017), robotics (Calandra et al., 2016), and
battery charging protocols design (Attia et al., 2020).

A cornerstone of BO methods is the acquisition function that
determines which candidates to propose for function eval-
uations. Many acquisition functions can be written in the
form of the expectation of a utility function over a surrogate
model (Wilson et al., 2018; Garnett, 2022). To evaluate and
optimize these acquisition functions effectively, the surro-
gate model is often chosen to produce tractable probability
estimates (e.g., Gaussian processes (Rasmussen, 2003)), and
the utility functions are often chosen such that the expecta-
tions can be computed analytically, such as Probability of
Improvement (PI, (Kushner, 1964)).

However, the requirements of tractability and efficiency of-
ten exclude popular families of surrogate models and utility
functions relevant to the optimization problem. For instance,
implicit models defined via simulators (Diggle & Gratton,
1984) may fit the data-generating process better but do not
have tractable probability estimates. Meanwhile, objectives
that are defined over many correlated outcomes are often
partially known (i.e., in a grey-box BO setting (Astudillo &
Frazier, 2022; Maddox et al., 2021)), yet utilities defined for
these objective functions may not have tractable integrals
even for Gaussian process surrogate models. While Monte
Carlo methods can be employed here (Astudillo & Frazier,
2019; Kleinegesse & Gutmann, 2019), they scale poorly
when many samples are needed for low variance estimates.

Inspired by how likelihood-free density ratio estimation ex-
tends variational inference to implicit models (Sugiyama
et al., 2012; Tran et al., 2017), we describe a general ap-
proach to obtain “likelihood-free” acquisition functions that
extend BO to a broader class of models and utilities. We
develop a likelihood-free method that directly estimates the
ratio between any pair of non-negative measures; this in-
cludes any acquisition function with a non-negative utility
function, and allows us to directly model it without having
to separately perform inference with a probabilistic surro-
gate model. Our likelihood-free BO (LFBO) approach can
be reduced to a weighted classification problem, which is
easy to implement for general utility functions.

We evaluate our LFBO method empirically on a number
of synthetic and real optimization problems. On several
real-world benchmarks, LFBO outperforms various state-of-
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Figure 1. BO over a synthetic function g(x) = − sin(3x)− x2 +
0.6x with noise N (0, 0.01). (Top) the objective function g(x)
with n = 15 noisy observations and the threshold τ . (Bottom)
the evaluated acquisition function values with Gaussian Process
(GP, red) and our likelihood-free BO (LFBO, blue) over PI and
EI utility functions. Our LFBO acquisition function does not
separately perform probabilistic inference over a surrogate model
and can adapt to any non-negative utility function.

the-art methods in black-box optimization. On two neural
network tuning tasks, we show that LFBO can further be
improved with other novel utility functions. On an envi-
ronmental modeling problem (Astudillo & Frazier, 2019),
LFBO can leverage the special composite structure of the
objective function and improve its optimization efficiency.

2. Background
Bayesian optimization (BO) aims to find a strategy that
effectively maximizes a black-box function g : X → R,
given available information regarding g as a set of n obser-
vations Dn = {(xi, yi)}ni=1; it is commonly assumed that
yi = g(xi) + ϵ is observed with noise ϵ. In sequential deci-
sion making settings, at each iteration i, BO methods select
the next query xi via maximizing an acquisition function
L : X → R, which utilizes a surrogate model M.

M may provide a probabilistic interpretation of g, which
can then be used to evaluate the acquisition function at any
point x ∈ X . After updating the model parameters based on
Dn, a belief over g(x) can be formed as p(y|x,Dn). The
Gaussian process (GP, Rasmussen (2003)) is a popular surro-
gate model due to its posterior being analytically tractable;
however, the basic form of GP requires O(n3) computa-
tional complexity to perform posterior inference, making
it difficult to scale with large observation sets. Although
researchers have proposed sparse GPs with approximations
for improved scalability, the inference time still scales with

the number of data points (e.g., O(n) in (Titsias, 2009)).

Acquisition functions based on expected utility. Many
acquisition functions at an input location x are defined as an
expected utility (EU) over the posterior belief p(y|x,Dn):

L(u)(x;Dn, τ) = Ey∼p(y|x,Dn)[u(y; τ)] (1)

=

∫
u(y; τ)p(y|x,Dn)dy, (2)

where u(y; τ) is a chosen utility function with hyperparam-
eter τ ∈ T (T is the set of allowed values) that specifies
the utility of observing y at x and controls the exploration-
exploitation trade-off (Wilson et al., 2018; Garnett, 2022).
The most common examples are Probability of Improve-
ment (PI, Kushner (1964)) whose utility indicates whether
y exceeds τ :

uPI(y; τ) := I(y − τ > 0), (3)

where I is the binary indicator function; and Expected Im-
provement (EI, Mockus et al. (1978)) whose utility indicates
how much y exceeds the threshold τ :

uEI(y; τ) := max(y − τ, 0). (4)

Other examples include Entropy Search (ES, Hennig &
Schuler (2012); Hernández-Lobato et al. (2014)) and Knowl-
edge Gradient (Frazier et al., 2008; Scott et al., 2011), whose
utilities are more complicated expectations themselves.

Acquisition functions based on density ratios. While
most methods used in BO model the distribution of out-
comes of the black-box function g, some methods do not
use an explicit model in the form of p(y|x,Dn), and instead
model the acquisition function directly via density ratios
over x. Density ratio (DR) acquisition functions (Bergstra
et al., 2011) expresses the acquisition function with the ra-
tio of two model densities1 over x, p(x|y > τ,Dn) and
p(x|y ≤ τ,Dn), that models the densities of x conditioned
on y being above or below the threshold τ , respectively2:

LDR(x;Dn, τ) =
p(x|y > τ,Dn)

p(x|Dn)
(5)

=
p(x|y > τ,Dn)

p(x|y > τ,Dn)γDn
+ p(x|y ≤ τ,Dn)(1− γDn

)
,

where γDn
:= p(y > τ |Dn). Intuitively, when the ratio in

Equation 5 is high for a certain x, it is believed to produce

1We overload the term “density” to include “probability” for
discrete measures; we also consider maximization instead of mini-
mization of objectives.

2Throughout the paper, we use the notation L to indicate acqui-
sition functions that explicitly use tractable forms of p(y|x,Dn),
and the notation L to indicate acquisition functions that do not
(e.g., acquisition functions based on density ratios).



favorable outcomes (larger than τ ) with a high probability;
this makes density ratios being successfully used in hyper-
parameter tuning and neural architecture search (Bergstra
et al., 2013).

To estimate this density ratio, Bergstra et al. estimate the
numerator and denominator with two seprate Tree Parzen Es-
timators (TPE), whereas Bayesian optimization by density-
ratio estimation (BORE, Tiao et al. (2021)) estimate this den-
sity ratio directly with likelihood-free inference (Sugiyama
et al., 2012). Bergstra et al. and Tiao et al. further argue
that the DR acquisition function is equivalent to the EI ac-
quisition function up to some constant factor; thus DR is
limited to one particular type of utility function (which is
supposedly EI). In Section 3, however, we prove that DR is
equivalent to PI instead of EI, and then propose a solution
to generalize DR-based BO to other acquisition functions,
including EI.

