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Abstract

Contrastive Learning (CL) has emerged as a dom-
inant technique for unsupervised representation
learning which embeds augmented versions of
the anchor close to each other (positive samples)
and pushes the embeddings of other samples (neg-
atives) apart. As revealed in recent studies, CL
can benefit from hard negatives (negatives that
are most similar to the anchor). However, we
observe limited benefits when we adopt existing
hard negative mining techniques of other domains
in Graph Contrastive Learning (GCL). We per-
form both experimental and theoretical analysis
on this phenomenon and find it can be attributed
to the message passing of Graph Neural Networks
(GNNs). Unlike CL in other domains, most hard
negatives are potentially false negatives (nega-
tives that share the same class with the anchor)
if they are selected merely according to the sim-
ilarities between anchor and themselves, which
will undesirably push away the samples of the
same class. To remedy this deficiency, we pro-
pose an effective method, dubbed ProGCL, to
estimate the probability of a negative being true
one, which constitutes a more suitable measure for
negatives’ hardness together with similarity. Ad-
ditionally, we devise two schemes (i.e., ProGCL-
weight and ProGCL-mix) to boost the perfor-
mance of GCL. Extensive experiments demon-
strate that ProGCL brings notable and consis-
tent improvements over base GCL methods and
yields multiple state-of-the-art results on several
unsupervised benchmarks or even exceeds the
performance of supervised ones. Also, ProGCL
is readily pluggable into various negatives-based
GCL methods for performance improvement. We
release the code at https://github.com/
junxia97/ProGCL.
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(a) CIFAR-10 (Image) (b) Coauthor-CS (Graph)

Figure 1. Similarity (cosine similarity between normalized embed-
dings of anchor and negatives) histograms of negatives. We adopt
SimCLR (Chen et al., 2020) and GCA (Zhu et al., 2021c) for
CIFAR-10 and Coauthor-CS respectively. False (or true) negatives
denote the samples that are (or not) from the same class with the
anchor. Unlike CL, most negatives with larger similarities to the
anchor are false ones in GCL. More examples are in the appendix.

1. Introduction
Recently, Contrastive Learning (CL) has demonstrated un-
precedented unsupervised performance in computer vision
(He et al., 2020; Chen et al., 2020), natural language pro-
cessing (Gao et al., 2021; Zheng et al., 2022) and graph
representation learning (Velickovic et al., 2019; Xia et al.,
2022b; Zhu et al., 2021c). As with metric learning (Kaya &
Bilge, 2019), existing works both theoretically and practi-
cally validate that hard negatives contribute more to CL. For
example, HCL (Robinson et al., 2021) develops a family of
unsupervised sampling methods for selecting hard negatives
and MoCHi (Kalantidis et al., 2020) mixes the hard nega-
tives to synthesize more hard negative ones. However, we
observe minor improvement or even significant performance
drop when we adopt these negative mining techniques in
GCL (the results can be seen in Table 5). Concurrent to
our work, Zhu et al. (2021b) also observe that existing hard
negative mining techniques that work well in other domains
bring limited benefits to GCL. Unfortunately, they didn’t
provide any solution to tackle this issue.

To explain these phenomena, we first plot the negatives’
distributions over similarity of various datasets in Figure 1.
Note that we do not observe significant changes of nega-
tives’ distribution (keep unimodal as shown in Figure 1(a))
during the training process of SimCLR (Chen et al., 2020)
on CIFAR-10 and other image datasets. However, for the
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first stage of GCL, the negatives’ distribution is bimodal for
a long period as Figure 1(b) and then progressively transit to
unimodal distribution as CL at the second stage. Similar phe-
nomena for more datasets can be found in the appendix. The
difference of negatives’ distribution between CL and GCL
can be attributed to the unique message passing of Graph
Neural Networks, which we further discuss in section 3.2.
These provide explanations for the poor performance of ex-
isting negative mining techniques in GCL. Specifically, they
regard the negatives that are most similar to anchor points
as hard ones across all the training process. However, as
shown in Figure 1(b), most selected “hard” negatives in this
way are false negatives for GCL indeed, which will undesir-
ably push away the semantically similar samples and thus
degrade the performance. The existence of false negatives is
termed as sampling bias in DCL (Chuang et al., 2020). How-
ever, as reported in Table 5 and Zhu et al. (2021b), DCL
brings performance drop for GCL because the sampling
bias is severer in GCL. Now, we are naturally motivated
to ask following questions: Are there better alternatives to
measure negatives’ hardness considering the issue of false
negatives in GCL? Can we devise more suitable methods to
eliminate severer bias in GCL?

To answer these questions, we argue that true and false
negatives can be distinguished by fitting a two-component
(true-false) beta mixture model (BMM) on the similarity.
The posterior probability of a negative being true one under
BMM can constitute a more suitable measure for negatives’
hardness accompanied with similarity. With the novel mea-
sure, we devise two schemes (ProGCL-weight and ProGCL-
mix) for further improvement of negatives-based GCL meth-
ods. To the best of our knowledge, our work makes one of
the pioneering attempts to study hard negative mining in
node-level GCL. We highlight the following contributions:

• We demonstrate the difference of negatives’ distribu-
tion between GCL and CL and explain why existing
hard negative mining techniques can not work well in
GCL with both theoretical and experimental analysis.

• We propose to utilize BMM to estimate the probability
of a negative being true one relative to a specific an-
chor. Combined with the similarity, we obtain a more
suitable measure for negatives’ hardness.

• We devise two schemes (i.e., ProGCL-weight and
ProGCL-mix) that are more suitable for hard negative
mining in GCL.

• ProGCL brings notable and consistent improvements
over base GCL methods and yields multiple state-of-
the-art results on several unsupervised benchmarks or
even exceeds the performance of supervised ones. Also,
it can boost various negatives-based GCL methods for
further improvements.