3. Likelihood-free Bayesian Optimization
As discussed earlier, the acquisition function is constructed
by two components, the surrogate model and the utility func-
tion3, over which restrictions are often placed to ensure that
the acquisition function is tractable and efficient to compute.
To allow tractable inference, EU acquisition functions often
choose models such that p(y|x,D) is explicitly defined (e.g.,
Gaussian), which excludes other popular models such as
implicit, simulator-based models (Diggle & Gratton, 1984)
that do not have tractable likelihood estimates. While DR
acquisition functions do not pose such limitations, they are
limited in terms of the utility function and cannot effectively
leverage knowledge of the structure of function g(x) in a
grey-box BO setting (Astudillo & Frazier, 2022).

Inspired by how likelihood-free variational inference (VI)
extends VI to implicit models, we develop “likelihood-free”
acquisition functions that extend BO to more general models
and utility functions. First, we introduce a formal defini-
tion for when a likelihood-free acquisition function admits
a certain utility function (Section 3.1). We then develop
likelihood-free acquisition functions that can admit any
non-negative utility function (Section 3.2) and discuss a
special case that amounts to weighted classification (Sec-
tion 3.3). Finally, we discuss the representation capability
of likelihood-free acquisition functions (Section 3.4).

3.1. Equivalence between Acquisition Functions

Before we establish our likelihood-free BO method, we
introduce an equivalence relationship among acquisition
functions that describes if two acquisition functions would
behave identically under infinite observations, even with dif-
ferent types of surrogate models. This allows us to replace

3In the case of DR, the utility function is implicitly chosen.

the expected utility acquisition function with an equiva-
lent likelihood-free approach in practical scenarios, where
the difference in exploration-exploitation trade-offs would
only occur from the difference in models fitted from finite
queries.
Definition 3.1 (Equivalence between acquisition functions).
Assume that the statistical models that we consider are con-
sistent (satisfying Assumption A.3 in Appendix A). For
all n ∈ N, let D(1)

n and D(2)
n denote the random variables

representing n non-i.i.d. queries from two valid sequential
decision making processes for the same black-box function
(satisfying Definition A.1 in Appendix A). Let Ac(1) and
Ac(2) denote two acquisition functions with the same search
space X and hyperparameter space T . We say that “Ac(1) is
equivalent to Ac(2)” if ∀x ∈ X , τ ∈ T , a positive constant
factor α, and a constant β, the following is true:

plim
n→∞

Ac(1)(x;D(1)
n , τ) = α plim

n→∞
Ac(2)(x;D(2)

n , τ) + β.

We note that for a sequential decision process to be valid
(Definition A.1), it needs to place non-zero probabilities to
every point in the search space. Since any ϵ-greedy strat-
egy with ϵ > 0 would satisfy this, our condition here is
reasonable (as we can apply ϵ-greedy strategy to any deci-
sion process based on acquisition functions). Moreover, a
similar consistency assumption is often made for GP-based
methods (Williams & Rasmussen, 2006).

With this definition, the claim that DR acquisition functions
being equivalent to the EI acquisition function (Bergstra
et al., 2011; Tiao et al., 2021) may be interpreted as “LDR

is equivalent to LEI”. Unfortunately, this interpretation is
inaccurate according to our definitions. In Proposition 3.2,
we introduce an equivalence result between DR and PI. This
echos the claim made in Garnett (2022).
Proposition 3.2. LDR is equivalent to LPI.

Proof. In Appendix A.2.

The above statement indicates that the density ratio acquisi-
tion functions are equivalent to probability of improvement
under the same τ , which justifies its practical effectiveness.
However, as PI and EI are clearly different acquisition func-
tions, DR cannot be equivalent to EI4. We include a formal
statement in Corollary A.4 and its proof in Appendix A.

Another intuitive argument for the non-equivalence between
DR and EI is through the weights of the observed y in the
acquisition function: for a fixed threshold τ , DR would treat
all (x, y) pairs above it with equal importance (just like how
PI does), whereas EI also considers how much y is greater
than τ and places more importance when (y − τ) is higher.

4We note that in Tiao et al. (2021), the “equivalence” between
DR and EI are established only for specific surrogate models.
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Figure 2. Overview of several types of acquisition functions for BO. (Top) Closed-form acquisition functions in the form of expected
utility often require certain utility functions (e.g., PI and EI) and certain surrogate models (e.g., GPs). (Middle) BORE (Tiao et al., 2021)
uses simple, deterministic models (e.g., neural networks, decision trees) to model a density ratio with likelihood-free inference, but this
limits its utility function to the one associated with PI. (Bottom) Our likelihood-free BO approach extends BORE to any non-negative
utility function, including the one associated with EI and others whose expectations may not have a closed-form solution (e.g., composite
function EI in (Astudillo & Frazier, 2019)).

3.2. A General Recipe for Likelihood-free BO

Given the above results, it is natural to ask if there exists
another likelihood-free acquisition function that is actually
equivalent to EI. Here, we provide a general approach to ob-
tain likelihood-free acquisition functions that are equivalent
to acquisition functions based on any non-negative expected
utility function, which naturally includes both EI and PI.

Our approach is inspired by density ratio estimation via
variational f -divergence estimation (Nguyen et al., 2008)
but generalizes it beyond the ratio between densities. The
following lemma provides a variational representation for
the expected utility at any point x, provided with samples
from some p(y|x) (that may or may not depend on data).
This enables us to replace integration (that are potentially
intractable for complex p(y|x) and u) with a variational
objective (that can be performed on samples).
Lemma 3.3 (Variational representation of an integral). For
all non-negative utility functions u : R× T → [0,∞), and
for all strictly convex functions f : [0,∞) → R with third
order derivatives,

Ep(y|x)[u(y; τ)] =

argmax
s∈[0,∞)

Ep(y|x)[u(y; τ)f
′(s)]− f⋆(f ′(s)),

where f⋆ is the convex conjugate of f , and the maximization
is performed over the s ∈ [0,∞) (the domain of f ).

Proof. In Appendix A.3.

By minimizing a variational objective averaged under any

distribution that is supported on the search space X , we can
recover an acquisition function over x that is equivalent to
any expected utility acquisition function in the form of Equa-
tion 2. This new acquisition function is likelihood-free, in
the sense that it does not model distributions with a tractable
probability and only uses samples from the observations Dn.

Theorem 3.4. For u and f as defined in Lemma 3.3, ∀x ∈
X and ∀τ ∈ T , let L(u)

LFBO(x;Dn, τ) = ŜDn,τ (x), where

ŜDn,τ = argmax
S:X→R

EDn
[u(y; τ)f ′(S(x))− f⋆(f ′(S(x))].

Then L
(u)
LFBO is equivalent to L(u) in Equation 2.

Proof. In Appendix A.3.

The above statement converts the process of obtaining the
acquisition function into an optimization problem that only
relies on samples, such that the optimized model ŜDn,τ

can directly be used as the acquisition function. Therefore,
we have obtained a general approach to construct acquisi-
tion functions that are (i) likelihood-free and (ii) equiva-
lent to an expected utility acquisition function. Due to the
likelihood-free nature of the method, we name our approach
Likelihood-free Bayesian Optimization (LFBO).

3.3. Practical Likelihood-free Acquisition Functions

From Theorem 3.4, we can further choose specific convex f
and recover practical objective functions such as a weighted
classification one.



Corollary 3.5 (Weighted classification). For u as defined
in Lemma 3.3, ∀x ∈ X and ∀τ ∈ T , let

L
(u)
C (x;Dn, τ) = ĈDn,τ (x)/(1− ĈDn,τ (x)), (6)

where ĈDn,τ is the maximizer to the following objective
over C : X → (0, 1):

E(x,y)∼Dn
[u(y; τ) logC(x) + log(1− C(x))], (7)

then L
(u)
C is equivalent to L(u) in Equation 2.

Proof. Let f(r) = r log r
r+1 + log 1

r+1 for all r > 0, then
f⋆(c) = − log(1−exp(c)), f ′(r) = log r− log(r+1), and
f ′′(r) = 1/r− 1/(r+ 1) > 0 (so f is convex, and its third
order derivative exists). Applying f(r) and S = C/(1−C)
to Theorem 3.4 completes the proof.

From Corollary 3.5, we can optimize a classification objec-
tive (Equation 7) with weights defined by the utility function
and expect it to behave similarly to the EU acquisition func-
tions in Equation 2.

LFBO for PI For PI, uPI(y; τ) := I(y − τ > 0), Equa-
tion 7 becomes:

|D+
n |

|Dn|
E(x,y)∼D+

n
[logC(x)]︸ ︷︷ ︸

positive

+E(x,y)∼Dn
[log(1− C(x))]︸ ︷︷ ︸
negative

,

where D+
n denotes the subset of Dn where y > τ . Similar

to word2vec (Mikolov et al., 2013), we can treat samples
in the first term as positive and samples in the second term
as negative. Our objective encourages C to assign higher
values to x in positive samples and lower values to x in
negative samples; all the positive samples have the same
weight, which is also the case in BORE.

LFBO for EI For EI, uEI(y; τ) := max(y − τ, 0), Equa-
tion 7 becomes:

|D+
n |

|Dn|
ED+

n
[(y − τ) logC(x)]︸ ︷︷ ︸

positive

+EDn [log(1− C(x))]︸ ︷︷ ︸
negative

,

where positive samples are weighted by (y − τ) times a
constant (|D+

n |/|Dn|). Different from PI, here we favor y
that are not only above the threshold τ , but also have higher
values. In practice, the factor |D+

n |/|Dn| can be removed,
as this amounts to simply scaling the utility function by a
constant (since the utilities/weights for the samples with
y < τ are zero). We can also normalize the weights within
the positive term such that the average weight is one; we
adopt this approach in the experiments.

3.4. Representation Capability of Likelihood-free
Acquisition Functions

Unlike GPs that produce a distributional estimate given x,
models used in likelihood-free acquisition functions (e.g.,
C(x) in Equation 7) would only produce a point estimate
given x. Despite the lack of explicit uncertainty estimates
over y, likelihood-free acquisition functions are not limited
in what they can represent; for example, wide-enough neu-
ral networks can approximate any acquisition function that
is Borel measurable (Hornik et al., 1989). Conversely, even
for the same utility u, there may exist many different sur-
rogate models of p(y|x,D) that give the same acquisition
value (see an argument for Gaussian distributions in Proposi-
tion A.6). Thus, our likelihood-free method is a more direct
approach to acquiring the acquisition function without loss
of representation capabilities.

4. Related Work
Bayesian Optimization Many works in Bayesian Opti-
mization adopt GPs as the underlying surrogate model and
some form of expected utility as the acquisition function.
The utilities in some acquisition functions can be expecta-
tions themselves (such as ES). Some works aim to make the
posterior inference process more scalable, possibly sacrific-
ing the tractability or the exactness of the posterior; these
include sparse online GPs (McIntire et al., 2016), linear mod-
els (Perrone et al., 2018), neural network ensembles (White
et al., 2019), Bayesian neural networks (Springenberg et al.,
2016), Bayesian linear models and GPs with neural feature
learners (Snoek et al., 2015; Tran et al., 2020), and GPs
with deep kernels from meta learning (Wistuba & Grabocka,
2021). Nevertheless, these methods replace GPs with an-
other model and do not change how they interact with the
acquisition functions. TPE (Bergstra et al., 2011) is an
exception in that it first estimates probability distributions
over x (as opposed to over y given x) and then obtains the
acquisition function through density ratios over x. Ratio es-
timation approaches have also been combined with mutual
information acquisition functions for Bayesian experimen-
tal design (Kleinegesse & Gutmann, 2019; Zhang et al.,
2021b).

The work most related to ours is BORE (Tiao et al., 2021),
which applies likelihood-free density ratio estimation to the
TPE acquisition function. Our approach extends BORE
over two aspects: (i) we formally identify that BORE (and
equivalently, TPE) is not equivalent to EI, and that it is
only equivalent to the PI utility function; (ii) we derive a
likelihood-free approach that applies to not only EI, but also
general expected utility functions.

Likelihood-free inference Likelihood-free inference
methods have been widely applied to implicit models where



tractable forms of the likelihood do not exist, such as genera-
tive adversarial networks (GANs, Goodfellow et al. (2014))
and hierarchical implicit models (Tran et al., 2017). These
are often posed as density/likelihood ratio estimation prob-
lems from samples. Various methods have been proposed
beyond direct kernel density estimation approaches, such
as KL importance estimation procedure (KLIEP, Sugiyama
et al. (2007; 2012)), kernel mean matching (KMM, Gretton
et al. (2009)), and unconstrained least-squared importance
fitting (ULSIF, (Kanamori et al., 2010)). The likelihood-
ratio estimation approach used in GANs can be interpreted
as class probability estimation based on proper scoring
rules (Buja et al., 2005; Gneiting & Raftery, 2007), vari-
ational f -divergence estimation (Nguyen et al., 2008), or
ratio matching (Sugiyama et al., 2013; Uehara et al., 2016).
These perspectives are known to be equivalent to one an-
other (Reid et al., 2011; Mohamed & Lakshminarayanan,
2016) and are also applied in various domains such as gen-
erative modeling (Gutmann & Hyvarinen, 2010; Song &
Ermon, 2020; Yu et al., 2020), domain adaptation (Bickel
et al., 2007), inverse reinforcement learning (Yu et al., 2019),
and black-box sequence design (Zhang et al., 2021a).

Our likelihood-free acquisition function is different from
these prior approaches (such as class probability estimation
used in BORE) in that we are not necessarily estimating
the ratio between two probability measures defined over X
(except for the case of PI), but the ratio between a general
non-negative measure (defined as some expected utility over
the positive samples) and a probability measure (over the
negative samples). Nevertheless, our approach is closely
related to these perspectives, and can be treated as a classifi-
cation problem with unnormalized weights determined by
the utility values.