2. Related Work
2.1. Graph Contrastive Learning (GCL)

Recently, GCL has gained popularity in unsupervised graph
representation learning, which can get rid of the resource-
intensive annotations (Xia et al., 2021; Tan et al., 2021; Xia
et al., 2022a). Initially, DGI (Velickovic et al., 2019) and
InfoGraph (Sun et al., 2020) are proposed to obtain expres-
sive representations for graphs or nodes via maximizing the
mutual information between graph-level representations and
substructure-level representations of different granularity.
Similarly, GMI (Peng et al., 2020) adopts two discrimina-
tors to directly measure mutual information between input
and representations of both nodes and edges. Additionally,
MVGRL (Hassani & Khasahmadi, 2020) proposes to learn
both node-level and graph-level representation by perform-
ing node diffusion and contrasting node representation to
augmented graph representation. Different from our work,
GraphCL (You et al., 2020) and its variants (Suresh et al.,
2021; Xu et al., 2021; You et al., 2021; 2022; Li et al., 2021)
adopt SimCLR framework and design various augmenta-
tions for graph-level representation learning. For node-level
representations, GRACE (Zhu et al., 2020) and its vari-
ants (Zhu et al., 2021c; Tong et al., 2021) maximize the
agreement of node embeddings across two corrupted views
of the graph. More recently, SimGRACE (Xia et al., 2022b),
BGRL (Thakoor et al., 2021) and CCA-SSG (Zhang et al.,
2021) try to simplify graph contrastive learning via discard-
ing the negatives, parameterized mutual information estima-
tor or even data augmentations. In this paper, we consider
hard negatives mining to further boost GCL on node-level
representation learning, which is still under-explored. For
the limited space, we recommend readers refer to a recent
review (Xia et al., 2022d) for more relevant literatures.

2.2. Hard Negative Mining in Contrastive Learning

For contrastive learning, HCL (Robinson et al., 2021) and
MoCHi (Kalantidis et al., 2020) are proposed to emphasize
or synthetize hard negatives. Additionally, Ring (Wu et al.,
2021) introduces a family of mutual information estimators
that sample negatives in a “ring” around each positive. How-
ever, as shown in Table 5, these techniques which emphasize
hard negatives don’t work well in GCL. For GCL, Zhao et
al. (Zhao et al., 2021) utilize the clustering pseudo labels
to alleviate false negative issue, which suffers from heavy
computational overhead and will degrade the performance
when confronted with multi-class datasets. CuCo (Chu et al.,
2021) sorts the negatives from easy to hard with similarity
for graph-level contrastive learning and proposes to auto-
matically select and train negative samples with curriculum
learning. Instead, we study node-level GCL with message
passing among instances. Additionally, Zhu et al. (Zhu et al.,
2022) propose a structure-enhanced negative mining scheme
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which discovers hard negatives in each metapath-induced
view in heterogeneous graph. However, it is not suitable for
homogeneous graphs without metapath.

3. Methodology

Positive pairs
Negative pairs (intra-view)
Negative pairs (inter-view)

Data augmentation

Anchor

Figure 2. Schematic diagram of node-level GCL framework.

3.1. Preliminaries and Notations

Let G = (V, E) be the graph, where V =
{v1, v2, · · · , vN} , E ⊆ V × V denote the node set
and edge set respectively. Additionally, X ∈ RN×F and
A ∈ {0, 1}N×N are the feature matrix and the adjacency
matrix. f i ∈ RF is the feature of vi, and Aij = 1 iff
(vi, vj) ∈ E . Our objective is to learn a GNN encoder
f(X,A) ∈ RN×F ′

to embed nodes in low dimensional
space without label information. These low dimensional
representations can be used in downstream tasks including
node classification. As shown in Figure 2, we sample two
augmentation functions t ∼ T and t′ ∼ T , here T is the set
of all augmentation functions. We can then obtain two views
for G, G̃1 = t(G) and G̃2 = t′(G). Given G̃1 = (X̃1, Ã1)

and G̃2 = (X̃2, Ã2), we denote node embeddings in the
two views as U = f(X̃1, Ã1) and V = f(X̃2, Ã2). For
any node vi, its embedding in one view vi is regarded as the
anchor. The embedding ui in the other view is the positive
sample and the embeddings of other nodes in both views
are negatives. Similar to the InfoNCE (Oord et al., 2018),
the training objective for each positive pair (ui,vi) is,

ℓ (ui,vi) =

log
eθ(ui,vi)/τ

eθ(ui,vi)/τ︸ ︷︷ ︸
positive pair

+
∑
k ̸=i

eθ(ui,vk)/τ

︸ ︷︷ ︸
inter-view negative pairs

+
∑
k ̸=i

eθ(ui,uk)/τ

︸ ︷︷ ︸
intra-view negative pairs

,

(1)
where the critic θ(u,v) = s(g(u), g(v)). Here s(·, ·) is
the cos similarity and g(·) is linear projection (two-layer
perceptron model) to enhance the expression power of the
critic function (Chen et al., 2020). With the symmetry of the

two views, we can then define the overall loss as the average
of all the positive pairs,

J = − 1

2N

N∑
i=1

[ℓ (ui,vi) + ℓ (vi,ui)] . (2)

Many GCL methods are built on this framework (Zhu et al.,
2021b; Qiu et al., 2020; Zhu et al., 2021c; Jin et al., 2021),
which motivates us to study hard negative mining on it.

3.2. Experimental and Theoretical Analysis

(a) GCN (b) MLP

Figure 3. Similarity (after Min-Max normalization) histograms of
GCA (Zhu et al., 2021c) with GCN (with message passing) or
MLP (without message passing) as encoder on Amazon-Photo.