5. Experiments
In this section, we evaluate our likelihood-free BO approach
on multiple synthetic and real-world optimization tasks. We
first verify our theory by comparing against ground truth
targets in a synthetic case (Section 5.1). Next, we com-
pare against various baselines, especially BORE (Tiao et al.,
2021), illustrating the advantages of the EI utility function
(as well as others) in conjunction with our likelihood-free
BO approach (Section 5.2). Finally, we illustrate how we
can massively improve performance by integrating LFBO
with existing knowledge about the objective function, specif-
ically with a composite, grey-box function optimization
problem (Section 5.3). Here, LFBO uses the weighted clas-
sification approach in Equation 7, Corollary 3.5; we leave
the possibilities of applying different f in Theorem 3.4 as
future work. For all BO experiments, we first query 10 ran-
dom candidates uniformly over the search space, and then
proceed with the BO methods.
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Figure 3. L1 distance between the modeled acquisition functions
and the ground truth. x is drawn uniformly between [−1, 1]. The
shaded regions show the mean plus and minus one standard devia-
tion across different seeds. The ground truth acquisition functions
for the left and right figures are Probability of Improvement and
Expected Improvement respectively.

5.1. Verifying the Equivalence Relationship of
Likelihood-free Acquisition Functions

We first validate the theory over our proposed likelihood-free
acquisition functions over a synthetic problem, where the
search space is x ∈ [−1, 1] and observations are obtained
from g(x) = − sin(3x)−x2+0.6x plus independent Gaus-
sian noise ϵ ∼ N (0, 0.01) (see Figure 1 for the function).
This allows to evaluate the “ground truth” EI and PI values
for any x in the search space (similar to how EI and PI are
computed for GPs). We estimate the ground truth EI and
PI with our LFBO acquisition functions, with BORE (Tiao
et al., 2021) as a baseline. The classifier model is a two layer
fully-connected neural network with 128 units at each layer;
we repeat all experiments with 5 random seeds. As our goal
here is to validate the consistency claims, we only take i.i.d.
samples uniformly and do not perform any adaptive queries.

If a likelihood-free acquisition function is indeed equivalent
to PI or EI, then we should expect it to become closer to the
ground truth as the number of observations n increases. We
report the quality of the acquisition functions, measured in
L1 error from the ground truth, in Figure 3 (more in Figure 8,
Appendix B.1). For LFBO, both errors are roughly inversely
proportional to n, whereas the same can only be said for
BORE and PI; the error between BORE and EI remains large
even with many samples. Therefore, the empirical results
align with our statements in Proposition 3.2, Theorem 3.4,
and Corollary 3.5.

5.2. Real-world Benchmarks

Setup. We empirically evaluate our method on various
real-world optimization tasks, including hyperparameter op-
timization of neural networks (HPOBench, Klein & Hutter
(2019)) and neural architecture search (NAS-Bench-201,
Dong & Yang (2020)). We provide more details for these
experiments in Appendix B.2.

In HPOBench, we aim to find the optimal hyperparameter
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Figure 5. Immediate regret on the NAS-Bench-201 neural architecture search problems. LFBO uses the utility function for EI. Each curve
is the mean of results from 100 random seeds.

configurations for training a two-layer feed-forward neural
networks on four popular UCI datasets (Asuncion & New-
man, 2007) for regression: protein structure (Protein), slice
localization (Slice), naval propulsion (Naval) and parkin-
sons telemonitoring (Parkinsons). The configuration space
includes batch size, initial learning rate, learning rate sched-
ule, as well as layer-specific dropout rates, number of units
and activation functions. For each dataset, HPOBench tabu-
lates the mean squared errors of all 62, 208 configurations.

In NAS-Bench-201, the network architecture is constructed
as a stack of neural cells, each represented as a directed
acyclic graph (DAG), and we focus on the design of the
neural cell, i.e., assigning an operation to 6 edges of the
DAG from a set of 5 operations. Similar to HPOBench,
this dataset also provides a lookup table that tabulates the
training results of all 15, 625 possible configurations for
three datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet-16 (Chrabaszcz et al., 2017).

In LFBO, we need to train a probabilistic classifier for can-
didate suggestion at each iteration. Here, we consider Multi-
layer perceptions (MLP), Random Forest (RF, Breiman
(2001)), and gradient boosted trees (XGBoost, Chen &
Guestrin (2016)). The MLP-based models are differentiable
with respect to its inputs but requires special care for cate-
gorical variables (e.g., with one-hot vectors). In contrast, the

tree-based ensemble classifiers can naturally deal with the
discrete inputs but are non-differentiable. Despite this, for
optimizing the acquisition functions, we use random search
for all methods on all of the datasets, i.e., first randomly
sampling a large batch of candidates and then selecting the
one with the maximum acquisition value in Equation 6.

We compare our approach with a comprehensive set of state-
of-the-art black-box optimization methods, including BORE
(Tiao et al., 2021), Tree-structured Parzen Estimator (TPE,
Bergstra et al. (2011)), Sequential Model-based Algorithm
Configuration (SMAC, Hutter et al. (2011)), GP-based Ex-
pected Improvement (Jones et al., 1998; Balandat et al.,
2020) and Random Search (Bergstra & Bengio, 2012). Since
LFBO with the utility function for PI would behave simi-
larly to BORE, we consider LFBO with the utility function
for EI in these experiments. Our implementation is based
on an implementation of BORE, and we inherit all its de-
fault hyperparameters. Notably, we select the threshold τ
to be the (1− γ)-th quantile of the observed values, which
includes less positive samples as γ becomes smaller. We
select γ = 0.335, following (Tiao et al., 2021).

Results. Following (Tiao et al., 2021), we report the im-
mediate regret (i.e. the absolute error between the global

5We perform a brief ablation study on this parameter in Ap-
pendix B.3, showing that LFBO (EI) is less sensitive to it.
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Figure 6. Results on two HPOBench problems with different utility
functions, controlled by λ.

minimum of each benchmark and the lowest function value
observed so far)6 for quantitative evaluation of each method.
The results for HPOBench and NAS-Bench-201 are summa-
rized in Figure 4 and Figure 5 respectively, where the results
are averaged across 100 random seeds. We can see that
our LFBO approach consistently achieves the best result
across all the datasets, except on NAS-Bench-201-CIFAR-
10 where the SMAC method is slightly better.

Notably, with all three classifier implementations (MLP,
RF and XGBoost), LFBO (EI) consistently outperforms
its BORE counterparts except for Naval with MLP, which
demonstrates the effectiveness of choosing EI as the acquisi-
tion function and the value of enabling EI in the likelihood-
free scenario. Moreover, we observe that GP-based EI meth-
ods (where we use Matern-Kernel with default hyperpa-
rameters values in the BoTorch7 library) perform poorly
on both benchmarks (omitted on NAS-Bench-201 where
its performance is close to random search), possibly due to
the complexity of attempting to learn a full distributional
description of the underlying function. These results show
the great potential of our generalized likelihood-free BO
paradigm for strategic sequential decision making tasks.

Alternative utility functions. Since LFBO allows any non-
negative utility function, we may consider other alternatives
to EI and PI. For example, we consider the following func-
tion: uλ(y; τ) = (y − τ)λ if y > τ ; 0 otherwise. uλ

generalizes EI when λ = 1 and PI when λ = 0. Fig-
ure 6 illustrate the results on two HPOBench problems
with λ ∈ {0.0, 0.5, 1.0, 1.5, 2.0} and the XGBoost clas-
sifier. These results show that performance on these tasks
increases as λ goes from 0 (PI) to 1 (EI), and that further im-
provements can be achieved by considering λ greater than

6We note that here and in (Tiao et al., 2021), the actual output
from the black-box function is a random value from several possi-
ble ones (simulating noise in the optimization process), whereas
the global minimum considers the expectation over the values.
Therefore, a negative immediate regret is possible (and we would
use the corresponding neural network for deployment). The flat
vertical lines in our plots mean that the average immediate regret
(across all the seeds) has become negative.

7https://github.com/pytorch/botorch/blob/
main/botorch/models/gp_regression.py

1; in this case, the utility with λ = 1.5 outperforms the EI
one on both problems.

5.3. LFBO with Composite Objective Functions

Here, we consider the case of composite objective func-
tions (Astudillo & Frazier, 2019; Maddox et al., 2021),
where g(x) is a known transformation of a vector-valued
black-box function h(x) : X → Rd, e.g.,

g(x) = −∥h(x)− z⋆∥22,

and z⋆ ∈ Rd is a vector observed from the real world. Com-
pared to standard BO approaches that do not exploit this
information, a grey-box BO method that explicitly models h
can make a much better sampling decision (Astudillo & Fra-
zier, 2022). However, if we model h(x) with GPs, then the
EI acquisition function defined over the above g is no longer
tractable, and traditional approaches would rely on closed-
form but biased approximations (Uhrenholt & Jensen, 2019)
or unbiased but slow Monte Carlo estimates (Astudillo &
Frazier, 2019).

In LFBO, we can also exploit the composite nature of the
objective function to obtain more efficient BO algorithms.
Specifically, we may consider a composite neural network
Cθ(x) : X → R parametrized by training parameters θ:

Cθ(x) =
u(−∥hθ(x)− z⋆∥22; τ)

u(−∥hθ(x)− z⋆∥22; τ) + 1
,

where we use a neural network8 for hθ(x) : X → Rd. As
long as u allows automatic differentiation (e.g., in the case
of EI), we can apply backpropagation over θ to optimize it.

We consider a well-known test problem in the Bayesian
calibration literature (Bliznyuk et al., 2008) that models the
concentration of substances in a chemical accident. Our
goal is to find the underlying parameters, such as the mass
of pollutants, that minimizes the sum of squared errors with
the real-world observation at 12 locations. We include more
details in Appendix B.4.

Results of this experiment are in Figure 7. Our compos-
ite LFBO (EI) approach performs significantly better than
regular GP and LFBO, while being on par with a GP ap-
proach based on composite EI (Astudillo & Frazier, 2019).
Moreover, once our neural network has been trained, we
do not require sampling from the surrogate to evaluate the
composite acquisition function (unlike the GP counterpart
which relies on Monte Carlo samples). Even with training
taken into account, our composite LFBO method is much

8While other models (such as trees) can be used here in prin-
ciple as well, we focus on neural networks as gradient-based op-
timization of the likelihood-free objective function (training) is
more straightforward.

https://github.com/pytorch/botorch/blob/main/botorch/models/gp_regression.py
https://github.com/pytorch/botorch/blob/main/botorch/models/gp_regression.py
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Figure 7. Results on composite objective function optimization.
The utility function for EI is used by all the methods considered.

more efficient (around 15× to 30×) when evaluated on the
same hardware.

6. Discussions
We have introduced likelihood-free BO (LFBO) that extends
BO to general surrogate models and utility functions. Moti-
vated by likelihood-free inference, LFBO directly estimates
the acquisition function from samples. With infinite query
efforts in the search space, LFBO will converge to the de-
sired expected utility function. LFBO can be reduced to
learning the optimal classifier of a weighted classification
problem. Empirical results demonstrate both the validity of
our theory and the usefulness of LFBO (EI) empirically in
black-box and composite function optimization settings.

Limitations While we observe some empirical successes
with LFBO, we believe that it has certain limitations.

• First, because LFBO does not explicitly learn a distri-
butional representation about our current knowledge of
the black-box function, the behaviors of the algorithm
(explore-exploit trade-off) may be less interpretable.

• Second, LFBO combines two separate steps (learning
the surrogate model, and maximizing the acquisition
function based on the learned surrogate model) into
one classification problem, thus the trained model is
tied to one specific acquisition function, while GP-
based methods can be more flexible since the surrogate
model and the acquisition function are decoupled.

• Third, LFBO has to choose a threshold below the cur-
rent optimal observation, since otherwise no observa-
tions will fall into the positive class, and the model
will not learn anything useful. This is also tied to the
fact that LFBO models do not provide a probabilistic
interpretation to the underlying function.

• Finally, there is a risk where the acquisition function
from LFBO is over-confident, and would reduce ex-
ploration diversity (see the example on the Forrester
function in Figure 11).

We believe that these could be mitigated with approaches
that still provide a probabilistic interpretation to the black-
box function, but are not necessarily have tractable acquisi-
tion functions like GPs; we can use LFBO as trying use a
model to amortize the acquisition function (that is otherwise
intractable), which could be faster to optimize than using
Monte Carlo samples.

Future work Apart from applying LFBO to various ap-
plication domains, there are several interesting avenues for
future works:

• Extensions to more sophisticated BO paradigms, such
as batch-based, multi-fidelity (Forrester et al., 2007),
multi-objective (Hernández-Lobato et al., 2016), and
complex composite functions (Astudillo & Frazier,
2021).

• Integration of LFBO with explicit and implicit sur-
rogate functions as an amortization approach, which
may accelerate approaches such as knowledge gradi-
ents (Frazier et al., 2008).

• LFBO with alternative choices of the scoring rule (de-
fined via f ), better heuristics of selecting the threshold
τ , and additional techniques that bridge the gap be-
tween LFBO and GP-based BO.

• Exploring LFBO with other information acquired when
the exact function value is unknown, such as ordering
relationships (Christiano et al., 2017).

Acknowledgements
The authors would like to thank Louis Tiao, Roman Garnett,
Eytan Bakshy, and the annoymous reviewers for helpful
feedback. This research was supported by NSF (#1651565,
#1522054, #1733686), ONR (N00014-19-1-2145), AFOSR
(FA9550-19-1-0024), and Amazon AWS.

References
Astudillo, R. and Frazier, P. Bayesian optimization of com-

posite functions. In International Conference on Machine
Learning, pp. 354–363. PMLR, 2019.

Astudillo, R. and Frazier, P. Bayesian optimization of func-
tion networks. Advances in Neural Information Process-
ing Systems, 34, 2021.

Astudillo, R. and Frazier, P. I. Thinking inside the box: A tu-
torial on grey-box bayesian optimization. arXiv preprint
arXiv:2201.00272, 2022.

Asuncion, A. and Newman, D. UCI machine learning repos-
itory, 2007.