In Figure 3, we study the message passing’s role in GCL
via replacing 2-layer GCN (Kipf & Welling, 2016a) that
is composed of message passing and multi-layer percep-
tron (MLP) with a 2-layer MLP encoder only. As can be
observed, the similarity histograms of GCL will be similar
to that of CL without message passing, which verifies that
message passing of GNN encoder is the key factor for the
difference of negatives’ distribution between CL and GCL.
More specifically, for the first bimodal stage of GCL, the
message passing in GCL enlarges the similarities between
neighbour nodes which often share the same class. For the
second unimodal stage, instance discrimination of GCL oc-
cupies a position of prominence and pushes away all the
other samples regardless of their semantic class. Theoreti-
cally, for embeddings of any nodes pair in the graph G, we
can compare their distance before and after message pass-
ing and show that the distance will be decreased with the
process, as formally induced in Theorem 3.1.

Theorem 3.1. G is a non-bipartile and connected graph
with N nodes V = {v1, . . . , vN}, and X

(τ)
i is the embed-

ding of node vi after τ times message passing (X(0)
i = f i).

For large enough τ , ||X(τ)
i −X

(τ)
j ||2 ≤ ||X

(0)
i −X

(0)
j ||2.

Proof. Given the message passing is,

X(t+1) = D̂
− 1

2 ÂD̂
− 1

2X(t),
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where Â = A+ I and D̂i =
∑

j Âij . We can then rewrite
the message passing as,

X(t+1) = (I −Lsym)X(t),

where Lsym = D̂
− 1

2 L̂D̂
− 1

2 , L̂ = D̂ − Â. Let
(λ1, . . . , λN ) and (e1, . . . , eN ) denote the eigenvalue and
eigenvector of matrix I−Lsym, respectively. With the prop-
erty of symmetric Laplacian matrix for non-bipartile and
connected graph,

−1 < λ1 < λ2 < · · · < λN = 1, eN = D̂
− 1

2 [1, 1, . . . , 1]T ,

we can rewrite X
(τ)
i −X

(τ)
j as

X
(τ)
i −X

(τ)
j = [(I −Lsym)τX]i − [(I −Lsym)τX]j

= [λτ
1(e

(i)
1 − e

(j)
1 ), . . . , λτ

n−1(e
(i)
N−1 − e

(j)
N−1), 0]X̂

e
(i)
k is the ith element of eigenvector ek, X̂ is the coor-

dinate matrix of X in the space spanned by eigenvectors
(e1, . . . , eN ). Thus,

||X(τ)
i −X

(τ)
j ||2 =

√√√√ N∑
m=1

[

N−1∑
k=1

λτ
k(e

(i)
k − e

(j)
k )X̂km]2

Because 1 < λ1 < λ2 < · · · < λN−1 < 1, thus for a large
τ , ||X(τ)

i −X
(τ)
j ||2 ≤ ||X

(0)
i −X

(0)
j ||2.

3.3. ProGCL

We aim to estimate the probability of a negative being true
one. As can be observed in Figure 4, there is a significant
difference between the false negatives and true negatives’
distributions in GCL, allowing the two types of negatives
can be distinguished from the similarity distribution. Here
we propose to utilize mixture model to estimate the proba-
bility. Gaussian Mixture Model (GMM) is the most popular
mixture model (Lindsay, 1995). However, in Figure 4, the
distribution of false negatives is skew and thus symmetric
Gaussian distribution can not fit this well. To circumvent
this issue, we resort to beta distribution (Gupta & Nadarajah,
2004; Ji et al., 2005) which is flexible enough to model vari-
ous distributions (symmetric, skewed, arched distributions
and so on) over [0, 1]. As can be observed in Figure 4, Beta
Mixture Model (BMM) can fit the empirical distribution
better than GMM. Also, we compare the performance of
ProGCL with BMM and GMM in Table 4 and find that
BMM consistently outperforms GMM. The probability den-
sity function (pdf) of beta distribution is,

p(s | α, β) = Γ(α+ β)

Γ(α)Γ(β)
sα−1(1− s)β−1, (3)

where α, β > 0 are the parameters of beta distribution and
Γ(·) is gamma function. The pdf of beta mixture model of

(a) Amazon-Photo (b) Coauthor-CS

Figure 4. Empirical distribution and estimated GMM and BMM
on Amazon-Photo and Coauthor-CS datasets. The BMM fits the
distributions better. Here C1, C2 denote the estimated distributions
of two components respectively. Note that BMM is defined on the
interval [0, 1] while GMM is defined over [−∞,+∞].

C components on s (Min-Max normalized cosine similarity
between normalized embeddings of anchors and negatives)
can be defined as:

p(s) =

C∑
c=1

λcp(s | αc, βc), (4)

where λc are the mixture coefficients. Here we can fit a two-
component BMM (i.e., C = 2) to model the distribution of
true and false negatives. We then utilize Expectation Maxi-
mization (EM) algorithm to fit BMM to the observed distri-
bution. In E-step, we fix the parameters of BMM (λc, αc, βc)
and update p(c | s) with Bayes rule,

p(c | s) = λcp (s | αc, βc)∑C
j=1 λjp (s | αj , βj)

. (5)

In practice, fitting BMM with all the similarities will incur
high computational cost. Instead, we can fit BMM well by
only sampling M (M ≪ N2) similarities for simplification.
Larger M bring limited benefits, which we will discuss in
the appendix. We can then obtain the weighted average s̄c
and variance v2c over M similarities,

s̄c =

∑M
i=1 p(c | si)si∑M
i=1 p(c | si)

, v2c =

∑M
i=1 p(c | si) (si − s̄c)

2∑M
i=1 p(c | si)

.