Attia, P. M., Grover, A., Jin, N., Severson, K. A., Markov,
T. M., Liao, Y.-H., Chen, M. H., Cheong, B., Perkins, N.,
Yang, Z., et al. Closed-loop optimization of fast-charging
protocols for batteries with machine learning. Nature,
578(7795):397–402, 2020.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B.,
Wilson, A. G., and Bakshy, E. Botorch: A framework for
efficient monte-carlo bayesian optimization. Advances in
neural information processing systems, 33, 2020.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2), 2012.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
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A. Proofs
A.1. Definitions and Assumptions

Definition A.1 (A valid sequential decision making process). Let pt(x|Dt−1) denote the distribution over x at time t given
observations Dt−1 = {(xi, yi)}t−1

i=1 (which depends on the decision making process), and let p(y|x) be the conditional
distribution (which depends on the true black-box function g); then we define a sequential and Markovian decision making
process as follows:

xt ∼ pt(x|Dt−1), yt ∼ p(y|x),Dt = Dt−1 ∪ {(xt, yt)},D0 = ∅. (8)

Define pt(x) as the marginal distribution of the selected x at time t; a sequential decision making process is valid as long as
plimt→∞ pt(x) exists and is supported on the search space X . We would commonly denote this limiting distribution as
p(x).

Remark A.2. An ϵ-greedy strategy generates a valid sequential decision making process (which would contain a mixture
component that is the uniform distribution over X ). Moreover, in both expected utility and density ratios, the marginal
distribution over x can be canceled out, so it does not affect the acquisition functions discussed in this paper.

The existence of a limiting “ground truth” distribution supported over the entire search space allows us to define to whose
statistics our model estimators are converging to in probability.

Assumption A.3 (Consistency of statistical models). Let Dn = {(xi, yi)}ni=1 be a set of n observations drawn from a valid
sequential decision making process, whose limiting distribution is defined as p(x, y). For any statistical model that we
consider, let En(Dn) be the estimator of a statistic E of p(x, y), then:

plim
n→∞

En(Dn) = E. (9)

For example:

plim
n→∞

p(y|x,Dn) = p(y|x), ∀x ∈ X , y ∈ R (10)

plim
n→∞

p(x|Dn) = p(x), ∀x ∈ X (11)

plim
n→∞

p(x|y > τ,Dn) = p(x|y > τ), ∀x ∈ X , y ∈ R, τ ∈ R. (12)

A.2. Statements Regarding Density Ratios

These results are also discussed by this textbook (Garnett, 2022), albeit without an explicit proof.

Proposition 3.2. LDR is equivalent to LPI.

Proof. From the consistency assumptions over p(y|x,Dn), we have that ∀x ∈ X , y ∈ R:

plim
n→∞

LPI(x,Dn, τ) = plim
n→∞

Ep(y|x,Dn)[I(y > τ)] (13)

= plim
n→∞

∫ ∞

y=τ

p(y|x,Dn)dy (14)

= plim
n→∞

p(y > τ |x,Dn) = p(y > τ |x). (15)

From the consistency assumptions over p(x|y > τ,Dn) and p(x|Dn), we have that ∀x ∈ X , y ∈ R:

γ plim
n→∞

LDR(x;Dn, τ) = γ plim
n→∞

p(x|y > τ,D)

p(x|D)
(16)

= γ
p(x|y > τ)

p(x)
(17)

=
p(x|y > τ)p(y > τ)

p(x)
= p(y > τ |x), (18)



where γ := p(y > τ) does not depend on x, and we apply Slutsky’s theorem in Equation 17. Therefore,

plim
n→∞

LDR(x;Dn, τ) ∝ plim
n→∞

LPI(x;Dn, τ) (19)

which completes the proof.

Corollary A.4. LDR is not equivalent to LEI.

Proof. Let p(x) = N (0, 1), p(y|x) = N (x, 1) defines a limit to the valid sequential decision process in Definition A.1, and
let τ = 0. Then applying the consistency assumptions over p(y|x,Dn):

plim
n→∞

LPI(x;Dn, τ) = Ep(y|x)[I(y > 0)] = Φ(x), (20)

where Φ(x) is the CDF of the standard Gaussian distribution. Meanwhile,

plim
n→∞

LEI(x;Dn, τ) = Ep(y|x)[max(y, 0)] = xΦ(x) + ϕ(x), (21)

where ϕ(x) is the PDF of the standard Gaussian distribution. Applying Proposition 3.2, we have that:

plim
n→∞

LDR(x;Dn, τ) = plim
n→∞

LPI(x;Dn, τ) ̸= plim
n→∞

LEI(x;Dn, τ), (22)

for some x, which completes the proof.

We note that the statement directly contradicts previous claims regarding the relationship between EI and DR (Bergstra
et al., 2011; Tiao et al., 2021). The following claim restates the results in Bergstra et al. (2011); Tiao et al. (2021), which
claim an equivalence between density (or likelihood) ratio acquisition functions and expected improvements9:

Claim A.5 ((Bergstra et al., 2011; Tiao et al., 2021)). Following notations in Tiao et al. (2021), let τ be the (1−γ)-th percentile
of observed y values (i.e., γ = p(y > τ)), and let two densities ℓ(x) := p(x|y ≤ τ,Dn) and g(x) := p(x|y > τ,Dn) be
the densities for x conditioned on y being less or greater than the threshold, respectively. Then:

EI(x, τ) := Ep(y|x,Dn)[max(y − τ, 0)] ∝ p(x|y > τ,Dn)

(1− γ)p(x|y ≤ τ,Dn) + γp(x|y > τ,Dn)
. (23)

Counter claim. We will now go through the “proof” of the claim and identify where the argument does not hold.

First we have that:

EI(x, τ) = Ep(y|x,Dn)[max(y − τ, 0)] =

∫ ∞

τ

max(y − τ, 0)p(y|x, Dn)dy (24)

=

∫∞
τ

max(y − τ, 0)p(y|Dn)p(x|y,Dn)dy

p(x|Dn)
, (25)

where we applied Bayes’ rule in Equation 25. Then, the denominator evaluates as:

p(x|Dn) = p(x|y ≤ τ,Dn)p(y ≤ τ |Dn) + p(x|y > τ,Dn)p(y > τ |Dn) (26)
= ℓ(x)p(y ≤ τ |Dn) + g(x)p(y > τ |Dn) = (1− γ)ℓ(x) + (1− γ)g(x). (27)

where we use the definition that γ := p(y > τ |Dn). Finally, Bergstra et al. (2011); Tiao et al. (2021) claims that the
numerator in Equation 25 evaluates to:∫ ∞

τ

max(y − τ, 0)p(y|Dn)p(x|y,Dn)dy = g(x)

∫ ∞

τ

max(y − τ, 0)p(y|Dn)dy (28)

9We note that Bergstra et al. (2011); Tiao et al. (2021) minimizes the BO objective in their formulation, whereas we paraphrase the
claim to adapt to maximization.



which is g(x) times a value independent of x. Dividing Equation 28 with Equation 27 and using Equation 25 should recover
the result. However, in Equation 28, g(x) := p(x|y > τ) is directly taken out of the integral, as Bergstra et al. (2011)
assumed it is independent of y as long as y > τ . From the definition of conditional probability:

g(x) := p(x|y > τ,Dn) =

∫∞
τ

p(x, y|Dn)dy∫∞
τ

p(y|Dn)dy
̸= p(x|y,Dn), (29)

so Equation 28 does not hold immediately. Thus, we have illustrated that the above density ratio may not be proportional to
expected improvement.