(6)
For M-step, the component model parameters αc, βc can be
estimated using the method of moments in statistics,

αc = s̄c

(
s̄c (1− s̄c)

v2c
− 1

)
, βc =

αc (1− s̄c)

s̄c
, (7)

and coefficients λc for mixing can be calculated as,

λc =
1

M

M∑
i=1

p(c | si). (8)

The above E and M-steps are iterated until convergence
or the maximum of iterations I are reached. In our exper-
iments, we set I = 10 and we study the influence of I in
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the appendix. Finally, we can obtain the probability of a
negative being true or negative one relative to the anchor
with the their similarity s,

p (c | s) = λcp (s | αc, βc)

p (s)
. (9)

Note that we can regard the fitted distribution with larger λc

as true negatives’ distribution because there are more true
negatives than false ones relative to each anchor in multi-
class datasets. Also, we can regard the fitted distribution
with smaller mean as true negatives’ distribution because
the anchor and false negatives share the same class and
they are more similar to each other in general. With the
posterior probabilities, we devise two schemes to boost the
performance of existing GCL as we elaborate below.

3.4. Scheme 1: ProGCL-weight

As revealed above, GCL suffers from severe sampling bias
which will undermine the performance. To tackle this prob-
lem, we propose a novel measure for negatives’ hardness
considering the hardness and the probability of a negative
being true one simultaneously,

w(i, k) =
p (ct | sik) sik

1
N−1

∑
j ̸=i[p (ct | sij) sij ]

, (10)

where sik is the similarity between anchor ui and its inter-
view negative sample vk and p (ct | sij) denotes the proba-
bility of vj being true negative relative to anchor ui. Note
w(i, k) can be utilized to weight both inter-view (ui,vk)
and intra-view (ui,uk) negative pair,

ℓw (ui,vi) =

log
e

θ(ui,vi)
τ

e
θ(ui,vi)

τ︸ ︷︷ ︸
positive pair

+
∑
k ̸=i

w(i, k)e
θ(ui,vk)

τ

︸ ︷︷ ︸
inter-view negative pairs

+
∑
k ̸=i

w(i, k)e
θ(ui,uk)

τ

︸ ︷︷ ︸
intra-view negative pairs

,

(11)
we can then define the new overall loss as the average of all
the positive pairs,

Jw = − 1

2N

N∑
i=1

[ℓw (ui,vi) + ℓw (vi,ui)] . (12)

3.5. Scheme 2: ProGCL-mix

Recently, MoCHi (Kalantidis et al., 2020) proposes to syn-
thesize more negatives with “hard” negatives selected only
with similarity. However, as analysed above, many synthe-
sized hard negatives in GCL are positive samples indeed,
which will undermine the performance. To remedy this defi-
ciency, we propose ProGCL-mix which synthesizes more
hard negatives considering the probability of a negative be-
ing true one. The comparison between MoCHi and ProGCL-
mix can be seen in Figure 5. More specifically, for each

Anchor Selected hard negatives Synthetic negatives

(a) MoCHi (b) ProGCL-mix

Figure 5. Comparison between MoCHi and ProGCL-mix. Gray
dotted lines denote mixing and the classes are distinguished by the
color of samples. ProGCL-mix synthesizes more true negatives.

anchor point ui, we synthesize m hard negatives by con-
vex linear combinations of pairs of its “hardest” existing
negatives. Here, “hardest” existing negatives refers to N ′

negatives that are selected with the measure in Eq. (10).
Instead of mixing N ′ samples randomly, we mix them by
emphasizing samples that are more likely to be true neg-
ative. Formally, for each anchor ui, a synthetic point ũk
(k ∈ [1,m]) would be given by,

ũk = αkvp + (1− αk)vq, (13)

where vp,vq are selected from N ′ “hardest” existing negatives
measured by Eq (10) and αk can be calculated as,

αk =
p (ct | sip)

p (ct | sip) + p (ct | siq)
, (14)

we can then define the training objective for each positive pair
(ui,vi) with the synthetic negatives,

ℓm (ui,vi) =

log
e

θ(ui,vi)
τ

e
θ(ui,vi)

τ︸ ︷︷ ︸
positive pair

+
∑
k ̸=i

e
θ(ui,vk)

τ

︸ ︷︷ ︸
inter-view negative pairs

+
∑
k ̸=i

e
θ(ui,uk)

τ

︸ ︷︷ ︸
intra-view negative pairs

+

m∑
k=1

e
θ(ui,ũk)

τ

︸ ︷︷ ︸
synthetic negative pairs

.

(15)

Note that we synthesize new samples only with inter-view
hard negatives. Finally, we can define the new overall loss,

Jm = − 1

2N

N∑
i=1

[ℓm (ui,vi) + ℓm (vi,ui)] . (16)

3.6. Time Complexity Analysis

It is noteworthy that the estimation of the posterior prob-
abilities introduces light computational overhead over the
base model. Firstly, we only have to fit BMM once during
the training process instead of once per epoch. Secondly,
we can fit BMM well with M (M ≪ N2) similarities and
the time complexity of EM algorithm for fitting in ProGCL
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is O(IM). I is the the maximum of iterations. Thirdly, we
only have to fit BMM with similarities from single view
because both inter-view and intra-view include all nega-
tive pairs. In our experiments, we only utilize similarities
from inter-view to fit BMM. The training algorithms of both
ProGCL-weight and ProGCL-mix for transductive tasks are
summarized in Algorithm 1. The algorithm for inductive
tasks can be found in the appendix.

Algorithm 1 ProGCL-weight & -mix (Transductive)
Input: T ,G, f, g,N, normalized cosine similarity s,
epoch for fitting BMM E, mode (‘weight’ or ‘mix’).
for epoch = 0, 1, 2, ... do

Draw two augmentation functions t ∼ T , t′ ∼ T
G̃1 = t(G), G̃2 = t′(G);
U = f(G̃1), V = f(G̃2);
for ui ∈ U and vi ∈ V do
sij = s(g(ui), g(vi))
if epoch = E then

Compute p (ct | sij) with Eq. (4) to Eq. (9).
end if

end for
if epoch ≥ E then

if mode = ‘weight’ then
Compute Jw with Eq. (10) to Eq. (12).
Update the parameters of f, g with Jw;

end if
if mode = ‘mix’ then

Compute Jm with Eq. (13) to Eq. (16).
Update the parameters of f, g with Jm.

end if
else

Compute J with Eq. (1) to Eq. (2).
Update the parameters of f, g with J .

end if
end for
Output: f, g.