A.3. Statements Regarding Likelihood-free BO

Lemma 3.3 (Variational representation of an integral). For all non-negative utility functions u : R× T → [0,∞), and for
all strictly convex functions f : [0,∞) → R with third order derivatives,

Ep(y|x)[u(y; τ)] =

argmax
s∈[0,∞)

Ep(y|x)[u(y; τ)f
′(s)]− f⋆(f ′(s)),

where f⋆ is the convex conjugate of f , and the maximization is performed over the s ∈ [0,∞) (the domain of f ).

Proof. From the definition of f⋆, we have that:

f⋆(f ′(s)) = sf ′(s)− f(s)

(f⋆ ◦ f ′)′(s) = f ′(s) + sf ′′(s)− f ′(s) = sf ′′(s)

The derivative of Ep(y|x)[u(y, τ)f
′(s)]− f⋆(f ′(s)) is thus:

Ep(y|x)[u(y, τ)]f
′′(s)− sf ′′(s); (30)

since f is strictly convex, f ′′(s) > 0, and Equation 30 is zero if and only if s = Ep(y|x)[u(y, τ)]. Furthermore, the derivative
of Equation 30 is

Ep(y|x)[u(y, τ)]f
′′′(s)− sf ′′′(s)− f ′′(s), (31)

which is negative when s = Ep(y|x)[u(y, τ)]. Under this value of s, the first order derivative is zero and the second order
derivative is negative, so this value of s is a unique maximizer.

Theorem 3.4. For u and f as defined in Lemma 3.3, ∀x ∈ X and ∀τ ∈ T , let L(u)
LFBO(x;Dn, τ) = ŜDn,τ (x), where

ŜDn,τ = argmax
S:X→R

EDn
[u(y; τ)f ′(S(x))− f⋆(f ′(S(x))].

Then L
(u)
LFBO is equivalent to L(u) in Equation 2.

Proof. From Lemma 3.3, we have that for all x queried in Dn,(
argmax
S:X→R

EDn
[u(y; τ)f ′(S(x′))− f⋆(f ′(S(x′))]

)
(x) = Ep(y|x)[u(y; τ)].

As n → ∞, Dn converges to a probability distribution p(x) that is fully supported over X . Let us denote the limiting
distribution of Dn as p(x), and define p(y|x) as the conditional distribution from the observation process. Applying the
consistency assumption to ŜDn,τ , we have that ∀x ∈ X , τ ∈ T :

plim
n→∞

LLF(u)(x,Dn, τ) := plim
n→∞

ŜDn,τ (x)

:= plim
n→∞

(
argmax
S:X→R

EDn
[u(y; τ)f ′(S(x′))− f⋆(f ′(S(x′))]

)
(x) (32)

=

(
argmax
S:X→R

Ep(y|x)p(x′)[u(y; τ)f
′(S(x′))− f⋆(f ′(S(x′))]

)
(x) = Ep(y|x)[u(y; τ)]. (33)



Applying the consistency assumption to p(y|x,Dn), we have that:

plim
n→∞

L(u)(x,Dn, τ) = Ep(y|x,Dn)[u(y; τ)] = Ep(y|x)[u(y; τ)], (34)

completing the proof.

In the following, we show that the same expected utility function value can be achieved by different Gaussian distributions.

Proposition A.6 (Different Gaussian distributions can have the same expected utility). Let u(y; τ) be non-negative,
continuous and non-decreasing in the y argument for a given τ . For any Gaussian p1(y) = N (µ1, σ

2
1), there exists a

Gaussian p2(y) = N (µ2, σ
2
2) such that p1 ̸= p2 and

Ep1(y)[u(y; τ)] = Ep2(y)[u(y; τ)].

Proof. Let U := Ep1(y)[u(y; τ)], and choose any fixed σ2 smaller than σ1. We have that:

lim
µ2→∞

Ep2(y)[u(y; τ)] = max
y

u(y; τ) (35)

lim
µ2→−∞

Ep2(y)[u(y; τ)] = min
y

u(y; τ). (36)

We split u(y; τ) into two cases:

• If maxy u(y; τ) = miny u(y; τ), then the desired condition is trivially satisfied.

• Otherwise, U ∈ (miny u(y; τ),maxy u(y; τ)); since Ep2(y)[u(y; τ)] is a continous function over µ2 when σ2 is fixed,
then from the intermediate value theorem, there must exist some µ2 such that U = Ep2(y)[u(y; τ)].

Thus, there exists a different Gaussian with the same expected utility.

B. Experimental Details
B.1. Synthetic Evaluation of LFBO and BORE (Section 5.1)

Our classifier model is a two layer fully-connected neural network with 128 units at each layer; we repeat all experiments
with 5 random seeds. For each evaluation, we optimize the model with batch gradient descent for 1000 epochs, using an
Adam optimizer with learning rate 0.01 and weight decay 10−6. We illustrate the learned acquisition functions for one
random seed and compare it with the ground truth ones in Figure 8. We placed a non-decreasing transformation over the
BORE result to make it directly comparable to PI; suppose the density ratio predictor of BORE is CBORE, we apply the
following transformation (and implement a numerically stable version of it):

CBORE 7→ CBORE

CBORE + 1−γ
γ

, (37)

where γ = p(y > τ |Dn). This does not modify the optimum of BORE, and is only applied when we would compare against
the ground truth acquisition functions.
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Figure 8. Acquisition functions for the synthetic problem. (Top row) ground truth PI and EI values; (bottom rows) acquisition functions
obtained by BORE (left column), LFBO (PI, middle column), and LFBO (EI, right column) with the number of observations n ∈
{10, 102, 103, 104, 105, 106}. The acquisition functions are closer to the ground truth with more observations.



B.2. Hyperparameters for Real-world Benchmarks (Section 5.2)

We provide a description for the hyperparameter search space of the HPOBench (Klein & Hutter, 2019) and NAS-Bench-201
(Dong & Yang, 2020) problems in Table 1.

Hyperparameter Choices

HPOBench

Initial LR {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}
Batch Size {8, 16, 32, 64}

LR Schedule {cosine, fix}
Activation of Layer 1 {relu, tanh}
Activation of Layer 2 {relu, tanh}

Width of Layer 1 {16, 32, 64, 128, 256, 512}
Width of Layer 2 {16, 32, 64, 128, 256, 512}

Dropout rate of Layer 1 {0.0, 0.3, 0.6}
Dropout rate of Layer 2 {0.0, 0.3, 0.6}

NAS-Bench-201

Arc-0 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc-1 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc-2 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc-3 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc-4 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc-5 Operation {zeroize, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}

Table 1. Configuration spaces for HPOBench and NAS-Bench-201 problems.