4. Experiments
4.1. Experimental Setup & Baselines

Following previous work (Velickovic et al., 2019), we train
the model in an unsupervised manner. The resulting embed-
dings are utilized to train and test a simple ℓ2-regularized
logistic classifier. We train the classifier for 20 runs. Ad-
ditionally, we adopt GRACE as base model and measure
performance using micro-averaged F1-score on inductive
tasks. For transductive tasks, we adopt GCA as base model
and report the test accuracy.
Transductive learning. We adopt a two-layer GCN (Kipf
& Welling, 2016a) as the encoder for transductive learn-
ing following previous works (Velickovic et al., 2019;

Zhu et al., 2020). We consider our ProGCL with multi-
ple baselines including DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016). Additionally, we also
consider recent methods including Graph AutoEncoders
(GAE, VGAE) (Kipf & Welling, 2016b), DGI, GMI, MV-
GRL, MERIT, BGRL and GCA as introduced in the related
work. We report the best performance of three variants of
GCA. We also compare ProGCL with supervised counter-
parts including GCN (Kipf & Welling, 2016a) and Graph
Attention Networks (GAT) (Veličković et al., 2017).
Inductive learning on large graphs. Considering the
large scale of some graph datasets, we adopt a three-layer
GraphSAGE-GCN with residual connections as the encoder
following DGI. We adopt the sub-sampling strategy in
GraphSAGE where we first select a mini-batch of nodes
and then a subgraph centered around each selected node
is obtained by sampling node neighbors with replacement.
More specifically, we sample 10, 10 and 25 neighbors at
the first, second and third level respectively as DGI. The
batchsize of our experiments is 256. Also, we estimate the
posterior with pairwise similarities among each mini-batch
instead of total training set, which we elaborate on in the
appendix. We set traditional methods DeepWalk and deep
learning based methods unsupervised GraphSAGE, DGI, a
recent block-contrastive method COLES (Zhu et al., 2021a)
and GMI as baselines. To compare ProGCL with supervised
counterparts, we report the performance of two supervised
methods FastGCN (Chen et al., 2018) and GraphSAGE.
More details can be seen in the appendix.

4.2. Datasets

We conduct experiments on seven widely-used datasets
including Amazon-Photo, Amazon-Computers, Wiki-CS,
Coauthor-CS, Reddit, Flickr and ogbn-arXiv. To keep fair,
for transductive tasks, we split Amazon-Photo, Amazon-
Computers, Wiki-CS and Coauthor-CS for the training, vali-
dation and testing following (Zhu et al., 2021c). For induc-
tive task, we split Reddit and Flickr following (Velickovic
et al., 2019; Zeng et al., 2019). The experimental setting
of ogbn-arXiv is the same as BGRL (Thakoor et al., 2021).
More information of the datasets is in the appendix.

4.3. Comparison with State-of-the-art Results

For transductive classification, as can be observed in Ta-
ble 1, ProGCL consistently performs better than previous
unsupervised baselines or even the supervised baselines,
which validates the superiority of our ProGCL. We provide
more observations as following. Firstly, traditional methods
node2vec and DeepWalk only using adjacency matrix out-
perform the simple logistic regression classifier that only
uses raw features (“Raw features”) on Amazon datasets.
However, the latter can perform better on Coauthor-CS
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Table 1. Summary of the accuracies (± std) on transductive node classification. The ‘Available Data’ refers to data we can obtain for
training, where X,A and Y denotes feature matrix, adjacency matrix and label matrix respectively. ‘OOM’: out of memory on a 32GB
GPU. We highlight the performance of ProGCL with gray background. The highest performance of unsupervised models is highlighted
in boldface; the highest performance of supervised models is underlined. The baselines marked with ’*’ are reproduced with the same
experimental settings (20 random dataset splits and model initializations). The other results are taken from previously published reports.

Method Available Data Amazon-Photo Amazon-Computers Coauthor-CS Wiki-CS

Raw features X 78.53 ± 0.00 73.81 ± 0.00 90.37 ± 0.00 71.98 ± 0.00
node2vec A 89.67 ± 0.12 84.39 ± 0.08 85.08 ± 0.03 71.79 ± 0.05
DeepWalk A 89.44 ± 0.11 85.68 ± 0.06 84.61 ± 0.22 74.35 ± 0.06

DeepWalk + features X,A 90.05 ± 0.08 86.28 ± 0.07 87.70 ± 0.04 77.21 ± 0.03

GAE X,A 91.62 ± 0.13 85.27 ± 0.19 90.01 ± 0.17 70.15 ± 0.01
VGAE X,A 92.20 ± 0.11 86.37 ± 0.21 92.11 ± 0.09 75.35 ± 0.14
DGI X,A 91.61 ± 0.22 83.95 ± 0.47 92.15 ± 0.63 75.35 ± 0.14
GMI X,A 90.68 ± 0.17 82.21 ± 0.31 OOM 74.85 ± 0.08

MVGRL∗ X,A 92.08 ± 0.01 87.45 ± 0.21 92.18 ± 0.15 77.43 ± 0.17
BGRL∗ X,A 92.95 ± 0.07 87.89 ± 0.10 92.72 ± 0.03 78.41 ± 0.09
MERIT∗ X,A 92.53 ± 0.15 88.01 ± 0.12 92.51 ± 0.14 78.35 ± 0.05
GCA∗ X,A 92.55 ± 0.03 87.82 ± 0.11 92.40 ± 0.07 78.26 ± 0.06

ProGCL-weight X,A 93.30 ± 0.09 89.28 ± 0.15 93.51 ± 0.06 78.68 ± 0.12
ProGCL-mix X,A 93.64 ± 0.13 89.55 ± 0.16 93.67 ± 0.12 78.45 ± 0.04

Supervised GCN X,A,Y 92.42 ± 0.22 86.51 ± 0.54 93.03 ± 0.31 77.19 ± 0.12
Supervised GAT X,A,Y 92.56 ± 0.35 86.93 ± 0.29 92.31 ± 0.24 77.65 ± 0.11

Table 2. Summary of the micro-averaged F1 scores (± std) on
inductive node classification.

Method Available Data Flickr Reddit

Raw features X 20.3 58.5
DeepWalk A 27.9 32.4

GraphSAGE X,A 36.5 90.8
DGI X,A 42.9±0.1 94.0±0.1
GMI X,A 44.5±0.2 94.8±0.0

COLES-S2GC X,A 46.8±0.5 95.2±0.3
GRACE X,A 48.0±0.1 94.2±0.0

ProGCL-weight X,A 49.2±0.6 95.1±0.2
ProGCL-mix X,A 50.0±0.3 95.6±0.1

Supervised FastGCN X,A,Y 48.1±0.5 89.5±1.2
Supervised GraphSAGE X,A,Y 50.1±1.3 92.1±1.1

and Wiki-CS. Combing the both (“DeepWalk + features”)
can bring significant improvements. Compared with GCA,
our ProGCL emphasize the hard negatives or remove sam-
pling bias, which lifts the representation quality. Secondly,
ProGCL-mix performs better than ProGCL-weight in gen-
eral. For inductive tasks, ProGCL also achieves competitive
performance over other baselines as shown in Table 2.

Table 3. Performance on the ogbn-arXiv measured in accuracy
along with standard deviations. The results of baselines are taken
from published reports. ‘−’ means that the results are unavailable.

Validation Test
MLP 57.65 ± 0.12 55.50 ± 0.23
node2vec 71.29 ± 0.13 70.07 ± 0.13
Random-Init 69.90 ± 0.11 68.94 ± 0.15
DGI 71.26 ± 0.11 70.34 ± 0.16
GRACE-Subsampling 72.61 ± 0.15 71.51 ± 0.11
BGRL 72.53 ± 0.09 71.64 ± 0.12
COLES-S2GC − 72.48 ± 0.25
ProGCL-weight 72.45 ± 0.21 72.18 ± 0.09
ProGCL-mix 72.82 ± 0.08 72.56 ± 0.20

Supervised GCN 73.00 ± 0.17 71.74 ± 0.29

4.4. Results on Large-Scale OGB Dataset

We conduct experiments on another large graph datasets
ogbn-arxiv from OGB benchmark (Hu et al., 2020). We
adopt GRACE with sub-sampling as our base model and
a 3-layer GCN as the encoder following Hu et al. (2020).
As can observed in Table 3, ProGCL outperforms other
unsupervised baselines, which verifies that ProGCL can
achieve good tradeoff between performance and complexity.
We report the results on both validation and test sets, as is
convention for this task since the dataset is split based on a
chronological ordering.
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4.5. Improving Various GCL Methods
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Figure 6. The performance of ProGCL for another graph con-
trastive learning method MERIT (Jin et al., 2021).

In addition to GCA and GRACE, we also evaluate the perfor-
mance of ProGCL on another GCL method MERIT. The re-
sults shown in Figure 6 demonstrate that ProGCL brings con-
sistent improvements over the base method, which verifies
that our ProGCL is readily pluggable into various negatives-
based GCL methods to improve their performance.

4.6. Why ProGCL Can Alleviate the Bias?

(a) Coauthor-CS (b) Amazon-Photo

Figure 7. The histograms of estimated probability.

To verify that our ProGCL can alleviate the sampling bias,
we plot estimated probability histograms of negatives in Fig-
ure 7. Compared with similarity, the estimated probability
serves as a more discriminative measure to distinguish true
and false negatives, which can help us select hard and true
negatives together with similarity as in Eq. (10).

4.7. Ablation Study

In this section, we replace or remove various parts of
ProGCL to study the impact of each component.

Table 4. Comparison between BMM and GMM.
Datasets Amazon-Photo Amazon-Computers Coauthor-CS

Scheme weight mix weight mix weight mix

GMM 92.71 92.83 88.35 89.29 92.79 92.79
BMM 93.30 93.64 89.28 89.55 93.51 93.67

BMM vs. GMM. We replace BMM in our ProGCL with
GMM and report the performance in Table 4. BMM consis-
tently outperforms GMM in both weight and mix schemes.
The reason is that BMM can fit the negatives distribution
better than GMM as shown in Figure 4.

Table 5. Comparison between ProGCL and other hard nagative
mining methods. “↑” and “↓” refer to performance improvement
and drop compared with GCA respectively.
Methods/Datasets Amazon-Photo Amazon-Computers Coauthor-CS

GCA 92.55 87.82 92.40
+DCL 91.02 (↓ 1.53) 86.58 (↓ 1.24) 92.36 (↓ 0.04)
+HCL 91.48 (↓ 1.07) 87.21 (↓ 0.61) 93.06 (↑ 0.66)
+MoCHi 92.36 (↓ 0.19) 87.68 (↑ 0.14) 92.58 (↑ 0.18)
+Ring 91.33 (↓ 1.22) 84.18 (↓ 3.64) 92.48 (↓ 0.08)

+ProGCL-mix 93.64 (↑ 1.09) 89.55 (↑ 1.73) 93.67 (↑ 1.27)

ProGCL vs. Negative mining techniques. To study
whether ProGCL can better utilize hard negatives and
remove sampling bias in GCL, we equip GCA with
DCL (Chuang et al., 2020), HCL (Robinson et al., 2021),
Ring (Wu et al., 2021) and MoCHi (Kalantidis et al., 2020)
which have achieved immense success in CL. As shown
in Table 5, these techniques bring limited benefits over
GCA. Instead, ProGCL introduces consistent and signif-
icant improvements over GCA, which further validates that
our ProGCL is more suitable for GCL.