We follow (Tiao et al., 2021) to use Multi-layer perceptions (MLP), Random Forest (RF, Breiman (2001)), and gradient
boosted trees (XGBoost, Chen & Guestrin (2016)) to implement the probabilistic classifier. Detailed hyperparameters are
summarized below:

MLP: https://keras.io/
• Number of hidden layers: 2
• Number of hidden units: 32
• Activation function: ReLU
• Optimizer: Adam (with default parameters here)
• Batch size: 64

Random Forest: https://scikit-learn.org/
• Number of trees in the forest: 1000
• Minimum number of samples required to split an internal node: 2
• Maximum depth of the tree: None, nodes are expanded until all leaves contain less than 2 samples.
• Minimum number of samples required to be at a leaf node: 1
• More parameter values can be found here.

XGBoost: https://xgboost.readthedocs.io/
• Number of boosting rounds: 100
• Minimum sum of instance weight (hessian) needed in a child: 1
• Boosting learning rate: 0.3
• More parameter values can be found here.

B.3. Ablation Study over the Threshold

Both BORE and LFBO (EI) include a hyperparameter γ, which includes less positive samples when smaller and may affect
optimization performance empirically. We use the XGBoost classifier on two HPOBench problems with different values of
γ and plot the results in Figure 9. These results show that while we observe a performance drop with a larger γ in both
cases, LFBO (EI) is less sensitive to the choice of γ, which is reasonable since it take into account how much the observed
value exceeds the threshold.

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
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Figure 9. Results on two HPOBench problems with different thresholds. LFBO uses the utility function for EI.
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Figure 10. Structure for the classifier model in the composite case. We regularize the intermediate layer such that it is close to the real
black-box outputs from h.

B.4. LFBO for Composite Functions

LFBO model and objectives. Our composite neural network is Cθ(x) : X → R parametrized by θ:

Cθ(x) =
u(−∥hθ(x)− z⋆∥22; τ)

u(−∥hθ(x)− z⋆∥22; τ) + 1
,

where hθ(x) : X → Rd is a neural network with the training parameters θ. Essentially, Cθ is a neural network that contains
a special final layer that incorporates the structure of the objective function (see Figure 10). We also considered replacing
the final layer with another neural network, but observed worse performance; this is not hard to expect since we would
require some data to learn a suitable mapping in this case.

We consider training Cθ(x) with our LFBO objective plus a regularization term that encourages hθ(x) (the neural network)
to produce similar outputs to h(x) (the black-box); for EI, this leads to the following objective function:

|D+
n |

|Dn|
ED+

n
[(−∥y − z⋆∥22 − τ) logCθ(x)] + EDn [log(1− Cθ(x))] + E(x,y)∼Dn

[−∥hθ(x)− y∥22] (38)

where Dn = {(x,y)}ni=1 contains observations from the black-box h(x), and D+
n is the subset of Dn where −∥y − z⋆∥22 >

τ . We also tried different weights between the LFBO objective and the regularization term, which gave similar results.

Test problem. We evaluate our methods on the environmental model function (Bliznyuk et al., 2008), which models the
spilling of pollutants at two sites into a long and narrow holding channel in a chemical accident. The model is:

c(a, b;M,D,K, ξ) =
M√
4πDb

exp

(−a2

4Db

)
+

I(b− ξ > 0)M√
4πD(b− b0)

exp

(−(a−K)2

4D(b− ξ)

)
(39)
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Figure 11. Success and failure cases for LFBO and GP (with EI) on minimizing the Forrester function (Sobester et al., 2008). The red
triangle points indicate the initial random observations, and the subsequent observations are denoted by color circles (from bright to dark).

where M is the mass of pollutant spilled at each location, D is the diffusion rate in the channel, K is the location of the
second spill, and ξ is the time of the second spill. The objective function is:∑

(a,b)∈A×B

(c(a, b;M,D,K, ξ)− c(a, b;M0, D0,K0; ξ0))
2 (40)

where A = {0, 1, 2.5}, B = {15, 30, 45, 60} are grid locations, and (M0, D0,K0, ξ0) are the underlying true values of
these parameters. This function is a grey-box function in the sense that c(a, b;M,D,K, ξ) for each (a, b) ∈ A × B is a
black-box function.

Implementation and hyperparameters. We use our own implementation for GP (EI), LFBO (EI) and composite LFBO
(EI), and use the official implementation10 (with minor modifications for bug fixes) for composite GP (EI). We note that the
regrets for composite GP (EI) appear larger than the ones reported in (Astudillo & Frazier, 2019) because of the evaluated
statistics. Astudillo & Frazier (2019) use average of log10 regret, whereas we use log10 of average regret; since log10 is
concave, our statistics will be larger than theirs (which would favor higher variance across random seeds).

For all the methods, we first take 10 random samples and then proceed with the Bayesian optimization algorithm; Figure 7
plots the immediate regret after the initial random samples have been collected. For composite LFBO (EI), we select τ to be
the 10-th percentile of the existing observed g(x) values. Our hθ(x) is a two layer fully connected neural network with 64
units in each layer; we find that the results are insensitive to slight changes to the neural network architecture.

C. Additional Experimental Results
C.1. LFBO on Additional Continuous Functions

Apart from the composite function, we further evaluate LFBO on some additional continuous functions, such as the Forrester
function (example from in Figure 11; we observe both successful and unsuccessful optimization results for both LFBO and
GP, which depends on the initial random queries. Failures are mostly due to initial samples that causes the model to be
overconfident about the global valley between [0.6, 0.8], and even GPs cannot avoid them (Deshpande & Kuleshov, 2021)
(these occur roughly 25% of the time for both methods). Improving LFBO on these failure cases is an interesting future
work.

C.2. Runtime Comparisons between LFBO and GP-based Methods

We perform these comparisons on the same machine. On NAS-Bench-201’s CIFAR-10 dataset, the average time for LFBO
to finish 200 steps of BO is around 110 seconds, while the average time for GP-EI (implemented with the BoTorch library)

10https://github.com/RaulAstudillo06/BOCF/blob/master/test_4b.py

https://github.com/RaulAstudillo06/BOCF/blob/master/test_4b.py


to finish 200 steps of BO is around 600 seconds. Thus LFBO is 5× faster than the GP in this setting. We also find that
model fitting and acquisition function optimization takes roughly the same time with LFBO, but the latter was much slower
with GPs. Although both methods require some training time given new observations, the inference time of LFBO is much
faster, since basic GP requires O(n3) computational complexity to perform posterior inference, while in LFBO the model
size (and by extension inference time) is constant. While sparse GPs can reduce inference time to the order of O(n), they
can still be more expensive than LFBO (as n becomes very large).

On Bliznyuk, composite EI with GP (using the official implementation based on GPyTorch) is much slower (where 40
iterations took around 1200s), around 30× slower than LFBO (which took around 40s). Even with a more efficient
implementation using multi-task GPs (Maddox et al., 2021)11, the 40 iterations took around 640s on the same CPU, which
was around 15× slower. We believe this is probably because the model has to take additional Monte Carlo samples as
composite EI is no longer analytically tractable. While this gap could be smaller if further optimizations over the GP
implementations are made, we believe that this demonstrates the efficiency of LFBO methods even with additional training.

11https://botorch.org/tutorials/composite_bo_with_hogp

https://botorch.org/tutorials/composite_bo_with_hogp