Table 6. Comparison between p(ct|s) and other alternatives.
Datasets Amazon-Photo Amazon-Computers Coauthor-CS

Alternatives weight mix weight mix weight mix

pr 92.03 92.58 87.35 88.85 92.06 92.71
pt 92.49 92.76 88.64 89.15 92.45 93.22

p(ct|s) 93.30 93.64 89.28 89.55 93.51 93.67

Performance attributable to ProGCL. We substitute the
estimated probability p(ct|s) of ProGCL with random prob-
ability pr and tuned pt (1 - normalized similarity). As shown
in Table 6, pt can bring minor improvement over random pr
while the estimated posterior p(ct|s) by BMM is the best
among the three alternatives.

4.8. Hyperparameters Sensitivity Analysis

Here we study the number of most hard negatives N ′ and
synthetic negatives m of ProGCL-mix. The results shown
in Figure 8 illustrate that more samples mixing bring con-
sistent performance gains in general. However, oversized
N ′ demonstrated no significant advantages in both accuracy
and efficiency.



ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning

400 500 600 700 800 900 100011001200
N ′

92.8

93.0

93.2

93.4

93.6

Ac
cu

ra
cy

m
400
600
800
1000
1200

Figure 8. Accuracy when varying N ′ (x-axis) and m on Amazon-
Photo. We study more hyperparameters in the appendix.

5. Conclusions
In this paper, we explain why existing hard negative mining
methods can not work well in GCL and contrapuntally intro-
duce BMM to estimate the probability of a negative being
true one. Also, we devise two schemes to further boost GCL.
Interesting directions of future work include (1) applying
GCL to more real-world tasks including social analysis and
drug discovery (Sun et al., 2021; Xia et al., 2022c); (2) ex-
ploring the theoretical explanations for the immense success
of contrastive learning.
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Appendix of ProGCL

A. Datasets

Table 7. Statistics of datasets used in experiments.

Dataset Task Nodes Edges Features Classes

Amazon-Photo Transductive 7,650 119,081 745 8
Amazon-Computers Transductive 13,752 245,861 767 10

Coauthor-CS Transductive 18,333 81,894 6,805 15
Wiki-CS Transductive 11,701 216,123 300 10

Flickr Inductive 89,250 899,756 500 7
Reddit Inductive 231,443 11,606,919 602 41

Ogbn-arXiv Inductive 169,343 1,166,243 128 40

We introduce the datasets used in our experiments as follows:

• WikiCS (Mernyei & Cangea, 2020) is a reference network constructed based on Wikipedia. The nodes correspond to
articles about computer science and edges are hyperlinks between the articles. Nodes are labeled with ten classes each
representing a branch of the field. Node features are calculated as the average of pre-trained GloVe (Pennington et al.,
2014) word embeddings of words in each article.

• Amazon-Computers and Amazon-Photo (Shchur et al., 2018) are two networks of co-purchase relationships con-
structed from Amazon, where nodes are goods and two goods are connected when they are frequently bought together.
Each node has a sparse bag-of-words feature encoding product reviews and is labeled with its category.

• Coauthor-CS (Shchur et al., 2018) is an academic networks, which contain co-authorship graphs based on the
Microsoft Academic Graph from the KDD Cup 2016 challenge. In the graph, nodes represent authors and edges
indicate co-authorship relationships; that is, two nodes are connected if they have co-authored a paper. Each node has a
sparse bag-of-words feature based on paper keywords of the author. The label of an author corresponds to their most
active research field.

• Flickr originates from NUS-wide1. The SNAP website2 collected Flickr data from four different sources including
NUS-wide, and generated an un-directed graph. One node in the graph represents one image uploaded to Flickr. If
two images share some common properties (e.g., same geographic location, same gallery, comments by the same user,
etc.), there is an edge between the nodes of these two images. The node features are the 500-dimensional bag-of-word
representation of the images provided by NUS-wide. For labels, we scan over the 81 tags of each image and manually
merged them to 7 classes. Each image belongs to one of the 7 classes.

• Reddit (Hamilton et al., 2017) contains Reddit posts created in September 2014, where posts belong to different
communities (subreddit). In the dataset, nodes correspond to posts, and edges connect posts if the same user has
commented on both. Node features are constructed from post title, content, and comments, using off-the-shelf GloVe
word embeddings, along with other metrics such as post score and the number of comments.

• Ogbn-arXiv is a large-scale graph from the Open Graph Benchmark (Hu et al., 2020). This is another citation network,
where nodes represent CS papers on arXiv indexed by the Microsoft Academic Graph (Sinha et al., 2015). In our
experiments, we symmetrize this graph and thus there is an edge between any pair of nodes if one paper has cited the

1https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2https://snap.stanford.edu/data/web-flickr.html
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other. Papers are classified into 40 classes based on arXiv subject area. The node features are computed as the average
word-embedding of all words in the paper, where the embeddings are computed using a skip-gram model (Mikolov
et al., 2013) over the entire corpus.

B. More Similarity Histograms of Negativess in SimCLR (CL) and GCA (GCL).

(a) Amazon-photo (Graph) (b) Amazon-computers (Graph) (c) WikiCS (Graph)

Figure 9. More similarity histograms of negative samples in and GCL.

As demonstrated in Figure 9, the negatives distribution over similarity varies significantly across GCL and CL. These
phenomena provide explainations for the failure of existing techniques that emphasize hard negatives in GCL. More
specifically, they regard the negatives that are most similar to anchor points as hard ones, which is feasible in CL. However,
for graph-structured data (see Figure 9(a), Figure 9(b) and Figure 9(c)), many “hard” ones are false negatives indeed, which
will undesirably push away the semantically similar samples.

C. More Experimental Details
C.1. Transductive learning

We adopt a two-layer GCN (Kipf & Welling, 2016a) as the encoder for transductive learning following previous works (Velick-
ovic et al., 2019; Zhu et al., 2020). We can describe the architecture of the encoder as,

GCi(X,A) = σ

(
D̂

− 1
2 ÂD̂

− 1
2XWi

)
,

f(X,A) = GC2 (GC1(X,A),A) ,

(17)

where Â = A + I is the adjacency matrix with self-loops and D̂ =
∑

i Âi is the degree matrix, σ(·) is a nonlinear
activation function. Wi is the learnable weight matrix.

C.2. Inductive learning

Considering the large scale of some graph datasets, we adopt a three-layer GraphSAGE-GCN with residual connections (He
et al., 2016) as the encoder following DGI (Velickovic et al., 2019) and GRACE (Zhu et al., 2020). The architecture of the
encoder can be formulated as,

M̂Pi(X,A) = σ
([

D̂
−1

ÂX;X
]
W i

)
,

f(X,A) = M̂P3

(
M̂P2

(
M̂P1(X,A),A

)
,A

)
.

(18)

D. Hyper-parameters Analysis
Following GRACE (Zhu et al., 2020) and GCA (Zhu et al., 2021c), we initialize the model parameters with Glorot initializa-
tion (Glorot & Bengio, 2010) and train the model using Adam SGD optimizer for all datasets. The ℓ2 weight decay factor is
seted as 10−5 and the dropout rate is seted to zero. The parameters which control the sampling process of two views are the
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Table 8. Hyperparameters specifications. “Starting epoch” E refers to the epoch for fitting BMM; Initial weight winit is the initial weight
for false negative component of mixture distribution; “Iterations” is the iterations I of EM algorithm.

Dataset τ
learning

rate
Training
epochs

Hidden
dimension

Activation
function

Starting
epoch

Initial
weight Iterations

Amazon-Photo 0.3 0.01 2500 128 RRelu 400 0.15 10
Amazon-Computers 0.2 0.01 2000 128 RRelu 400 0.05 10

Coauthor-CS 0.2 0.0001 1000 256 RRelu 400 0.05 10
Wiki-CS 0.4 0.01 4000 256 PRelu 50 0.05 10
Reddit 0.4 0.0001 80 512 ELU 40 0.01 10
Filckr 0.4 0.0001 80 512 ELU 20 0.15 10

Ogbn-arXiv 0.4 0.0001 100 512 ELU 20 0.02 10
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Figure 10. Accuracy when varying E, winit, I and M ′(M = NM ′) for BMM.

same as GRACE and GCA. Other hyper-parameters of ProGCL can be seen in Table 8. For transductive task, the two hyper-
parameters were chosen in a grid E ∈ {50, 100, 200, 300, 400, 600, 800} and winit ∈ {0.01, 0.05, 0.10, 0.15, 0.20, 0.25}.
We further study the influence of E, winit, I and M in Figure 10. Firstly, the accuracy varies significantly across various
starting epoch E in Amazon-Photo while varies slightly in Coauthor-CS, which illustrates the importance of tuning E
varies across datasets. However, generally speaking, ProGCL’s performance does not see sharp drop when varying E. This
validates that BMM is flexible enough to fit various distributions of different epochs. As shown in figure 10(b), the initial
weight winit does not influence much, which illustrates that BMM can split the two component well to an ideal ratio even if
the initial weight is far from intuitive one (the reciprocal of classes number). As shown in figure 10(c), we can observe minor
improvement when we iterate EM algorithm more times. However, this will introduce more computational overhead and
thus we set I = 10 in all experiments for convenience. As shown in Figure 9(c), sampling more similarities for fitting the
BMM can bring minor improvements, however, it will introduce much more computational overhead. In our experiments,
we only sample M ′ = 100 samples for each anchor point. Thus, the number of total selected samples M = NM ′.

E. Pseudo Codes of Inductive Learning.
Different from transductive learning, it is not feasible to compute all the pairwise similarities for large-scale graph datasets.
Thus, we extend ProGCL to inductive setting. The algorithm of ProGCL for inductive learning can be seen as follows. The
equations mentioned in the algorithm can be seen in the main text.
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Algorithm 2 ProGCL-weight & ProGCL-mix (Inductive)
Input:T ,G, f, g,N, normalized cosine similarity s, epoch for fitting BMM E, mode (‘weight’ or ‘mix’), empty list P
for storing the estimated probabilities, Batchsize B.
for epoch = 0, 1, 2, ... do
k = 0;
for each mini-batch do
Gs (Vs, Es)← Sampled sub-graph of G with sampling rules of GraphSAGE;
Draw two augmentation functions t ∼ T , t′ ∼ T ;
G̃(1)s = t(Gs), G̃(2)s = t′(Gs);
Us = f(G̃(1)s ), Vs = f(G̃(2)s );
for all ui ∈ Us and vi ∈ Vs do
sij = s(g(ui), g(vi));
if epoch = E then

ComputeMi,j = p (ct | sij) with Eq. (4) to Eq. (9);
P .append(M).

end if
if epoch ≥ E then

if mode = ’weight’ then
Compute Jw with Eq. (10) to Eq. (12); (P[k] as the estimated probabilities for k-th minibatch)
Update the parameters of f, g with Jw.

end if
if mode = ’mix’ then

Compute Jm with Eq. (13) to Eq. (16); (P[k] as the estimated probabilities for k-th minibatch)
Update the parameters of f, g with Jm.

end if
else if epoch<E then

Compute J with Eq. (1) to Eq. (2);
Update the parameters of f, g with J .

end if
end for
k = k + 1.

end for
end for
Output: f, g.


